[U-Boot] [PATCH 4/7] tools: sunxi: Add spl image builder

Hans de Goede hdegoede at redhat.com
Mon Nov 14 12:29:25 CET 2016


Hi,

On 14-11-16 12:18, Hans de Goede wrote:
> Hi,
>
> On 08-11-16 17:21, Maxime Ripard wrote:
>> This program generates raw SPL images that can be flashed on the NAND with
>> the ECC and randomizer properly set up.
>>
>> Signed-off-by: Maxime Ripard <maxime.ripard at free-electrons.com>
>
> Looks good to me:
>
> Reviewed-by: Hans de Goede <hdegoede at redhat.com>

Note this causes a cpu_to_be32 redefine compiler warning
I've fixed this up locally.

Regards,

Hans


>
> Regards,
>
> Hans
>
>
>
>> ---
>>  tools/.gitignore                |    1 +-
>>  tools/Makefile                  |    1 +-
>>  tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++-
>>  3 files changed, 1115 insertions(+), 0 deletions(-)
>>  create mode 100644 tools/sunxi-spl-image-builder.c
>>
>> diff --git a/tools/.gitignore b/tools/.gitignore
>> index cb1e722d4575..16574467544c 100644
>> --- a/tools/.gitignore
>> +++ b/tools/.gitignore
>> @@ -15,6 +15,7 @@
>>  /mkexynosspl
>>  /mxsboot
>>  /mksunxiboot
>> +/sunxi-spl-image-builder
>>  /ncb
>>  /proftool
>>  /relocate-rela
>> diff --git a/tools/Makefile b/tools/Makefile
>> index 400588cf0f5c..dfeeb23484ce 100644
>> --- a/tools/Makefile
>> +++ b/tools/Makefile
>> @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot
>>  HOSTCFLAGS_mxsboot.o := -pedantic
>>
>>  hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot
>> +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
>>
>>  hostprogs-$(CONFIG_NETCONSOLE) += ncb
>>  hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1
>> diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c
>> new file mode 100644
>> index 000000000000..0f915eb2bdf5
>> --- /dev/null
>> +++ b/tools/sunxi-spl-image-builder.c
>> @@ -0,0 +1,1113 @@
>> +/*
>> + * Generic binary BCH encoding/decoding library
>> + *
>> + * This program is free software; you can redistribute it and/or modify it
>> + * under the terms of the GNU General Public License version 2 as published by
>> + * the Free Software Foundation.
>> + *
>> + * This program is distributed in the hope that it will be useful, but WITHOUT
>> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>> + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
>> + * more details.
>> + *
>> + * You should have received a copy of the GNU General Public License along with
>> + * this program; if not, write to the Free Software Foundation, Inc., 51
>> + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
>> + *
>> + * For the BCH implementation:
>> + *
>> + * Copyright © 2011 Parrot S.A.
>> + *
>> + * Author: Ivan Djelic <ivan.djelic at parrot.com>
>> + *
>> + * See also:
>> + * http://lxr.free-electrons.com/source/lib/bch.c
>> + *
>> + * For the randomizer and image builder implementation:
>> + *
>> + * Copyright © 2016 NextThing Co.
>> + * Copyright © 2016 Free Electrons
>> + *
>> + * Author: Boris Brezillon <boris.brezillon at free-electrons.com>
>> + *
>> + */
>> +
>> +#include <stdint.h>
>> +#include <stdlib.h>
>> +#include <string.h>
>> +#include <stdio.h>
>> +#include <linux/kernel.h>
>> +#include <linux/errno.h>
>> +#include <asm/byteorder.h>
>> +#include <endian.h>
>> +#include <getopt.h>
>> +#include <version.h>
>> +
>> +#if defined(CONFIG_BCH_CONST_PARAMS)
>> +#define GF_M(_p)               (CONFIG_BCH_CONST_M)
>> +#define GF_T(_p)               (CONFIG_BCH_CONST_T)
>> +#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
>> +#else
>> +#define GF_M(_p)               ((_p)->m)
>> +#define GF_T(_p)               ((_p)->t)
>> +#define GF_N(_p)               ((_p)->n)
>> +#endif
>> +
>> +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
>> +
>> +#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
>> +#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
>> +
>> +#ifndef dbg
>> +#define dbg(_fmt, args...)     do {} while (0)
>> +#endif
>> +
>> +#define cpu_to_be32 htobe32
>> +#define kfree free
>> +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
>> +
>> +#define BCH_PRIMITIVE_POLY    0x5803
>> +
>> +struct image_info {
>> +    int ecc_strength;
>> +    int ecc_step_size;
>> +    int page_size;
>> +    int oob_size;
>> +    int usable_page_size;
>> +    int eraseblock_size;
>> +    int scramble;
>> +    int boot0;
>> +    off_t offset;
>> +    const char *source;
>> +    const char *dest;
>> +};
>> +
>> +/**
>> + * struct bch_control - BCH control structure
>> + * @m:          Galois field order
>> + * @n:          maximum codeword size in bits (= 2^m-1)
>> + * @t:          error correction capability in bits
>> + * @ecc_bits:   ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
>> + * @ecc_bytes:  ecc max size (m*t bits) in bytes
>> + * @a_pow_tab:  Galois field GF(2^m) exponentiation lookup table
>> + * @a_log_tab:  Galois field GF(2^m) log lookup table
>> + * @mod8_tab:   remainder generator polynomial lookup tables
>> + * @ecc_buf:    ecc parity words buffer
>> + * @ecc_buf2:   ecc parity words buffer
>> + * @xi_tab:     GF(2^m) base for solving degree 2 polynomial roots
>> + * @syn:        syndrome buffer
>> + * @cache:      log-based polynomial representation buffer
>> + * @elp:        error locator polynomial
>> + * @poly_2t:    temporary polynomials of degree 2t
>> + */
>> +struct bch_control {
>> +    unsigned int    m;
>> +    unsigned int    n;
>> +    unsigned int    t;
>> +    unsigned int    ecc_bits;
>> +    unsigned int    ecc_bytes;
>> +/* private: */
>> +    uint16_t       *a_pow_tab;
>> +    uint16_t       *a_log_tab;
>> +    uint32_t       *mod8_tab;
>> +    uint32_t       *ecc_buf;
>> +    uint32_t       *ecc_buf2;
>> +    unsigned int   *xi_tab;
>> +    unsigned int   *syn;
>> +    int            *cache;
>> +    struct gf_poly *elp;
>> +    struct gf_poly *poly_2t[4];
>> +};
>> +
>> +static int fls(int x)
>> +{
>> +    int r = 32;
>> +
>> +    if (!x)
>> +        return 0;
>> +    if (!(x & 0xffff0000u)) {
>> +        x <<= 16;
>> +        r -= 16;
>> +    }
>> +    if (!(x & 0xff000000u)) {
>> +        x <<= 8;
>> +        r -= 8;
>> +    }
>> +    if (!(x & 0xf0000000u)) {
>> +        x <<= 4;
>> +        r -= 4;
>> +    }
>> +    if (!(x & 0xc0000000u)) {
>> +        x <<= 2;
>> +        r -= 2;
>> +    }
>> +    if (!(x & 0x80000000u)) {
>> +        x <<= 1;
>> +        r -= 1;
>> +    }
>> +    return r;
>> +}
>> +
>> +/*
>> + * represent a polynomial over GF(2^m)
>> + */
>> +struct gf_poly {
>> +    unsigned int deg;    /* polynomial degree */
>> +    unsigned int c[0];   /* polynomial terms */
>> +};
>> +
>> +/* given its degree, compute a polynomial size in bytes */
>> +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
>> +
>> +/* polynomial of degree 1 */
>> +struct gf_poly_deg1 {
>> +    struct gf_poly poly;
>> +    unsigned int   c[2];
>> +};
>> +
>> +/*
>> + * same as encode_bch(), but process input data one byte at a time
>> + */
>> +static void encode_bch_unaligned(struct bch_control *bch,
>> +                 const unsigned char *data, unsigned int len,
>> +                 uint32_t *ecc)
>> +{
>> +    int i;
>> +    const uint32_t *p;
>> +    const int l = BCH_ECC_WORDS(bch)-1;
>> +
>> +    while (len--) {
>> +        p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
>> +
>> +        for (i = 0; i < l; i++)
>> +            ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
>> +
>> +        ecc[l] = (ecc[l] << 8)^(*p);
>> +    }
>> +}
>> +
>> +/*
>> + * convert ecc bytes to aligned, zero-padded 32-bit ecc words
>> + */
>> +static void load_ecc8(struct bch_control *bch, uint32_t *dst,
>> +              const uint8_t *src)
>> +{
>> +    uint8_t pad[4] = {0, 0, 0, 0};
>> +    unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
>> +
>> +    for (i = 0; i < nwords; i++, src += 4)
>> +        dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
>> +
>> +    memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
>> +    dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
>> +}
>> +
>> +/*
>> + * convert 32-bit ecc words to ecc bytes
>> + */
>> +static void store_ecc8(struct bch_control *bch, uint8_t *dst,
>> +               const uint32_t *src)
>> +{
>> +    uint8_t pad[4];
>> +    unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
>> +
>> +    for (i = 0; i < nwords; i++) {
>> +        *dst++ = (src[i] >> 24);
>> +        *dst++ = (src[i] >> 16) & 0xff;
>> +        *dst++ = (src[i] >>  8) & 0xff;
>> +        *dst++ = (src[i] >>  0) & 0xff;
>> +    }
>> +    pad[0] = (src[nwords] >> 24);
>> +    pad[1] = (src[nwords] >> 16) & 0xff;
>> +    pad[2] = (src[nwords] >>  8) & 0xff;
>> +    pad[3] = (src[nwords] >>  0) & 0xff;
>> +    memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
>> +}
>> +
>> +/**
>> + * encode_bch - calculate BCH ecc parity of data
>> + * @bch:   BCH control structure
>> + * @data:  data to encode
>> + * @len:   data length in bytes
>> + * @ecc:   ecc parity data, must be initialized by caller
>> + *
>> + * The @ecc parity array is used both as input and output parameter, in order to
>> + * allow incremental computations. It should be of the size indicated by member
>> + * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
>> + *
>> + * The exact number of computed ecc parity bits is given by member @ecc_bits of
>> + * @bch; it may be less than m*t for large values of t.
>> + */
>> +static void encode_bch(struct bch_control *bch, const uint8_t *data,
>> +        unsigned int len, uint8_t *ecc)
>> +{
>> +    const unsigned int l = BCH_ECC_WORDS(bch)-1;
>> +    unsigned int i, mlen;
>> +    unsigned long m;
>> +    uint32_t w, r[l+1];
>> +    const uint32_t * const tab0 = bch->mod8_tab;
>> +    const uint32_t * const tab1 = tab0 + 256*(l+1);
>> +    const uint32_t * const tab2 = tab1 + 256*(l+1);
>> +    const uint32_t * const tab3 = tab2 + 256*(l+1);
>> +    const uint32_t *pdata, *p0, *p1, *p2, *p3;
>> +
>> +    if (ecc) {
>> +        /* load ecc parity bytes into internal 32-bit buffer */
>> +        load_ecc8(bch, bch->ecc_buf, ecc);
>> +    } else {
>> +        memset(bch->ecc_buf, 0, sizeof(r));
>> +    }
>> +
>> +    /* process first unaligned data bytes */
>> +    m = ((uintptr_t)data) & 3;
>> +    if (m) {
>> +        mlen = (len < (4-m)) ? len : 4-m;
>> +        encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
>> +        data += mlen;
>> +        len  -= mlen;
>> +    }
>> +
>> +    /* process 32-bit aligned data words */
>> +    pdata = (uint32_t *)data;
>> +    mlen  = len/4;
>> +    data += 4*mlen;
>> +    len  -= 4*mlen;
>> +    memcpy(r, bch->ecc_buf, sizeof(r));
>> +
>> +    /*
>> +     * split each 32-bit word into 4 polynomials of weight 8 as follows:
>> +     *
>> +     * 31 ...24  23 ...16  15 ... 8  7 ... 0
>> +     * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
>> +     *                               tttttttt  mod g = r0 (precomputed)
>> +     *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
>> +     *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
>> +     * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
>> +     * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
>> +     */
>> +    while (mlen--) {
>> +        /* input data is read in big-endian format */
>> +        w = r[0]^cpu_to_be32(*pdata++);
>> +        p0 = tab0 + (l+1)*((w >>  0) & 0xff);
>> +        p1 = tab1 + (l+1)*((w >>  8) & 0xff);
>> +        p2 = tab2 + (l+1)*((w >> 16) & 0xff);
>> +        p3 = tab3 + (l+1)*((w >> 24) & 0xff);
>> +
>> +        for (i = 0; i < l; i++)
>> +            r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
>> +
>> +        r[l] = p0[l]^p1[l]^p2[l]^p3[l];
>> +    }
>> +    memcpy(bch->ecc_buf, r, sizeof(r));
>> +
>> +    /* process last unaligned bytes */
>> +    if (len)
>> +        encode_bch_unaligned(bch, data, len, bch->ecc_buf);
>> +
>> +    /* store ecc parity bytes into original parity buffer */
>> +    if (ecc)
>> +        store_ecc8(bch, ecc, bch->ecc_buf);
>> +}
>> +
>> +static inline int modulo(struct bch_control *bch, unsigned int v)
>> +{
>> +    const unsigned int n = GF_N(bch);
>> +    while (v >= n) {
>> +        v -= n;
>> +        v = (v & n) + (v >> GF_M(bch));
>> +    }
>> +    return v;
>> +}
>> +
>> +/*
>> + * shorter and faster modulo function, only works when v < 2N.
>> + */
>> +static inline int mod_s(struct bch_control *bch, unsigned int v)
>> +{
>> +    const unsigned int n = GF_N(bch);
>> +    return (v < n) ? v : v-n;
>> +}
>> +
>> +static inline int deg(unsigned int poly)
>> +{
>> +    /* polynomial degree is the most-significant bit index */
>> +    return fls(poly)-1;
>> +}
>> +
>> +/* Galois field basic operations: multiply, divide, inverse, etc. */
>> +
>> +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
>> +                  unsigned int b)
>> +{
>> +    return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
>> +                           bch->a_log_tab[b])] : 0;
>> +}
>> +
>> +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
>> +{
>> +    return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
>> +}
>> +
>> +static inline unsigned int a_pow(struct bch_control *bch, int i)
>> +{
>> +    return bch->a_pow_tab[modulo(bch, i)];
>> +}
>> +
>> +static inline int a_log(struct bch_control *bch, unsigned int x)
>> +{
>> +    return bch->a_log_tab[x];
>> +}
>> +
>> +/*
>> + * generate Galois field lookup tables
>> + */
>> +static int build_gf_tables(struct bch_control *bch, unsigned int poly)
>> +{
>> +    unsigned int i, x = 1;
>> +    const unsigned int k = 1 << deg(poly);
>> +
>> +    /* primitive polynomial must be of degree m */
>> +    if (k != (1u << GF_M(bch)))
>> +        return -1;
>> +
>> +    for (i = 0; i < GF_N(bch); i++) {
>> +        bch->a_pow_tab[i] = x;
>> +        bch->a_log_tab[x] = i;
>> +        if (i && (x == 1))
>> +            /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
>> +            return -1;
>> +        x <<= 1;
>> +        if (x & k)
>> +            x ^= poly;
>> +    }
>> +    bch->a_pow_tab[GF_N(bch)] = 1;
>> +    bch->a_log_tab[0] = 0;
>> +
>> +    return 0;
>> +}
>> +
>> +/*
>> + * compute generator polynomial remainder tables for fast encoding
>> + */
>> +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
>> +{
>> +    int i, j, b, d;
>> +    uint32_t data, hi, lo, *tab;
>> +    const int l = BCH_ECC_WORDS(bch);
>> +    const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
>> +    const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
>> +
>> +    memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
>> +
>> +    for (i = 0; i < 256; i++) {
>> +        /* p(X)=i is a small polynomial of weight <= 8 */
>> +        for (b = 0; b < 4; b++) {
>> +            /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
>> +            tab = bch->mod8_tab + (b*256+i)*l;
>> +            data = i << (8*b);
>> +            while (data) {
>> +                d = deg(data);
>> +                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
>> +                data ^= g[0] >> (31-d);
>> +                for (j = 0; j < ecclen; j++) {
>> +                    hi = (d < 31) ? g[j] << (d+1) : 0;
>> +                    lo = (j+1 < plen) ?
>> +                        g[j+1] >> (31-d) : 0;
>> +                    tab[j] ^= hi|lo;
>> +                }
>> +            }
>> +        }
>> +    }
>> +}
>> +
>> +/*
>> + * build a base for factoring degree 2 polynomials
>> + */
>> +static int build_deg2_base(struct bch_control *bch)
>> +{
>> +    const int m = GF_M(bch);
>> +    int i, j, r;
>> +    unsigned int sum, x, y, remaining, ak = 0, xi[m];
>> +
>> +    /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
>> +    for (i = 0; i < m; i++) {
>> +        for (j = 0, sum = 0; j < m; j++)
>> +            sum ^= a_pow(bch, i*(1 << j));
>> +
>> +        if (sum) {
>> +            ak = bch->a_pow_tab[i];
>> +            break;
>> +        }
>> +    }
>> +    /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
>> +    remaining = m;
>> +    memset(xi, 0, sizeof(xi));
>> +
>> +    for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
>> +        y = gf_sqr(bch, x)^x;
>> +        for (i = 0; i < 2; i++) {
>> +            r = a_log(bch, y);
>> +            if (y && (r < m) && !xi[r]) {
>> +                bch->xi_tab[r] = x;
>> +                xi[r] = 1;
>> +                remaining--;
>> +                dbg("x%d = %x\n", r, x);
>> +                break;
>> +            }
>> +            y ^= ak;
>> +        }
>> +    }
>> +    /* should not happen but check anyway */
>> +    return remaining ? -1 : 0;
>> +}
>> +
>> +static void *bch_alloc(size_t size, int *err)
>> +{
>> +    void *ptr;
>> +
>> +    ptr = malloc(size);
>> +    if (ptr == NULL)
>> +        *err = 1;
>> +    return ptr;
>> +}
>> +
>> +/*
>> + * compute generator polynomial for given (m,t) parameters.
>> + */
>> +static uint32_t *compute_generator_polynomial(struct bch_control *bch)
>> +{
>> +    const unsigned int m = GF_M(bch);
>> +    const unsigned int t = GF_T(bch);
>> +    int n, err = 0;
>> +    unsigned int i, j, nbits, r, word, *roots;
>> +    struct gf_poly *g;
>> +    uint32_t *genpoly;
>> +
>> +    g = bch_alloc(GF_POLY_SZ(m*t), &err);
>> +    roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
>> +    genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
>> +
>> +    if (err) {
>> +        kfree(genpoly);
>> +        genpoly = NULL;
>> +        goto finish;
>> +    }
>> +
>> +    /* enumerate all roots of g(X) */
>> +    memset(roots , 0, (bch->n+1)*sizeof(*roots));
>> +    for (i = 0; i < t; i++) {
>> +        for (j = 0, r = 2*i+1; j < m; j++) {
>> +            roots[r] = 1;
>> +            r = mod_s(bch, 2*r);
>> +        }
>> +    }
>> +    /* build generator polynomial g(X) */
>> +    g->deg = 0;
>> +    g->c[0] = 1;
>> +    for (i = 0; i < GF_N(bch); i++) {
>> +        if (roots[i]) {
>> +            /* multiply g(X) by (X+root) */
>> +            r = bch->a_pow_tab[i];
>> +            g->c[g->deg+1] = 1;
>> +            for (j = g->deg; j > 0; j--)
>> +                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
>> +
>> +            g->c[0] = gf_mul(bch, g->c[0], r);
>> +            g->deg++;
>> +        }
>> +    }
>> +    /* store left-justified binary representation of g(X) */
>> +    n = g->deg+1;
>> +    i = 0;
>> +
>> +    while (n > 0) {
>> +        nbits = (n > 32) ? 32 : n;
>> +        for (j = 0, word = 0; j < nbits; j++) {
>> +            if (g->c[n-1-j])
>> +                word |= 1u << (31-j);
>> +        }
>> +        genpoly[i++] = word;
>> +        n -= nbits;
>> +    }
>> +    bch->ecc_bits = g->deg;
>> +
>> +finish:
>> +    kfree(g);
>> +    kfree(roots);
>> +
>> +    return genpoly;
>> +}
>> +
>> +/**
>> + *  free_bch - free the BCH control structure
>> + *  @bch:    BCH control structure to release
>> + */
>> +static void free_bch(struct bch_control *bch)
>> +{
>> +    unsigned int i;
>> +
>> +    if (bch) {
>> +        kfree(bch->a_pow_tab);
>> +        kfree(bch->a_log_tab);
>> +        kfree(bch->mod8_tab);
>> +        kfree(bch->ecc_buf);
>> +        kfree(bch->ecc_buf2);
>> +        kfree(bch->xi_tab);
>> +        kfree(bch->syn);
>> +        kfree(bch->cache);
>> +        kfree(bch->elp);
>> +
>> +        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
>> +            kfree(bch->poly_2t[i]);
>> +
>> +        kfree(bch);
>> +    }
>> +}
>> +
>> +/**
>> + * init_bch - initialize a BCH encoder/decoder
>> + * @m:          Galois field order, should be in the range 5-15
>> + * @t:          maximum error correction capability, in bits
>> + * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
>> + *
>> + * Returns:
>> + *  a newly allocated BCH control structure if successful, NULL otherwise
>> + *
>> + * This initialization can take some time, as lookup tables are built for fast
>> + * encoding/decoding; make sure not to call this function from a time critical
>> + * path. Usually, init_bch() should be called on module/driver init and
>> + * free_bch() should be called to release memory on exit.
>> + *
>> + * You may provide your own primitive polynomial of degree @m in argument
>> + * @prim_poly, or let init_bch() use its default polynomial.
>> + *
>> + * Once init_bch() has successfully returned a pointer to a newly allocated
>> + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
>> + * the structure.
>> + */
>> +static struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
>> +{
>> +    int err = 0;
>> +    unsigned int i, words;
>> +    uint32_t *genpoly;
>> +    struct bch_control *bch = NULL;
>> +
>> +    const int min_m = 5;
>> +    const int max_m = 15;
>> +
>> +    /* default primitive polynomials */
>> +    static const unsigned int prim_poly_tab[] = {
>> +        0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
>> +        0x402b, 0x8003,
>> +    };
>> +
>> +#if defined(CONFIG_BCH_CONST_PARAMS)
>> +    if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
>> +        printk(KERN_ERR "bch encoder/decoder was configured to support "
>> +               "parameters m=%d, t=%d only!\n",
>> +               CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
>> +        goto fail;
>> +    }
>> +#endif
>> +    if ((m < min_m) || (m > max_m))
>> +        /*
>> +         * values of m greater than 15 are not currently supported;
>> +         * supporting m > 15 would require changing table base type
>> +         * (uint16_t) and a small patch in matrix transposition
>> +         */
>> +        goto fail;
>> +
>> +    /* sanity checks */
>> +    if ((t < 1) || (m*t >= ((1 << m)-1)))
>> +        /* invalid t value */
>> +        goto fail;
>> +
>> +    /* select a primitive polynomial for generating GF(2^m) */
>> +    if (prim_poly == 0)
>> +        prim_poly = prim_poly_tab[m-min_m];
>> +
>> +    bch = malloc(sizeof(*bch));
>> +    if (bch == NULL)
>> +        goto fail;
>> +
>> +    memset(bch, 0, sizeof(*bch));
>> +
>> +    bch->m = m;
>> +    bch->t = t;
>> +    bch->n = (1 << m)-1;
>> +    words  = DIV_ROUND_UP(m*t, 32);
>> +    bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
>> +    bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
>> +    bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
>> +    bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
>> +    bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
>> +    bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
>> +    bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
>> +    bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
>> +    bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
>> +    bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
>> +
>> +    for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
>> +        bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
>> +
>> +    if (err)
>> +        goto fail;
>> +
>> +    err = build_gf_tables(bch, prim_poly);
>> +    if (err)
>> +        goto fail;
>> +
>> +    /* use generator polynomial for computing encoding tables */
>> +    genpoly = compute_generator_polynomial(bch);
>> +    if (genpoly == NULL)
>> +        goto fail;
>> +
>> +    build_mod8_tables(bch, genpoly);
>> +    kfree(genpoly);
>> +
>> +    err = build_deg2_base(bch);
>> +    if (err)
>> +        goto fail;
>> +
>> +    return bch;
>> +
>> +fail:
>> +    free_bch(bch);
>> +    return NULL;
>> +}
>> +
>> +static void swap_bits(uint8_t *buf, int len)
>> +{
>> +    int i, j;
>> +
>> +    for (j = 0; j < len; j++) {
>> +        uint8_t byte = buf[j];
>> +
>> +        buf[j] = 0;
>> +        for (i = 0; i < 8; i++) {
>> +            if (byte & (1 << i))
>> +                buf[j] |= (1 << (7 - i));
>> +        }
>> +    }
>> +}
>> +
>> +static uint16_t lfsr_step(uint16_t state, int count)
>> +{
>> +    state &= 0x7fff;
>> +    while (count--)
>> +        state = ((state >> 1) |
>> +             ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
>> +
>> +    return state;
>> +}
>> +
>> +static uint16_t default_scrambler_seeds[] = {
>> +    0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
>> +    0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
>> +    0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
>> +    0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
>> +    0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
>> +    0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
>> +    0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
>> +    0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
>> +    0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
>> +    0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
>> +    0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
>> +    0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
>> +    0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
>> +    0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
>> +    0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
>> +    0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
>> +};
>> +
>> +static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
>> +
>> +static void scramble(const struct image_info *info,
>> +             int page, uint8_t *data, int datalen)
>> +{
>> +    uint16_t state;
>> +    int i;
>> +
>> +    /* Boot0 is always scrambled no matter the command line option. */
>> +    if (info->boot0) {
>> +        state = brom_scrambler_seeds[0];
>> +    } else {
>> +        unsigned seedmod = info->eraseblock_size / info->page_size;
>> +
>> +        /* Bail out earlier if the user didn't ask for scrambling. */
>> +        if (!info->scramble)
>> +            return;
>> +
>> +        if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
>> +            seedmod = ARRAY_SIZE(default_scrambler_seeds);
>> +
>> +        state = default_scrambler_seeds[page % seedmod];
>> +    }
>> +
>> +    /* Prepare the initial state... */
>> +    state = lfsr_step(state, 15);
>> +
>> +    /* and start scrambling data. */
>> +    for (i = 0; i < datalen; i++) {
>> +        data[i] ^= state;
>> +        state = lfsr_step(state, 8);
>> +    }
>> +}
>> +
>> +static int write_page(const struct image_info *info, uint8_t *buffer,
>> +              FILE *src, FILE *rnd, FILE *dst,
>> +              struct bch_control *bch, int page)
>> +{
>> +    int steps = info->usable_page_size / info->ecc_step_size;
>> +    int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
>> +    off_t pos = ftell(dst);
>> +    size_t pad, cnt;
>> +    int i;
>> +
>> +    if (eccbytes % 2)
>> +        eccbytes++;
>> +
>> +    memset(buffer, 0xff, info->page_size + info->oob_size);
>> +    cnt = fread(buffer, 1, info->usable_page_size, src);
>> +    if (!cnt) {
>> +        if (!feof(src)) {
>> +            fprintf(stderr,
>> +                "Failed to read data from the source\n");
>> +            return -1;
>> +        } else {
>> +            return 0;
>> +        }
>> +    }
>> +
>> +    fwrite(buffer, info->page_size + info->oob_size, 1, dst);
>> +
>> +    for (i = 0; i < info->usable_page_size; i++) {
>> +        if (buffer[i] !=  0xff)
>> +            break;
>> +    }
>> +
>> +    /* We leave empty pages at 0xff. */
>> +    if (i == info->usable_page_size)
>> +        return 0;
>> +
>> +    /* Restore the source pointer to read it again. */
>> +    fseek(src, -cnt, SEEK_CUR);
>> +
>> +    /* Randomize unused space if scrambling is required. */
>> +    if (info->scramble) {
>> +        int offs;
>> +
>> +        if (info->boot0) {
>> +            offs = steps * (info->ecc_step_size + eccbytes + 4);
>> +            cnt = info->page_size + info->oob_size - offs;
>> +            fread(buffer + offs, 1, cnt, rnd);
>> +        } else {
>> +            offs = info->page_size + (steps * (eccbytes + 4));
>> +            cnt = info->page_size + info->oob_size - offs;
>> +            memset(buffer + offs, 0xff, cnt);
>> +            scramble(info, page, buffer + offs, cnt);
>> +        }
>> +        fseek(dst, pos + offs, SEEK_SET);
>> +        fwrite(buffer + offs, cnt, 1, dst);
>> +    }
>> +
>> +    for (i = 0; i < steps; i++) {
>> +        int ecc_offs, data_offs;
>> +        uint8_t *ecc;
>> +
>> +        memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
>> +        ecc = buffer + info->ecc_step_size + 4;
>> +        if (info->boot0) {
>> +            data_offs = i * (info->ecc_step_size + eccbytes + 4);
>> +            ecc_offs = data_offs + info->ecc_step_size + 4;
>> +        } else {
>> +            data_offs = i * info->ecc_step_size;
>> +            ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
>> +        }
>> +
>> +        cnt = fread(buffer, 1, info->ecc_step_size, src);
>> +        if (!cnt && !feof(src)) {
>> +            fprintf(stderr,
>> +                "Failed to read data from the source\n");
>> +            return -1;
>> +        }
>> +
>> +        pad = info->ecc_step_size - cnt;
>> +        if (pad) {
>> +            if (info->scramble && info->boot0)
>> +                fread(buffer + cnt, 1, pad, rnd);
>> +            else
>> +                memset(buffer + cnt, 0xff, pad);
>> +        }
>> +
>> +        memset(ecc, 0, eccbytes);
>> +        swap_bits(buffer, info->ecc_step_size + 4);
>> +        encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
>> +        swap_bits(buffer, info->ecc_step_size + 4);
>> +        swap_bits(ecc, eccbytes);
>> +        scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
>> +
>> +        fseek(dst, pos + data_offs, SEEK_SET);
>> +        fwrite(buffer, info->ecc_step_size, 1, dst);
>> +        fseek(dst, pos + ecc_offs - 4, SEEK_SET);
>> +        fwrite(ecc - 4, eccbytes + 4, 1, dst);
>> +    }
>> +
>> +    /* Fix BBM. */
>> +    fseek(dst, pos + info->page_size, SEEK_SET);
>> +    memset(buffer, 0xff, 2);
>> +    fwrite(buffer, 2, 1, dst);
>> +
>> +    /* Make dst pointer point to the next page. */
>> +    fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
>> +
>> +    return 0;
>> +}
>> +
>> +static int create_image(const struct image_info *info)
>> +{
>> +    off_t page = info->offset / info->page_size;
>> +    struct bch_control *bch;
>> +    FILE *src, *dst, *rnd;
>> +    uint8_t *buffer;
>> +
>> +    bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
>> +    if (!bch) {
>> +        fprintf(stderr, "Failed to init the BCH engine\n");
>> +        return -1;
>> +    }
>> +
>> +    buffer = malloc(info->page_size + info->oob_size);
>> +    if (!buffer) {
>> +        fprintf(stderr, "Failed to allocate the NAND page buffer\n");
>> +        return -1;
>> +    }
>> +
>> +    memset(buffer, 0xff, info->page_size + info->oob_size);
>> +
>> +    src = fopen(info->source, "r");
>> +    if (!src) {
>> +        fprintf(stderr, "Failed to open source file (%s)\n",
>> +            info->source);
>> +        return -1;
>> +    }
>> +
>> +    dst = fopen(info->dest, "w");
>> +    if (!dst) {
>> +        fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
>> +        return -1;
>> +    }
>> +
>> +    rnd = fopen("/dev/urandom", "r");
>> +    if (!rnd) {
>> +        fprintf(stderr, "Failed to open /dev/urandom\n");
>> +        return -1;
>> +    }
>> +
>> +    while (!feof(src)) {
>> +        int ret;
>> +
>> +        ret = write_page(info, buffer, src, rnd, dst, bch, page++);
>> +        if (ret)
>> +            return ret;
>> +    }
>> +
>> +    return 0;
>> +}
>> +
>> +static void display_help(int status)
>> +{
>> +    fprintf(status == EXIT_SUCCESS ? stdout : stderr,
>> +        "sunxi-nand-image-builder %s\n"
>> +        "\n"
>> +        "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
>> +        "\n"
>> +        "Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
>> +        "\n"
>> +        "-h               --help               Display this help and exit\n"
>> +        "-c <str>/<step>  --ecc=<str>/<step>   ECC config (strength/step-size)\n"
>> +        "-p <size>        --page=<size>        Page size\n"
>> +        "-o <size>        --oob=<size>         OOB size\n"
>> +        "-u <size>        --usable=<size>      Usable page size\n"
>> +        "-e <size>        --eraseblock=<size>  Erase block size\n"
>> +        "-b               --boot0              Build a boot0 image.\n"
>> +        "-s               --scramble           Scramble data\n"
>> +        "-a <offset>      --address=<offset>   Where the image will be programmed.\n"
>> +        "\n"
>> +        "Notes:\n"
>> +        "All the information you need to pass to this tool should be part of\n"
>> +        "the NAND datasheet.\n"
>> +        "\n"
>> +        "The NAND controller only supports the following ECC configs\n"
>> +        "  Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
>> +        "  Valid ECC step size: 512 and 1024\n"
>> +        "\n"
>> +        "If you are building a boot0 image, you'll have specify extra options.\n"
>> +        "These options should be chosen based on the layouts described here:\n"
>> +        "  http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
>> +        "\n"
>> +        "  --usable should be assigned the 'Hardware page' value\n"
>> +        "  --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
>> +        "  --usable should be smaller than --page\n"
>> +        "\n"
>> +        "The --address option is only required for non-boot0 images that are \n"
>> +        "meant to be programmed at a non eraseblock aligned offset.\n"
>> +        "\n"
>> +        "Examples:\n"
>> +        "  The H27UCG8T2BTR-BC NAND exposes\n"
>> +        "  * 16k pages\n"
>> +        "  * 1280 OOB bytes per page\n"
>> +        "  * 4M eraseblocks\n"
>> +        "  * requires data scrambling\n"
>> +        "  * expects a minimum ECC of 40bits/1024bytes\n"
>> +        "\n"
>> +        "  A normal image can be generated with\n"
>> +        "    sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
>> +        "  A boot0 image can be generated with\n"
>> +        "    sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
>> +        PLAIN_VERSION);
>> +    exit(status);
>> +}
>> +
>> +static int check_image_info(struct image_info *info)
>> +{
>> +    static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
>> +    int eccbytes, eccsteps;
>> +    unsigned i;
>> +
>> +    if (!info->page_size) {
>> +        fprintf(stderr, "--page is missing\n");
>> +        return -EINVAL;
>> +    }
>> +
>> +    if (!info->page_size) {
>> +        fprintf(stderr, "--oob is missing\n");
>> +        return -EINVAL;
>> +    }
>> +
>> +    if (!info->eraseblock_size) {
>> +        fprintf(stderr, "--eraseblock is missing\n");
>> +        return -EINVAL;
>> +    }
>> +
>> +    if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
>> +        fprintf(stderr, "Invalid ECC step argument: %d\n",
>> +            info->ecc_step_size);
>> +        return -EINVAL;
>> +    }
>> +
>> +    for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
>> +        if (valid_ecc_strengths[i] == info->ecc_strength)
>> +            break;
>> +    }
>> +
>> +    if (i == ARRAY_SIZE(valid_ecc_strengths)) {
>> +        fprintf(stderr, "Invalid ECC strength argument: %d\n",
>> +            info->ecc_strength);
>> +        return -EINVAL;
>> +    }
>> +
>> +    eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
>> +    if (eccbytes % 2)
>> +        eccbytes++;
>> +    eccbytes += 4;
>> +
>> +    eccsteps = info->usable_page_size / info->ecc_step_size;
>> +
>> +    if (info->page_size + info->oob_size <
>> +        info->usable_page_size + (eccsteps * eccbytes)) {
>> +        fprintf(stderr,
>> +            "ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
>> +        return -EINVAL;
>> +    }
>> +
>> +    return 0;
>> +}
>> +
>> +int main(int argc, char **argv)
>> +{
>> +    struct image_info info;
>> +
>> +    memset(&info, 0, sizeof(info));
>> +    /*
>> +     * Process user arguments
>> +     */
>> +    for (;;) {
>> +        int option_index = 0;
>> +        char *endptr = NULL;
>> +        static const struct option long_options[] = {
>> +            {"help", no_argument, 0, 'h'},
>> +            {"ecc", required_argument, 0, 'c'},
>> +            {"page", required_argument, 0, 'p'},
>> +            {"oob", required_argument, 0, 'o'},
>> +            {"usable", required_argument, 0, 'u'},
>> +            {"eraseblock", required_argument, 0, 'e'},
>> +            {"boot0", no_argument, 0, 'b'},
>> +            {"scramble", no_argument, 0, 's'},
>> +            {"address", required_argument, 0, 'a'},
>> +            {0, 0, 0, 0},
>> +        };
>> +
>> +        int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
>> +                long_options, &option_index);
>> +        if (c == EOF)
>> +            break;
>> +
>> +        switch (c) {
>> +        case 'h':
>> +            display_help(0);
>> +            break;
>> +        case 's':
>> +            info.scramble = 1;
>> +            break;
>> +        case 'c':
>> +            info.ecc_strength = strtol(optarg, &endptr, 0);
>> +            if (endptr || *endptr == '/')
>> +                info.ecc_step_size = strtol(endptr + 1, NULL, 0);
>> +            break;
>> +        case 'p':
>> +            info.page_size = strtol(optarg, NULL, 0);
>> +            break;
>> +        case 'o':
>> +            info.oob_size = strtol(optarg, NULL, 0);
>> +            break;
>> +        case 'u':
>> +            info.usable_page_size = strtol(optarg, NULL, 0);
>> +            break;
>> +        case 'e':
>> +            info.eraseblock_size = strtol(optarg, NULL, 0);
>> +            break;
>> +        case 'b':
>> +            info.boot0 = 1;
>> +            break;
>> +        case 'a':
>> +            info.offset = strtoull(optarg, NULL, 0);
>> +            break;
>> +        case '?':
>> +            display_help(-1);
>> +            break;
>> +        }
>> +    }
>> +
>> +    if ((argc - optind) != 2)
>> +        display_help(-1);
>> +
>> +    info.source = argv[optind];
>> +    info.dest = argv[optind + 1];
>> +
>> +    if (!info.boot0) {
>> +        info.usable_page_size = info.page_size;
>> +    } else if (!info.usable_page_size) {
>> +        if (info.page_size > 8192)
>> +            info.usable_page_size = 8192;
>> +        else if (info.page_size > 4096)
>> +            info.usable_page_size = 4096;
>> +        else
>> +            info.usable_page_size = 1024;
>> +    }
>> +
>> +    if (check_image_info(&info))
>> +        display_help(-1);
>> +
>> +    return create_image(&info);
>> +}
>>



More information about the U-Boot mailing list