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Abstract 
 

U-Boot is widely used in embedded systems, not only as the bootloader itself, but also to support hardware bring-up. 
It has grown to an extent that it now provides support for a variety of target systems, making it suitable for low-level 
hardware testing. It can also be adapted to support custom boards, given the variety of drivers already implemented 
by default. However, the documentation related with u-boot is rare and sparse, making it very difficult for engineers to 
properly understand the u-boot structure, adapt it, or even add new custom functionalities. This document aims to fill 
this gap by providing self-contained practical hands-on information, ultimately easing the ramp-up phase for engineers 
interested in working with u-boot. 
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Introduction 
 
The lack of self-contained and concise documentation available to support engineers working with u-boot is evident. It 
is common sense today that the best way to learn about u-boot is through experimentation. Still, the authors understand 
this as a necessary, but insufficient premise. Good documentation can greatly speed-up ramp-up times and support 
correct coding decisions in further stages by providing an early, well established, ground-base knowledge. 
 
The authors then decided to create, filter and compile all necessary information in a single practical document that 
reflects their hands-on experience. It will hopefully guide engineers through building, customizing and having u-boot 
easily running on their targets.  
 
Practical experimentation behind this document was carried out with support of the BeagleBone Green board, endowed 
of an AM3358 TI Sitara SoC, with a 1GHz ARM Cortex A8 processor. However, the information provided herein can 
be easily extrapolated for other hardware targets. 
 
Instructions are provided on how to run u-boot with qemu emulator so that the reader can test u-boot builds without a 
specific hardware target.  
 
Particular effort was put on having hands-on, step-by-step, instructions in order to make this a practical and self-
contained guide. If not found any more online, specific packages may be requested to the authors. 
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1 Preparation 
 

1.1 Setting Up a U-Boot Development Environment with ECLIPSE 
 
The Development Environment will be installed using a Linux Virtual Machine under Windows environment. 
Alternatively, the same steps can be used in a Linux machine apart from the VM setup. Instructions will be provided 
step-wise. 
 
NOTE: This section is mainly based on [1], with small modifications for our specific case. 

 
[Step 1] Download and install Virtual Box from https://www.virtualbox.org/ 

 
[Step 2] Download xubuntu 12.04 32b image from https://virtualboxes.org/images/xubuntu/  

 
[Step 3] Setup VirtualBox with the settings shown in Figure 1, or alternatively, the closest possible: 

 

 
Figure 1: VirtualBox Settings 

- Add a shared folder under Settings->Shared Folders with ‘Auto-mount’  
 
- Activate ‘Bidirectional’ setting under Settings->Generic->Advanced->Shared Clipboard/Drag’n’Drop  

 
[Step 4] Log into your Linux VM (pwd:reverse) and open a command terminal. 

 
[Step 5] Install Guest Additions on the Ubuntu Virtual Machine [4]: 

 
- On the VirtualBox Menu, choose Devices -> ‘Insert Guest Additions CD Image’ 
 

https://www.virtualbox.org/
https://virtualboxes.org/images/xubuntu/


 

- Open a terminal and go to the mounted media folder: 
$ cd /media/VBOXADDITIONS_5.1.22_115126 
 

Note that version may vary, which shall not be a problem. 
 
- Launch installation 
 
$ sudo -s 
 
$./VBoxLinuxAdditions.run 
 
Note: Ignore the ‘Mesa’ issue. 
 
- Reboot the VM by clicking xubuntu (top right corner) -> Reboot -> Reboot 
 
- Log-in and the screen shall maximize/adapt to your resolution. Also you should be able to copy-paste text 
between the VM and host. 
 

[Step 6] Open a terminal window.  
 
NOTE: It may be necessary to adjust the Keyboard language setting. Default is ENG. 

 
[Step 7] Install Eclipse (used version is Mars II): 

 
$sudo -s 
 
$cd /opt/ 
 
$wget http://www.mirrorservice.org/sites/ 
download.eclipse.org/eclipseMirror/technology/epp/downloads/release/mars/2/eclipse
-cpp-mars-2-linux-gtk.tar.gz 
 
$ tar -xvf eclipse-cpp-mars-2-linux-gtk.tar.gz 
 

[Step 8] Add eclipse executable to PATH by default: 
 
$nano /etc/profile 
 
place the following line at the end of the file: 
 
PATH=/opt/eclipse:$PATH 
 

[Step 9] Create a project folder: 
 
$mkdir /opt/projects/ 
 
$cd /opt/projects/ 
 

[Step 10] Download u-boot source: 
 
$apt-get update 
 
$apt-get install git 
 
$git clone https://github.com/gvigelet/u-boot-2015.07.git 
 



 

$cd u-boot-2015.07 
 

[Step 11] Install JAVA: 
 
$add-apt-repository ppa:openjdk-r/ppa 
 
$apt-get update 
 
$apt-get install openjdk-8-jdk 
 

[Step 12] Open eclipse and set your default environment folder as shown in Figure 2: 
 
$. /etc/profile 
$eclipse 
 

 
Figure 2: Eclipse Workspace Setup 

 
[Step 13] Create a new project: 

 
Click on File -> New C Project (Figure 3) 
 
 - Set project name u-boot-2015 
 
 - Check if location is set by default to /opt/projects/u-boot-2015.07 
 
 - Project type: Empty Project 
 
 - Toolchains: Linux GCC 

 
 - Click ‘Finish’. 

 



 

 
Figure 3: New Project Settings 

 
[Step 14] Click to highlight the newly-created ‘u-boot-2015’ project on the ‘Project Explorer’ Window on the left. 

 
[Step 15] Click on Project -> Properties -> C/C++ Build -> ‘Behaviour’ tab 

 
- Leave the editable field under Build (Incremental build) blank. This is necessary, otherwise the IDE 

 will issue a “make all” command when the project is built. 
 
- Uncheck Build on resource save (Auto build) 
 
- Change clean to distclean, otherwise it will issue the “make clean” command rather than the desired 

“make distclean”. 
 
- Click on the Builder Settings Tab 
 - Change the default Build Directory path to /opt/projects/u-boot-2015.07 

  
 - Uncheck General Makefiles automatically 

 
[Step 16] Click on Project -> Properties -> C/C++ Build -> Environment 

 
- Undefine CWD and PWD 
 



 

- Add environment variable with name CROSS_COMPILE and value arm-none-gnueabi- for the variable (don’t 

forget the last dash). The result should be as shown in Figure 4. 
 

 
Figure 4: Project Environment Variable Settings 

 
[Step 17] Click on Project -> Properties -> C/C++ Build -> Settings -> ‘Binary Parsers’ tab 

 
- Check that ‘GNU Elf Parser’ is selected. 
 
- Click OK to close the Properties window. 
 

[Step 18] Go to Project -> Make Target -> Create 
 
- Target Name: distclean 

 
- Click OK. 
 

[Step 19] Go to Project -> Make Target -> Create 
 
- Target Name: am335x_evm_config 

 
- Click OK. 
 

[Step 20] Go to Project -> Make Target -> Build 
 
- Check that both Build Targets distclean and am335x_evm_config exist, as shown in Figure 5. 

 



 

 
Figure 5: Make Targets 

[Step 21] Close Eclipse. 
 
It will not be possible to run the make targets just yet because for that, the cross-compile toolchain is necessary. This 
will be covered in sub-section 1.2. 

 

1.2 Install the Cross-Compile Toolchain 
 

[Step 1] Download and install arm-2010.09-50-arm-none-linux-gnueabi.bin: 
 

$sudo -s 
 

$mkdir ~/buffer 
 

$cd ~/buffer 
 

$wget https://sourcery.mentor.com/public/gnu_toolchain/arm-none-linux-gnueabi/arm-
 2010.09-50-arm-none-linux-gnueabi.bin 

 
$chmod 777 arm-2010.09-50-arm-none-linux-gnueabi.bin 

 
$./arm-2010.09-50-arm-none-linux-gnueabi.bin 

 
[Step 2] If prompted about the ‘DASH Shell not supported as system shell’, run: 

 
$sudo dpkg-reconfigure -plow dash 

 
and choose ‘No’, press enter, and try again. An installation GUI will appear, just follow the instructions. 
 
NOTE: In the 5th screen, modifiy the installation path to /opt/CodeSourcery/Sourcery_G++_Lite [2].  

 
[Step 3] Add toolchain binaries to PATH: 

 
$nano /etc/profile 
 
- Add the following line at the end of file: 



 

 PATH=/opt/CodeSourcery/Sourcery_G++_Lite/bin:$PATH 
 
 Ctrl-X -> Y -> Enter 
 
- Manually launch script: 
 
 $. /etc/profile 

 

1.3 Build U-Boot  
 
It should now be possible to run the make targets and build u-boot: 
 

[Step 1] Re-open eclipse using the command prompt: 
 
$eclipse & 
 

[Step 2] Highlight the u-boot-2015.07 project on the ‘Project Explorer’ 

 
[Step 3] Go to Project -> Make Target -> Build… 

 
- Select distclean 
 
- Click build. The snippet shown in Figure 6 should be obtained in the console: 

 

 
Figure 6: Make distclean target 

 - Select am335x_evm_config. The snippet shown in Figure 7 should be obtained in the console: 

 

 
Figure 7: Make am335x_evm_config target 

[Step 4] Highlight the u-boot-2015.07 project on the ‘Project Explorer’ 

 
[Step 5] Select Project -> Build Project 

 
- The command shall end successfully with the messages shown in Figure 8: 
 

 
Figure 8: Output of Build Project. 



 

This process will be explained in detail in section 2. 
 

1.4 QEMU Installation 
 
QEMU will allow us to test the u-boot build without the hardware. It is capable of emulating target architectures and 
systems. Since further qemu versions may require specific dependency versions, here we will use qemu 2.9.0, which 

we know that works. 
 
NOTE: This section is mainly based on [3] [5], with small modifications for our specific case. 

 
[Step 1] Open a terminal and create a folder to hold qemu repo: 

 
$sudo -s 
 
$mkdir /opt/buffer 
 
$cd /opt/buffer 
 

[Step 2] Get the source code: 
 
$wget http://download.qemu-project.org/qemu-2.9.0.tar.xz 
 
$tar -xvf qemu-2.9.0.tar.xz 
 
$cd qemu-2.9.0 
 
$mkdir build 
 
$cd build 
 
$apt-get install zlib1g-dev libglib2.0-dev libpixman-1-dev libfdt-dev 
 
$./../configure --prefix=/opt/qemu --target-list=arm-softmmu,arm-linux-user --enable-
debug 
 
$make -s 
 
$make install -s 
 

[Step 3] Add qemu executable to PATH 
 
$nano /etc/profile 
 
- Add the following line at the end of file: 
 
PATH=/opt/qemu/bin:$PATH 
 
Ctrl-X -> Y -> Enter 
 
- Manually launch script: 
 
$. /etc/profile 
 

  



 

1.5 Run U-Boot on QEMU (versatile target) 
 
At this point we will launch a basic u-boot target build with q-emu as example. The BeagleBone is not supported by 
the ‘raw’ version of QEMU, hence requiring further steps that will be described later on. Also as alternative, we will 
build u-boot using command line instead of the IDE in order to clarify both methods. 

 
[Step 1] Go to the u-boot project directory 

 
$cd /opt/projects/u-boot-2015.07 
 

[Step 2] Create versatilepb target configuration and make u-boot. 

 
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- versatilepb_config 
 
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- -s 
 

The process shall finish with a warning that can be ignored: 
 

===================== WARNING ====================== 
Please convert this board to generic board. 
Otherwise it will be removed by the end of 2014. 
See doc/README.generic-board for further information 
==================================================== 

 
For now, we will focus on the generated u-boot.bin file [6], which is the u-boot binary that we will load with qemu. 

 
[Step 3] Finally, start u-boot with qemu: 

 
$qemu-system-arm -M versatilepb -nographic -kernel u-boot 
 

The following should be displayed on the screen: 
 

root@xubuntu-VirtualBox:/opt/projects/u-boot-2015.07# qemu-system-arm -M versatilepb -
nographic -kernel u-boot 
audio: Could not init `oss' audio driver 
 
 
U-Boot 2015.07-gdd01efc (Jul 05 2017 - 09:53:57 -0400) 
 
DRAM:  128 MiB 
WARNING: Caches not enabled 
Flash: Flash protect error at address 37ec0000 
Flash protect error at address 37fc0000 
64 MiB 
*** Warning - bad CRC, using default environment 
 
In:    serial 
Out:   serial 
Err:   serial 
Net:   SMC91111-0 
Warning: SMC91111-0 using MAC address from net device 
Warning: Your board does not use generic board. Please read 
doc/README.generic-board and take action. Boards not 
upgraded by the late 2014 may break or be removed. 
VersatilePB # 



 

 
 
NOTE: We’ve set arm-none-linux-gnueabi- as the prefix for the compiler (gcc), meaning that u-boot was cross-

compiled for the arm architecture. Also, qemu was executed using qemu-system-arm, which is dedicated to the 

emulation of ARM machines.  
 
Type help + ENTER in the u-boot command prompt for a list of available commands. You can now try and run some 

commands on your own, edit the source code, re-build and see the output, customize it, or whatever desired. This build 
can work as a test bench to help you further understand the bootloader. 
 

VersatilePB # bdinfo 
arch_number = 0x00000183 
boot_params = 0x00000100 
DRAM bank   = 0x00000000 
-> start    = 0x00000000 
-> size     = 0x08000000 
eth0name    = SMC91111-0 
ethaddr     = 52:54:00:12:34:56 
current eth = SMC91111-0 
ip_addr     = <NULL> 
baudrate    = 38400 bps 
TLB addr    = 0x07FF0000 
relocaddr   = 0x07FD1000 
reloc off   = 0x06FD1000 
irq_sp      = 0x07FACF3C 
sp start    = 0x07FACF30 
VersatilePB # md 0x00000000 
00000000: ea0000be e59ff014 e59ff014 e59ff014    ................ 
00000010: e59ff014 e59ff014 e59ff014 e59ff014    ................ 
00000020: 07fd1060 07fd10c0 07fd1120 07fd1180    `....... ....... 
00000030: 07fd11e0 07fd1240 07fd12a0 deadbeef    ....@........... 
00000040: 00000000 00000000 00000000 00000000    ................ 
00000050: 00000000 00000000 00000000 00000000    ................ 
00000060: 00000000 00000000 00000000 00000000    ................ 
00000070: 00000000 00000000 00000000 00000000    ................ 
00000080: 00000000 00000000 00000000 00000000    ................ 
00000090: 00000000 00000000 00000000 00000000    ................ 
000000a0: 00000000 00000000 00000000 00000000    ................ 
000000b0: 00000000 00000000 00000000 00000000    ................ 
000000c0: 00000000 00000000 00000000 00000000    ................ 
000000d0: 00000000 00000000 00000000 00000000    ................ 
000000e0: 00000000 00000000 00000000 00000000    ................ 
000000f0: 00000000 00000000 00000000 00000000    ................ 
VersatilePB # 

 
A list of supported machines (targets) by qemu-system-arm can be obtained by executing the following command in 
the linux terminal: 
 

$ qemu-system-arm -machine help 
 

root@xubuntu-VirtualBox:/opt/projects/u-boot-2015.07# qemu-system-arm -machine help 
Supported machines are: 
akita                Sharp SL-C1000 (Akita) PDA (PXA270) 
ast2500-evb          Aspeed AST2500 EVB (ARM1176) 
borzoi               Sharp SL-C3100 (Borzoi) PDA (PXA270) 



 

canon-a1100          Canon PowerShot A1100 IS 
cheetah              Palm Tungsten|E aka. Cheetah PDA (OMAP310) 
collie               Sharp SL-5500 (Collie) PDA (SA-1110) 
connex               Gumstix Connex (PXA255) 
[…] 

 
It can be seen right away that the ‘beagle’ is not listed. Running the ‘beagle’ target with qemu will be covered in section 
3.4. 
 
NOTE: It is suggested to go through the steps in section 1.1 in order to create an ECLIPSE development environment 

for the versatile target. It will only be necessary to change [Step 19] with Target Name: versatilepb_config. If you 

went through that section already, simply add this target configuration as stated in [Step 19]. You’ll end-up with three 
targets: 
 
 - distclean 
 - am335x_evm_config 
 - versatilepb_config 
 

  



 

2 U-Boot Structure 
 
This section describes the U-Boot structure, including the U-Boot code layout, configuration options used for 
compilation, and the boot process. In its essence, this section will fit pieces of the puzzle left in the previous section. 
 
It will be assumed that the reader has access to a linux environment. The commands used throughout were tested in 
a xubuntu 12.04 environment as detailed in section 1. 
 

2.1 Directory Hierarchy 
 
The U-Boot source code contains a number of directories. We will focus on the ones listed in Table 1. 
 

Directory Description 
/arch/arm Files generic to ARM architecture 
/board Board dependent files 
/cmd U-Boot commands functions 
/common Misc architecture independent functions 
/configs Board default configuration files 
/drivers/spi SPI device drivers 

Table 1: U-Boot Directory Structure 

2.2 Configuration Options 
 
The target board considered herein is endowed of the AM3358 processor. Hence, the corresponding default 
configuration file “am335x_evm_defconfig” can be found under /configs.  

 
NOTE: From this point on we will use the arm-linux-gnueabi- cross-compiler instead of arm-none-gnueabi- 

instructed in [Step 16] of section 1.1. This is because the latter is needed for the versatile target only.  
 
To install arm-linux-gnueabi-, do: 

 
$sudo apt-get install gcc-arm-linux-gnueabi 
 
Follow the instructions in [Step 16], section 1.1, to change the CROSS_COMPILE variable to arm-linux-gnueabi-. 

 
Now, by invoking command: 
 
$make CROSS_COMPILE=arm-linux-gnueabi- am335x_evm_defconfig 
 
a configuration file <.config> will be generated in the project root directory. This file is a starting point for the target 

build configuration, defining which drivers will be supported, in which: 
 

 Configuration _OPTIONS_ (begin with “CONFIG_”); 

 Configuration _SETTINGS_ (begin with “CONFIG_SYS_”).  

 
In order to automatically elaborate the <.config> file, Kconfig starts by checking the configuration options defined in 

<configs/am335x_evm_defconfig>, and resolves all related configurations that depend on those ones. In the end, 

all the target configuration options are collected in the <.config> file. 

 

2.2.1 Compiling U-Boot Image 
 
By invoking the command: 
 
$make CROSS_COMPILE=arm-linux-gnueabi-  



 

 
as instructed in 1.3 and/or 0, GNU make will perform the following major tasks: 
 

 Create <include/config/auto.conf> which is generated by Kconfig; 

 Create <include/autoconf.mk> which is used in the U-Boot conventional configuration; 

 Build object files based on the configurations defined in the above to files; 
 Link all the object files to create two ELF files: <u-boot>, <spl/u-boot-spl>; 

 Create raw binary files: <u-boot.bin>, <spl/u-boot-spl.bin> and link map files <u-boot.map>, <spl/u-
boot-spl.map>; 

 Create image files: <u-boot.img>, <MLO>. 

 
When Make starts building object files, it starts in the u-boot root directory. Then, it recursively executes sub-make in 
each subdirectory using the Makefile in the corresponding folder. A source file under a sub-folder is only considered 
for compilation if the configuration option (CONFIG_) of the object is defined in either <include/config/auto.conf> 

or <include/autoconf.mk>. Taking Makefile under <drivers> as an example, ‘obj-y’ means that the corresponding 

object file is always built, while obj-$(CONFIG_OPTION) will be built into object file and further linked, depending on if 

the CONFIG_OPTION is defined. 
 
In the current version of U-BOOT (2015-07), developers are in the process of migrating board headers to Kconfig. As 
a result, part of the configuration options (those defined in .config file) end up in <include/config/auto.conf> while 

the rest still stays in board headers, which are then collected into <include/autoconf.mk>. For example, all 

configurations defined in <include/configs/am335x_evm.h> and <include/configs/ti_armv7_common.h> can 

be found in <include/ autoconf.mk>, in turn generated at build time. 
 
Alternatively, by invoking make with:  
 
$make CROSS_COMPILE=arm-linux-gnueabi- V=1   
 
The GNU make will provide a verbose output of the make process, which can be useful for debug purposes.  
 
NOTE: The build process can be integrated in a suitable IDE such as Eclipse. Instructions to setup the development 

environment are provided in section 1.1. 
 

2.3 Boot Process 
 
After power-up or reset, the processor loads the U-Boot boot loader in several steps [14]. Below is the boot process, 
specifically for AM335x targets:  
 

1. ROM code is executed after power-on; 
 

2. ROM looks for U-Boot SPL (Secondary Program Loader) whose filename is <MLO>, and copies the content of 

MLO to an on-chip SRAM at address defined in CONFIG_SPL_TEXT_BASE (0x402F0400), which is hardware-

specific. This U-Boot SPL stage is required due to the limited size of this SRAM. 
 

3. U-Boot SPL starts initialization tasks: execution starts with architecture-specific ASM instructions set in 
<start.S>. The latter is located in <arch/arm/cpu/armv7>. From here, three functions are called: 

 
a. lowlevel_init():  

- setup PLL,mux, and clocks.  
    - defined in <arch/arm/cpu/armv7/lowlevel_init.S> 

 
b. board_init_f(): 

- init hardware for execution from SDRAM. 
     - defined in <arch/arm/cpu/armv7/omapcommon/hwinit_common.c> 

 



 

c. board_init_r(): 

- load the <U-Boot.img> at into SDRAM at address defined in CONFIG_SYS_TEXT_BASE 

(0x80800000) and execute from there. 
   - defined in <common/spl/spl.c> 

 
4. U-boot is loaded into RAM, started, and in turn configures the Ethernet MAC address, flash, serial console, 

and loads the settings. The U-Boot environment setting is a block of memory that is kept in NVM. 
 

5. By pressing a key from serial console, autoboot to next stage (e.g. linux kernel) is interrupted, and the U-Boot 
command line console is displayed. The result should be that of Figure 9. 
 

 
Figure 9: U-Boot command line console on Beagle board 

 

  



 

3 U-Boot Customization 
 
This section describes how to adapt u-boot to a specific hardware requirement.  As example, we will develop and 
integrate a driver to perform R/W operations to a 4Mb SPI MRAM (MR25H40), considered attached to the McSPI 
module of the AM3358 processor. 
 
Last, we investigate the possibility to run U-Boot on QEMU (a generic and open source machine emulator). 
 

3.1 Implementation of an External Memory SPI Driver 
 

3.1.1 Hardware and Software Requirements 
 
The requirements for this example are the following: 
 
Hardware perspective: 

A 4Mb SPI Interface MRAM (MR25H40) chip is attached to the McSPI module of a AM335x processor. 
 
Software (u-boot) perspective: 

A SPI driver is needed to perform R/W test operations to the MRAM device. 
 

3.1.2 U-Boot Drivers (SPI Example) 
 
In directory <drivers>, there are commonly used device drivers which implement a set of functions for accessing 

certain on-board hardware devices. So for the current task, it is first necessary to check if the SPI driver is available for 
the McSPI module, otherwise it needs to be created. 
 
From Makefile in directory <drivers/spi/Makefile>, we get: 
 

[…] 
obj-$(CONFIG_MXS_SPI) += mxs_spi.o 
obj-$(CONFIG_OMAP3_SPI) += omap3_spi.o 
obj-$(CONFIG_SANDBOX_SPI) += sandbox_spi.o 
obj-$(CONFIG_SH_SPI) += sh_spi.o 
[…] 

 
By checking <include/autoconf.mk> and <include/config/auto.conf>, we can see that CONFIG_OMAP3_SPI is 

defined, therefore, omap3_spi.c is compiled and made available for the McSPI module of the hardware specification. 

An alternative way to find if a driver is compiled or not is to check <u-boot.cfg> which is generated during Make process, 
providing all the preprocessor definitions used during compilation. This information can also be verified by the Makefile 
ouput. 
 

3.1.3 U-Boot Commands (SPI Example) 
 
In directory <cmd> there are API commands that can be called from the U-Boot shell, which typically perform calls to a 

device driver in order to execute higher-level functions. In our case, both the SPI driver and CONFIG_CMD_SPI are 

defined. An explanation follows on how the SPI utility command interacts with the SPI driver. 
 
As previously discussed, all U-Boot command functions are under directory <common>, with prefix cmd_. In the Makefile 

kept in directory <common/Makefile> we have: 

 
[…] 
obj-$(CONFIG_CMD_SOFTSWITCH) += cmd_softswitch.o 
obj-$(CONFIG_CMD_SPI) += cmd_spi.o 
obj-$(CONFIG_CMD_SPIBOOTLDR) += cmd_spibootldr.o 
[…] 



 

Therefore, with CONFIG_CMD_SPI defined, the SPI utility command in file <common/cmd_spi.c> will be compiled. At 

the end of this file, we have the following code: 
 

[…] 
Line 165: U_BOOT_CMD( 

sspi, 5, 1, do_spi, 
"SPI utility command",  

[…] 

 
The U_BOOT_CMD is a macro used to fill in a cmd_tbl_t structure (Command Table), and is defined in <include/ 
command.h> 

 
[…] 
#define U_BOOT_CMD(_ name, _maxargs, _rep, _cmd, _usage, _help) \ 
 U_BOOT_CMD_COMPLETE(_name, _maxargs, _rep, _cmd, _usage, _help, NULL) 
[…] 

 
The five macro arguments stand for [16]: 
 

_name: the name of the commad. Not a string but the text of the command name. 
_maxargs: the maximum number of arguments this function takes 

_repeatable: either 0 or 1 to indicate if autorepeat is allowed 
_command: Function pointer (*cmd)(struct cmd_tbl_s *, int, int, char *[]); 
_usage: Short description. This is a string 
_help: Long description. This is a string 

 
The cmd_tbl_t structure created is named with a special prefix and placed by the linker in a special section using the 

linker lists mechanism <include/linker_lists.h>. This makes it possible for the final link to extract all commands 

compiled into any object code and construct a static array so the command array can be iterated over using the linker 
lists macros. 
 
In our case, do_spi(cmd_tbl_t *, int, int, char * const)  fuction is stored in the linker-generated array placed 

in the “.u_boot_list” section so that user can use the “sspi” command from U-Boot console. 

 
The SPI utility command requires 5 arguments: “[<bus>:] <cs> [. <mode>] <bit_len> <dout>”, which stands 

for: 
 

<bus> - Identifies the SPI bus\n" 
<cs>            - Identifies the chip select\n" 

<mode>     - Identifies the SPI mode to use\n" 
<bit_len>   - Number of bits to send (base 10)\n" 

<dout>       - Hexadecimal string that gets sent" 

 
The do_spi() function parses the command line parameters, given as arguments: 

 
[…] 
Line 105: int do_spi (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])  
[…] 

 
and then calls do_spi_xfer(bus,cs), in turn  defined in line 43 of the same source file: 

 
[…] 
Line 43: static int do_spi_xfer(int bus, int cs)  
[…] 

 
From within this function, the driver API is called to perform the SPI transfer. As it can still be seen from the command 
code, 5 SPI driver functions are called: 
 



 

[…] 
Line 59: spi_setup_slave(bus, cs, 1000000, mode); 
[…] 
Line 66: spi_claim_bus(slave); 
[…] 
Line 69: spi_xfer(slave, bitlen, dout, din, 
         SPI_XFER_BEGIN | SPI_XFER_END); 
[…] 
Line 86: spi_release_bus(slave); 
[…] 
Line 88: spi_free_slave(slave); 
[…] 

 

3.1.4 U-Boot Driver Calls (SPI Example) 
 
All of the above SPI driver functions are already implemented in <drivers/spi/omap3_spi.c>: 

 
spi_setup_slave(): 
[…] 
Line 61: struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,  
Line 62:  unsigned int max_hz, unsigned int mode) 
[…] 

 
spi_setup_slave(…) function sets up communications parameters for a SPI slave and return a pointer to the spi_slave 

structure which is a representation of the SPI salve. 
The arguments have the following meanings: 
 

Bus: - Bus ID of the slave chip. 
Cs:            - Chip select ID of the slave chip on the specified bus. 

max_hz: - Maximum SCK rate in Hz. 
Mode:   - Clock polarity, clock phase and other parameters. 

 
spi_claim_bus(): 
[…] 
Line 141: int spi_claim_bus(struct spi_slave *slave) 
[…] 

 
spi_claim_bus(…) function claims the bus and prepares for communication with the given slave. This function will 

read the up communications parameters inside the slave and write the McSPI configuration to the module, such as 
setup clock divisor, wordlength, chipselect polarity, SPI mode and transmit & receive mode. 
 
spi_xfer(): 
[…] 
Line 404: int spi_xfer(struct spi_slave *slave, unsigned int bitlen, 
Line 405:      const void *dout, void *din, unsigned long flags) 
[…] 

 
spi_xfer (…) function is the core function of the data transaction between the SoC McSPI module and SPI slave. 

This function writes “bitlen” bits out the SPI MOSI port and simultaneously clocks “bitlen” bits in the SPI MISO port. 

 
The arguments have the following meanings: 
 

slave: - The SPI slave which will be sending/receiving the data. 
bitlen:            - Number of bits to write and read. 

dout: - Pointer to a byte array of data to send out. 
din:   - Pointer to a byte array that will be filled in with data received. 

Flags: - A bitwise combination of SPI_XFER_* flags 

 



 

The available transfer flags are defined in <include/spi.h>: 

 
[…]  
/* SPI transfer flags */  
#define SPI_XFER_BEGIN 0x01 /* Assert CS before transfer */ 
#define SPI_XFER_END  0x02 /* Deassert CS after transfer */ 
#define SPI_XFER_MMAP 0x08 /* Memory Mapped start */ 
#define SPI_XFER_MMAP_END 0x10 /* Memory Mapped End */ 
#define SPI_XFER_ONCE (SPI_XFER_BEGIN | SPI_XFER_END) 
#define SPI_XFER_U_PAGE (1 << 5) 
[…]  

 
spi_release_bus(): 
[…] 
Line 217: void spi_release_bus(struct spi_slave *slave) 
[…] 

 
spi_release_bus(…) function must be called once for every call to spi_claim_bus() after all transfers have finished. 

In this function, McSPI module will be reset by writing the reset configuration to appropriate registers of the module. 
 
spi_free_slave(): 
[…] 
Line 134: void spi_free_slave(struct spi_slave *slave) 
[…] 

 
spi_free_slave() function then will free the SPI slave structure. 

 
Other SPI driver functions can be found in the McSPI driver source code file, however the sspi command only calls 

the 5 functions described above. In fact, during U-Boot linking stage, the linker will discard the unreferenced functions 
and produces two link map files <u-boot.map>, <spl/uboot-spl.map> which are useful to find out where the 

functions are being used.  
 
For example, as can be seen in <u-boot.map>, spi_cs_is_valid, spi_cs_activate and spi_cs_deactivate 

functions are in fact discarded after linking: 
 
[…] 
Line 14: Discarded input sections 
[…] 
.text.spi_cs_is_valid 
                0x0000000000000000        0x4 drivers/spi/built-in.o 
 .text.spi_cs_activate 
                0x0000000000000000        0x2 drivers/spi/built-in.o 
 .text.spi_cs_deactivate 
                0x0000000000000000        0x2 drivers/spi/built-in.o 
[…] 
Line805: Linker script and memory map 
[…] 
.text.spi_init 
                0x00000000808197ca        0x2 drivers/spi/built-in.o 
                0x00000000808197ca                spi_init 
 .text.spi_setup_slave 
                0x00000000808197cc       0xbc drivers/spi/built-in.o 
                0x00000000808197cc                spi_setup_slave 
 .text.spi_free_slave 
                0x0000000080819888        0x4 drivers/spi/built-in.o 
                0x0000000080819888                spi_free_slave 
 .text.spi_claim_bus 
                0x000000008081988c       0xb4 drivers/spi/built-in.o 
                0x000000008081988c                spi_claim_bus 



 

 .text.spi_release_bus 
                0x0000000080819940       0x1c drivers/spi/built-in.o 
                0x0000000080819940                spi_release_bus 
 .text.omap3_spi_write 
                0x000000008081995c       0x124 drivers/spi/built-in.o 
                0x000000008081995c                omap3_spi_write 
 .text.omap3_spi_read 

 
 

3.2 Creating an API (MR25H40 drive case) 
 
After understanding the SPI driver function, the goal now is to implement the Read and Write functions to be able to 
perform data transactions from/to the MR25H40 device. These two functions will have the following prototypes: 
 
ssize_t mram_spi_read(uchar *addr, int alen, uchar *buffer, int len)  
 
ssize_t mram_spi_write(uchar *addr, int alen, uchar *buffer, int len) 
 
where the four arguments stand for: 
 

uchar *addr: - the char pointer to the Mram Read/Write address. 
int alen:            - the address size in bytes. 

uchar*buffer: - pointer to the buffer to read or write from. 
int len:   - buffer size in bytes. 

 

3.2.1 Mram SPI Read 
 
From the MR25H40 datasheet [8], the Read Data Bytes (READ) command allows data bytes to be read starting at an 
address specified by the 24-bit address field. Only address bits 0-18 are decoded by the memory, which is because 
this device is organized as 524,288 words of 8 bits which can be addressed by 19bits. The data bytes are read out 
sequentially from memory until the read operation is terminated by bringing CS high. The entire memory can be read in 

a single command. The read operation at the bus level is shown in Figure 10. 
 

 
Figure 10: SPI Read operation from MR25H40 

Therefore, to perform a read operation, we need to do the following steps: 
 

1. Call spi_setup_slave(…) to setup configuration for MR25H40. 

 



 

Here we need to determine the bus number, chip select number, SCK rate and SPI mode. By reading the data 
sheet of AM335x and MR25H40, we’ve chosen the bus number to be 0, chip select to be 0, SCK rate to 48MHz, 

SPI mode to 0 (CPOL=0, CPHA=0) 

 
2. Call spi_claim_bus(…) to configure the McSPI module. 

 
By calling spi_claim_bus (…), we pass the spi slave struct which return by spi_setup_slave(…) in, and 

let this driver function to setup configuration for McSPI module and prepare for the data transactions. 
 

3. Call spi_xfer(…) to perform SPI Read data transactions. 

 
As can be seen in Figure 10, to read from MR25H40, we need to first bring CS low and write READ instruction 
code and 24bit read address through Serial Input and read out data from serial out. 

 
To better clarify the Mram SPI read procedure, the call to spi_xfer(..) is made using the following steps: 

 
/*write the READ instruction code to MR25H40, bring CS low; 
* SPI_XFER_BEGIN will indicate the spi_xfer function to bring CS low; 
* the spi_xfer din is set to NULL, and dout is the read command; 
* spi_xfer Will write through serial input with the read instruction code*/ 
spi_xfer(slave, 8, &cmd_read, NULL, SPI_XFER_BEGIN) 
 
/*write the read address to MR25H40,*/ 
spi_xfer(slave, 24, read_address, NULL, 0); 
 
/*read data from MR25H40 with the specific length and bring CS high*/ 
spi_xfer(slave, 8 * len, NULL, buffer, SPI_XFER_END) 

 
4. Call spi_release_bus(…) to reset McSPI module, as explained in previous chapter. 

 
5. Call spi_free_slave(…) to free up the memory of the spi slave struct created by spi_setup_slve(…). 

 

3.2.2 Mram SPI Write 
 
Similarly, the Write Data Bytes (WRITE) command allows data bytes to be written, starting at an address specified by 
the 24-bit address. Again, only address bits 0-18 are decoded by the memory. The data bytes are written sequentially 
in memory until the write operation is terminated by bringing CS high. The entire memory can be written in a single 
command. The address counter will roll over to 0000h when the address reaches the top of memory. 
 
The only difference compared to EEPROM or Flash is that data bytes can be written continuously without write delays 
or data polling. Back to back write commands can be executed without any write delay. The read operation at the bus 
level is shown in Figure 11. 
 



 

 
Figure 11: SPI Write operation from MR25H40 

Similar to the Mram SPI read, the Mram SPI write calls to SPI driver API function with a similar procedure: 
 

1. spi_setup_slave(…) 
2. spi_claim_bus(..) 
3. spi_xfer(…) 
4. spi_release_bus(…) 
5. spi_free_slave(…) 

 
As can be seen from Figure 11, the difference is the call procedure of the spi_xfer(…):  

 
First, we need to make sure the write enable latch bit is enabled by sending a write enable command. We can only 
send the write command and write address to the MRAM after the write is enabled.  
 
Second, when we start writing data, the spi_xfer() dout argument should be set to NULL, and din should point to the 
byte buffer where the data needs to be sent. 
 

/* bring CS low, write the Write Enable(WREN)instruction code to MR25H40  
 * and then bring CS high. */ 
spi_xfer(slave, 8, &cmd_write_enable, NULL, SPI_XFER_BEGIN | SPI_XFER_END) 
 
/* bring CS low, write the WRITE instruction code to MR25H40, */ 
 spi_xfer(slave, 8, &cmd_write, NULL, SPI_XFER_BEGIN) 
 
/*write the read address to MR25H40, bring CS low*/ 
spi_xfer(slave, 24, addr, NULL, 0); 



 

 
/*read data from MR25H40 with the specific length and bring CS high*/ 
spi_xfer(slave, 8 * len, NULL, buffer, SPI_XFER_END) 

 

3.3 Integrating Mram API Into U-Boot 
 
Since the Mram SPI Read and Write Functions are not implemented as U-Boot CMD, these two functions must be 
called from the driver API layer. However, the SPI Read and Write functions are implemented specifically for MR25H40 
device, hence acting more like a driver for MR25H40. Thus, we create the file <mr25h40.c> and place it under directory 

<drivers/mtd/spi>. 

 
To compile the new source code with U-Boot, the make file <drivers/mtd/spi/Makefile> needs to be modified: 
 
[…] 
Line 24: obj-$(CONFIG_SPI_MR25H40) += mr25h40.o 
[…] 

 
By adding this line, GNU Make will compile the API source if CONFIG_SPI_MR25H40 is defined. 

 
As stated above in sub-section 2.2.1, there are two ways of adding this configuration option: 
 

1. Add it to the Kconfig file structure:  
 
Add the following lines in to <drivers/mtd/spi/Kconfig>: 

 
[…] 
config SPI_MR25H40 
    bool "MR25H40 SPI Flash support" 
    help 
      Enable SPI flash support for MR25H40 Device to perform read / write. 
[…] 

 
and enable it in <configs/am335x_evm_defconfig>: 

 
[…] 
Line 7: CONFIG_SPI_MR25H40=y 
[…] 

 
2. Add to board specific header<am335x_evm.h>: 

 

[…] 
#define CONFIG_SPI_MR25H40  
[…] 

 
 

Finally, we can confirm that our changes have been successfully integrated into the U-Boot Image, either by checking 
the Make output, <u-boot.map> or <u-boot.cfg> after build: 

 
Makefile Output: 
[…] 
LD      drivers/mtd/built-in.o 
LD      drivers/mtd/onenand/built-in.o 
CC      drivers/mtd/spi/mr25h40.o 
LD      drivers/mtd/spi/built-in.o 
[…] 

 
  



 

<u-boot.map>: 
[…] 
.text.mram_spi_read 
                0x0000000000000000       0x7c drivers/mtd/spi/built-in.o 
.text.mram_spi_write 
                0x0000000000000000       0x98 drivers/mtd/spi/built-in.o  
[…] 

 
<u-boot.cfg>: 
[…] 
#define CONFIG_LIB_UUID  
#define CONFIG_SPI_MR25H40 1 
#define __FLT_MANT_DIG__ 24 
#define CONFIG_G_DNL_MANUFACTURER "Texas Instruments" 
[…] 

 
Next, we can call the MRAM SPI driver functions from the U-Boot command line by creating two U-Boot console 
command mramrd, mramwr using the “U_BOOT_CMD” Marco.  

 

[…] 
U_BOOT_CMD( 
 mramrd, 4, 1, do_spi_mram_read, 
 "SPI MRAM command,Read from MRAM MR25H40 device", 
 "<bit_len> <addr> - Read <bit_len> bits from MRAM <addr>\n" 
 "<bit_len> - Number of bits to receive (base 10)\n" 
 "<addr>    - MRAM Read address" 
); 
 
U_BOOT_CMD( 
 mramwr, 5, 1, do_spi_mram_write, 
 "SPI MRAM command,Write to MRAM MR25H40 device", 
 "<bit_len> <addr> <dout> - Send and receive bits\n" 
 "<bit_len> - Number of bits to send (base 10)\n" 
 "<addr>    - MRAM Write address\n" 
 "<dout>    - Hexadecimal string that gets sent" 
); 
[…] 

 
When we issue “mramrd” or “mramwr” command from the U-Boot command line, the corresponding 

do_spi_mram_read()/do_spi_mram_write() is called. These two functions can be seen as the interface between 

the command line (user) and the driver API. Within these functions, arguments collected from the console are parsed 
and MRAM SPI Read/Write are called. This is similar to do_spi(…) function as explained earlier in section 3.4.1. For 

convenience, these two commands are placed in souce file <common/cmd_spi.c>. 

 
Finally, we need to verify that the API was successfully included in the image by running it on the target. This will be 
done by: 
 

1. Running our u-boot build on qemu; 
2. Running our u-boot build on a BeagleBone Green target board. 

 
The first will be covered in the following section. 
 

  



 

3.4 Running U-Boot am335x Target on QEMU 
 
QEMU is a versatile generic and open source machine emulator. If QEMU can emulate our hardware requirement, 
we could then test the U-Boot image before running on real hardware. Unfortunately, as seen in section 1.5, no 
similar hardware board can be found in the supported machines. 
 
Another alternative is explored, Linaro QEMU, which is a branch of QEMU focused on improving support for ARM 
based systems. Linaro QEMU supports Beagleboard. 
 

3.4.1 Installing qemu-linaro 
 
The following instructions can be used to install qemu-linaro: 
 

$sudo -s 
 
$cd ~/buffer 

 
$git clone https://github.com/firmadyne/qemu-linaro.git 

 
$cd qemu-linaro 

 
$git submodule update --init pixman 

 
$git submodule update --init dtc 

 
$./configure --prefix=/opt  
 
NOTE: The above line is necessary in order to create the binary under /opt folder. 
 
$make 
 
$make install 

 
Contrary to the versatilepb example in section 1.5, for the beagle target we need to mimic the actual hardware process, 
which is to load the software from a dedicated SD card. 
 
A set of tools is also necessary to create the SD image for QEMU to boot, that can be obtained with: 
  

$add-apt-repository ppa:linaro-maintainers/tools 
 
$apt-get update 
 
$apt-get install linaro-image-tools 

 
To create the SD image for QEMU, both hardware pack and kernel image files are required. The hardware pack can 
be created based on an existing hwpack config file <linaro-beaglebone>. This configuration file contains the 

information about what packages and dependencies should be installed to create the hardware pack tarball.  
 
In order to get the hardware pack (hwpack) config file, do: 

 
$sudo apt-get install bzr 
 
$cd /opt/buffer 
 
$bzr branch lp:~linaro-maintainers/linaro-images/hwpack.precise.linaro-beagleboard 



 

And to create the hwpack based on the obtained config file, do: 
 
$cd hwpack.precise.linaro-beagleboard 
 
$linaro-hwpack-create hwpacks/linaro-beagleboard 2 

 
This last command will output a file named hwpack_linaro-omap3_2_armhf_supported.tar.gz. Since we are only 

interested in the U-Boot Stage, the kernel image can be just a stub file. 
 
To create a stub image file, do: 
 

$touch stub 
 
$tar -cvf stub.tar.gz stub 
 

Now we are ready to create the SD image, replacing $KERNEL and $HWPACK with the tarball files we created: 
 
$linaro-media-create --binary $KERNEL --hwpack $HWPACK --dev beagle 

 
Specifically: 
 

$KERNEL -> stub.tar.gz 
$HWPACK -> hwpack_linaro-omap3_2_armhf_supported.tar.gz 

 
NOTE: Both $KERNEL and $HWPACK are in tarball format.  

 
An image file named <sd.img> is created. Now, to finally boot the u-boot beagle target with qemu, run: 

 
$/opt/bin/qemu-system-arm -M beagle -drive if=sd,cache=writeback,file=./sd.img -serial 

stdio 
 
And the following will be obtained in the console: 
 

[…] 
U-Boot SPL 2012.07 (Jun 20 2017 - 13:25:39) 
OMAP SD/MMC: 0 
reading u-boot.img 
U-Boot 2012.07 (Jun 20 2017 - 13:25:39) 
OMAP35XX-GP ES3.1, CPU-OPP2, L3-165MHz, Max CPU Clock 600 mHz 
OMAP3 Beagle board + LPDDR/NAND 
I2C:   ready 
DRAM:  256 MiB 
NAND:  256 MiB 
MMC:   OMAP SD/MMC: 0 
*** Warning - bad CRC, using default environment 
ERROR : Unsupport USB mode 
Check that mini-B USB cable is attached to the device 
In:    serial 
Out:   serial 
Err:   serial 
Beagle Rev C4 
No EEPROM on expansion board 
Die ID #51454d5551454d555400000051454d55 
Net:   No ethernet found. 
checking for preEnv.txt 



 

reading preEnv.txt 
** Unable to read file preEnv.txt ** 
Hit any key to stop autoboot:  0  
OMAP3 beagleboard.org # 
[…] 

 
In fact, linaro-media-create is joining the <MLO> and <u-boot.img> with kernel image to create the complete SD 

image for QEMU to emulate. If we run QEMU with: 
 
 $/opt/bin/qemu-system-arm -M beagle -drive if=sd,cache=writeback,file=MLO -serial stdio 
 
Only the MLO code will be executed on QEMU. 
 

[…] 
U-Boot SPL 2012.07 (Jun 20 2017 - 13:25:39) 
OMAP SD/MMC: 0 
** Partition 1 not valid on device 0 ** 
spl: fat register err - -1 
### ERROR ### Please RESET the board ###  
[…] 

 
The messages mean that QEMU complains about the lack of next stage boot loading. 
 
We tried to replace the u-boot image and MLO in the Linaro hwpack by our own u-boot build, without success. The 
MLO execution was interrupted, not reaching the state of loading the u-boot image. This may be due to differences in 
the used cross-compile toolchain and/or the source code version in the linaro package.  
 
In order to identify the differences, we obtained the u-boot source version used in the Linaro hwpack 
(git://git.linaro.org/boot/u-boot-linaro-stable.git) and cross-compiled it with our toolchain. It worked, 

and therefore we concluded that the difference between U-Boot source code versions (2013.07 and 2015.07) is 
the cause for our version not being able to load on QEMU Linaro. 

 
As such, we compiled the MRAM SPI driver code together with the custom U-Boot command with U-Boot-2013.07, so 
that we could verify the integration with the emulator. Figure 12 depicts a screenshot of QEMU with “mramrd” and 

“mramwr” integrated into U-Boot.  
 



 

 
Figure 12: U-Boot 2013.07 running in qemu-linaro with custom commands integrated. 

The usage of a command can allways be checked with: 
 
 $help $COMMAND 
 
Figure 13 depicts the usage for our custom “mramrd” and “mramwr” commands. 



 

  

 
Figure 13: Usage of custom commands (mramrd, mramwr) shown in u-boot 

Since MR25H40 device is not present in neither QEMU nor Beagle Board, these two commands are expected to fail 
when we call them. 
 

3.5 Running U-Boot am335x Target on Hardware 
 
Now we move to next stage, which is to run U-Boot on real hardware, the Beagle board. The HW setup is shown in 
Figure 14. 
 

  
Figure 14: Physical Setup with the BeagleBone Green Board + FTDI 



 

There was only one board available with multiple users needing access to it. The board was connected through FTDI 
to a serial port in a host PC and so, with SSH access, it was possible to use the u-boot serial console on the local PC. 
 
 $ssh -X svf@remotehostIp 
 
In order to test a new u-boot image it was necessary to modify the uSD card inserted in the beagle and include the new 
u-boot.img. For this, the remote user would send the img file (created by default during build) to someone with physical 

access to the host computer and SD card in order to update it using a standard card reader and re-insert it on the 
beagle. Newly created MLO + u-boot.img files were passed to the host PC using: 
  
 $scp MLO svf@remotehostIp:/directory/to/store/image 
 
 $scp localu-boot.img svf@remotehostIp:/directory/to/store/image 
 
To update the SD card, it was placed on a card reader and mounted on the Linux environment. Then, the files would 
be replaced in the first partition. The version running on the HW target was 2015.07, the same considered in section 1.  
 
NOTE: Further u-boot builds only require u-boot.img to be passed and updated on the SD card. 

 
Instructions to create a bootable SD card are given in section 4. 
 
Access to the Beagle was made using a serial console in the Ubuntu VM (Putty) through an FTDI device set to 3V3, 
shown in Figure 14. The UART parameters are:  
 

 serial line: /dev/ttyS0 
 baudrate: 115200 
 data bits: 8 
 Stop Bits: 1 
 Parity Bit: None 
 Flow Control: XON/XOFF 

 
It will also be necessary to setup a serial port in Virtual Box.  
 
In Settings -> Serial Ports, check ‘Enable Serial Port’ with ‘Port Numbet’ set to COM1 and ‘Port Mode’ set to ‘Host 
Device’. The ‘Path/Address’ field must be set to the FTDI COM number attributed by windows, which can be checked 

in the ‘Device Manager’ under ‘Ports (COM & LPT)’. In our case, it was COM4. 

 
Running this customized U-Boot image on beagle board, the output from “mramwr” and “mramrd” is exactly the same 

as that displayed on QEMU shown before. This is can be seen in Figure 15.  
 

 
Figure 15: U-Boot 2013.07 running in Hardware with custom commands integrated. 



 

NOTE: For the beagle case, the low-right corner ‘user’ button needs to be pressed at power-on time for the boot source 

to be redirected to the uSD card. The button is shown in Figure 16. 
 

 
Figure 16: Button to press during power-up in order to switch the boot source to the uSD card. 

 

3.5.1 Creating a Bootable microSD Card 
 
In order to use the instructions below, the following items are necessary: 
 

 A Linux u-boot development environment, similar to that of section 1, where both the u-boot.img and MLO 

can be created; 
 

 A microSD (uSD) card; 
 

 A USB SD card reader in order to format and further update the uSD card. 
 
These steps need to be executed only once. They will format the SD card and create two partitions, one for the 
bootloader and another one for the Linux Kernel We will be mainly focused on the first partition, which is the one 
concerning u-boot. 
 
After inumerous tries, we were able to find a package from TI that contains a script that is really capable of formatting 
the uSD card with the exact requirements of our target processor. It is named “AM335X-LINUX-PSP-04.06.00.02” and 

is available from: 
 
http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/AM335x_04_06/index.html 
 
We basically need the mksd-am335x.sh script contained inside this package. From it, we created a slightly diferent 

version, along with inputs from references [9], [10] and [11]. Reason is that in order to boot with u-boot alone, it isn't 
necessary to upload to the SDcard the uImage and the file system associated with the OS. As such, the commands 
that reference these two ‘files’ have been removed from the script. 
 
The custom script only requires 3 arguments: the device, the location of the MLO and u-boot.img files. As for the 

second partition required to load the OS, it is left empty.  
 
The instructions to create a bootable microSD card are are the following: 

http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/AM335x_04_06/index.html


 

[Step 1] Create the script file: 
 
$sudo -s 
 
$cd /opt/buffer 
 
$ nano mksd.sh 
 

[Step 2] Paste the following code into it: 
 

#!/bin/bash 
 
if [[ -z $1 || -z $2 || -z $3 ]] 
then 
 echo "mksd Usage:" 
 echo " mksd  <device> <MLO> <u-boot.img> " 
 echo " Example: mksd  /dev/sdc MLO u-boot.img " 
 exit 
fi 
 
if ! [[ -e $2 ]] 
then 
 echo "Incorrect MLO location!" 
 exit 
fi 
 
if ! [[ -e $3 ]] 
then 
 echo "Incorrect u-boot.img location!" 
 exit 
fi 
echo "All data on "$1" now will be destroyed! Continue? [y/n]" 
read ans 
if ! [ $ans == 'y' ] 
then 
 exit 
fi 
echo "[Partitioning $1...]" 
 
DRIVE=$1 
dd if=/dev/zero of=$DRIVE bs=1024 count=1024 
   
SIZE=`fdisk -l $DRIVE | grep Disk | awk '{print $5}'` 
   
echo DISK SIZE - $SIZE bytes 
  
CYLINDERS=`echo $SIZE/255/63/512 | bc` 
  
echo CYLINDERS - $CYLINDERS 
{ 
echo ,9,0x0C,* 
echo ,,,- 
} | sfdisk -D -H 255 -S 63 -C $CYLINDERS $DRIVE 
 
echo "[Making filesystems...]" 



 

 
mkfs.vfat -F 32 -n boot "$1"1 &> /dev/null 
mkfs.ext3 -L rootfs "$1"2 &> /dev/null 
 
echo "[Copying files...]" 
 
mount "$1"1 /mnt 
cp $2 /mnt/MLO 
cp $3 /mnt/u-boot.img 
umount "$1"1 
 
mount "$1"2 /mnt 
chmod 755 /mnt 
umount "$1"2 
 
echo "[Done]" 

 
[Step 3] Close and save changes: 

 
Ctrl-X -> Y -> Enter 

 
[Step 4] Identify the SD Device File 

 
$ tail -f /var/log/kern.log 
 
observe the log output which should be similar to this: 

 
[…] 
kernel: sd 35:0:0:0: [sdb] 61497344 512-byte logical blocks: (31.4 GB/29.3 GiB) 
 kernel: sd 35:0:0:0: [sdb] Write Protect is off 
 ... 
 kernel:  sdb: sdb1 sdb2 […] 

 
This means the SD card can be accessed under /dev/sdb (Our current card already has two partitions sdb1 

and sdb2) 

 
NOTE: If the uSD does not appear automatically, it may be necessary to mount it again and repeat step2. We 

may mount it manually in alternative: 
 
 $mkdir /mnt/sdb 
 
 $mount /dev/sdb /mnt/sdb 
 

[Step 5] Run mksd.sh 

 
$chmod 777 mksd.sh 
 
$ mksd <device> <MLO> <u-boot.img> 
 
example: mksd.sh /dev/sdb MLO u-boot.img 

 
NOTE: Remember to add the path to the files if they’re not in the same folder as the mksd.sh script. 

 
This will format the uSD card with the exact requirements needed for the boot process and also, it will pass both MLO 
and u-boot image to the first partition automatically. This is what we need to properly run u-boot on the hardware target.  



 

4 Integrating Standalone Applications 
 
U-Boot supports standalone applications that are loaded dynamically. Such applications can have access to the U-
Boot console I/O functions, memory allocation and interrupt services through the U-Boot Application Binary Interface 
(ABI) [14].  
 
In this section we start by understanding the standalone “hello world” application already included with U-Boot source 
code. Then, we will port the source code of an external, widelly-known application “Memtester” [12], into a standalone 

application, capable of being run with U-Boot, to demonstrate how to cross-compile a standalone application. The 
Beagle board will be used to validate the procedure in hardware. 
 

4.1 Understanding the Hello World Application 
 
The source code for “Hello World” application is in subdirectory <examples/hello_world.c>. It is automatically 

compiled when U-Boot is compiled. Looking at the make output we can find the following lines: 
 

[…] 
  CC      examples/standalone/stubs.o 
  LD      examples/standalone/libstubs.o 
  CC      examples/standalone/hello_world.o 
  LD      examples/standalone/hello_world 
  OBJCOPY examples/standalone/hello_world.srec 
  OBJCOPY examples/standalone/hello_world.bin 
[…] 

 
Using “make” with verbose mode, the following compiling and linking options can be found: 
 
Compiling Options: 

[…] 
-nostdinc -isystem /usr/lib/gcc/arm-linux-gnueabi/4.6/include -Iinclude -I 
./arch/arm/include -include ./include/linux/kconfig.h -D__KERNEL__ -D__UBOOT__ -DCONFIG   
_SYS_TEXT_BASE=0x80800000 -Wall -Wstrict-prototypes -Wno-format-security -fno-builtin -
ffreestanding -Os -fno-sta ck-protector -fno-delete-null-pointer-checks -g -fstack-usage -
Wno-format-nonliteral -fno-toplevel-reorder -D__ARM__ -Wa,-mimplicit-it=always -mthumb -
mthumb-interwork -mabi=aapcs-linux -mword-relocations -mno-unaligned-access -ffunction-
sections -fdata-sections -fno-common -ffixed-r9 -msoft-float -pipe -march=armv7-a 
[…] 
 

 
The compiling options are the same as those used for compiling U-Boot image.  
 

 “-nostdinc” specifies not to search standard system directories for header files, instead, search for headers 

defined after the “-isystem” switch;  

 
 “-ffunction-sections”, “-fdata-sections”, “-fno-common”, “-ffixed-r9” are all platform specific 

compiling options.  
o “-ffunction-sections”, “-fdata-sections” are used to place each function and data item into its 

own section in the output file.  
o “-fno-common” is used to force uninitialized global variables to be placed in data section.  

o “-ffixed-r9” will treat the register r9 as a fixed register, and generated code should not never to it. 

This option plays an important role in the standalone application which will be discussed later. 
 
  



 

Linking Options used for libstubs.o: 

[…] 
arm-linux-gnueabi-ld.bfd     -r -o examples/standalone/libstubs.o 
examples/standalone/stubs.o 
[…] 

 
The “-r” switch generates relocatable output. It basically takes <stubs.o> as input file to generate <libstubs.o> 

which in turn serves as input to the linker, ld. This is useful for incremental link of several object files into the 

<libstubs.o>, as later if one of these object files changes, the linker will modify the existing executable rather than 

create a new one, thus saving link time. 
 
Linking Options used for hello_world ELF file: 

[…] 
arm-linux-gnueabi-ld.bfd -g -Ttext 0x80300000 -o examples/standalone/hello_world -e 
hello_world examples/standalone/hello_world.o examples/standalone/libstubs.o -L 
/usr/lib/gcc/arm-linux-gnueabi/4.6 -lgcc 
[…] 

 
“-Ttext 0x80300000” specifies the address to load the standalone application for the Beagleboard. This address is 

hardware specific, and is defined in <arch/arm/config.mk>: 

 

[…] 
Line 10: CONFIG_STANDALONE_LOAD_ADDR = 0x80300000 
[…] 

 
“-e hello_world” specifies the entry point of the program to be “hello_world”, usually main(). 

 
“-L /usr/lib/gcc/arm-linux-gnueabi/4.6 -lgcc” specifies which library to link with and where to find the library. 

“libgcc.a“ is the low level library which contains shared code for low level routines such as the arithmetic operations 

that  the target processor cannot perform directly (multiplication, division, etc.). 
 
As can be seen from the make output, two source files are compiled <hello_world.c> and <stubs.c>.  Inside 

<hello_world.c> the entry function is defined as: 

 

[…] 
Line 15: int hello_world (int argc, char * const argv[]) 
[…] 

 
Inside this function is the simple implementation of “hello_world”. The code itself has little into it, but we may ask:  

 
“How low-level functions such as printf() and tstc() are getting called where are they defined?“ 

 
In fact, this is done by calling the U-Boot functions through ABI from the stand-alone application [13]. 
 

4.2 Exporting U-Boot Functions for Standalone Applications 
 
The Application Binary Interface (ABI) is the interface between U-Boot and the standalone application. Through this 
ABI, the standalone application can access to functions which are already implemented into U-Boot at the level of 
machine code. However, for functions which are not available in U-Boot, one can always implement the missing 
functions in standalone application, or else , implement them into U-Boot and call through ABI. 
 
Specifically, the U-Boot Functions are exported via a jump table, meaning that it contains all available function calls 

and pointers to them.  The jump table can be accessed as the ‘jt’ field of the ‘global_data’ structure. The typedefine 

of ‘global_data’ structure is in <include/asm-generic/ global_data.h> as “gd_t”. ‘struct arch_global_data 



 

arch’ from the ‘global_data’ is the architecture-specific data structure whose structure declaration can be found in 

<arch/arm/include/asm/global_data.h>. Another important line in this latter file is: 

 

[…] 
Line  85: #define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r9") 
[…] 

 
This is the macro to declare the pointer to global data (gd_t* gd) and deliberately put it into register “r9”. Choosing of 

the register is architecture dependent (U-Boot uses “r9” to hold the pointer to global data in ARM architecture), and 

this is also the reason why we need the “-ffixed-r9” switch (mentioned earlier) when compiling the source code to 

prevent deliberate use of this register. 
 
The jump table is allocated and initialized in the jumptable_init() routine, defined in <common/exports.c> when 

booting into U-Boot: 
 

[…] 
Line 6:  DECLARE_GLOBAL_DATA_PTR 
[…] 
Line 17: #define EXPORT_FUNC(f, a, x, ...)  gd->jt->x = f; 
Line 19: void jumptable_init(void) 
Line 20: { 
Line 21: gd->jt = malloc(sizeof(struct jt_funcs)); 
Line 22: #include <_exports.h> 
Line 23: }  
[…] 

 
where the “jt_funcs” structure is defined in the included header <include/exports.h> 

 

[…] 
Line 42: struct jt_funcs { 
Line 43: #define EXPORT_FUNC(impl, res, func, ...) res(*func)(__VA_ARGS__); 
Line 44: #include <_exports.h> 
Line 45: #undef EXPORT_FUNC 
Line 46: };  
[…] 

 
<include/_exports.h> contains a list of exported functions wrapped into EXPOR_FUNC macro, some of which are 

exported depending on “CONFIG_XXX” options. The macro will be defined depending on which file this header is 

included. For example, in <common/exports.c> the EXPOR_FUNC macro will be set to initialize the jump table struct 

with the functions from <include/_exports.h>. In <include/exports.h>, The EXPOR_FUNC macro will be set to the 

type of function pointer which is included inside the jump table struct. 
 

4.2.1 Exporting Additional U-Boot Functions 
 
To export an additional u-boot function, say “long foobar(int i,char c)”, to a stand-alone app, the following steps 

should be taken [13]: 
 

 Append the following line at the end of the <include/_exports.h> 
EXPORT_FUNC(foobar, long, foobar, int, char) 

 
 Parameters to EXPORT_FUNC are: 

(1) The function that is exported (default implementation)  
(2) Return value type 
(3) Name of the member in struct jt_funcs 

(4) Name that the standalone application will use. 



 

 
The rest of the parameters are the function arguments 

 
 Add the prototype for this function to the <include/exports.h> 

long foobar(int i, char c); 
 
Initialization with the default implementation is done in jumptable_init(), where the  EXPORT_FUNC macro 

is expanded (defined) to : gd->jt->foobar = another_foobar; 

 
 Optionally, if you want to export a function which depends on a CONFIG_XXX, add the following lines to the 

<include/exports.h>: 

 

#ifdef CONFIG_FOOBAR 
                EXPORT_FUNC(foobar, long, foobar, int, char) 
#else 
                EXPORT_FUNC(dummy, void, foobar, void) 
#endif 

 
So far, the jump table including the exported function has been implemented into U-Boot. At boot time, the 
global_data structure is allocated, and the jumptable is allocated and initialized with the exported functions. For 

standalone applications to use these exported functions is mostly machine-independent: the only places written in 
assembly language are stub functions that perform the jump through the jump table. That said, to port this code to a 

new architecture, the only thing to be provided is the code in the <examples/stubs.c>. A code snippet is shown 

below. 
 

[…] 
/* 
 * r9 holds the pointer to the global_data, ip is a call-clobbered 
 * register 
 */ 
Line 59 :#define EXPORT_FUNC(f, a, x, ...) \ 
Line 60:  asm   volatile ( \ 
Line 61: " . globl " #x "\n" \ 
Line 62: #x ":\n"    \ 
Line 63: " ldr ip , [r9, %0]\n" \ 
Line 64: " ldr pc , [ip, %1]\n" \ 
Line 65:  : : "i"(offsetof(gd_t, jt)), "i"(FO(x)) : "ip"); 
[…] 
Line 240: static 
Line 241: #endif /* GCC_VERSION */ 
Line 242: void __attribute__((unused)) dummy(void) 
Line 243: { 
Line 244: #include <_exports.h> 
Line 245: }  
[…] 

 
Lines 59 to 65 defines the macro to expand the EXPORT_FUNC into assembly language. In the “dummy()” function, the 

list of EXPORT_FUNC from <_exports.h> are expanded into assembly code. We can use  

 
$ arm-linux-gnueabi-objdump -D stubs.o  
 
to find out what is being compiled into the <stubs.o> : 

 

[…] 
examples/standalone/stubs.o:     file format elf32-littlearm 



 

 
Disassembly of section .text.dummy: 
 
00000000 < dummy >: 
   0:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
   4:   f8dc f000       ldr.w   pc, [ip] 
 
00000008 <getc>: 
   8:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
   c:   f8dc f004       ldr.w   pc, [ip, #4] 
 
00000010 <tstc>: 
  10:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
  14:   f8dc f008       ldr.w   pc, [ip, #8]  
 
00000018 <putc>: 
  18:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
  1c:   f8dc f00c       ldr.w   pc, [ip, #12] 
 
00000020 <puts>: 
  20:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
  24:   f8dc f010       ldr.w   pc, [ip, #16] 
 
00000028 <printf>: 
  28:   f8d9 c064       ldr.w   ip, [r9, #100]  ; 0x64 
  2c:   f8dc f014       ldr.w   pc, [ip, #20] 
[…] 

 
As can be seen from the objdump output, all the exported functions are in section .text.dummy. This is because we 

included all of them into dummy() function in <stubs.c>.  

 
Each of the exported functions contains two lines of assembly code defined by the EXPORT_FUNC macro. These are 

placed in the order they are defined in <_exports.h>. Taking the printf function as an example, when it is called 

from the standalone application, the above assembly codes which are under  00000028 <printf>:  are executed. 

What it does is: 
 

 Firstly, load IP (Intra Procedure call scratch register) register [15] from 100 bytes offset of the address in 
register r9. Since the address in r9 is the pointer to global data structure, and with 100 bytes offset, that is 

the address of the jump table structure. 
 

 Secondly, load PC (Program Counter) register from 20 bytes offset of the address in IP register Since we 
declared the jump table structure with function pointers from <_exports.h>, each of the function pointers 

takes 4bytes. This is exactly the 5 fifth function (counting from zero) that found in <_exports.h>.  

 
Now that the PC register is set with the address pointer values of the printf instruction code, the printf function in 

U-Boot is called from the standalone application. This is how standalone application call U-Boot functions through ABI. 
 

4.3 Porting “Memtester” to a Standalone U-Boot Application 
 
Memtester [12] is a useful utility application for detecting memory faults, widely used in embedded systems. It is 
portable and should compile and work on any Unix-like system.  
 
The best and easiest approach to build a U-Boot standalone memtester application would be to integrate its source 
code into the existent hello_world example, with the same file structure. That is, the main entry of the memtester 

function present in the <memtester.c> can be ported to the <hello_world.c> and we can directly use the <stubs.c> 



 

file from the hello_world example as our library for the exported functions. We also need to add all the missing U-

Boot ABI functions into this file using the method explained in section 4.2. Moreover, the other source files from 
memtester should be compiled into object files and incremental link them into the <libstubs.o>. 

 
For this, we then create a folder <memtester> under <examples> and copy all the memtester source files plus 

<examples/standalone/stubs.c>, < examples/standalone/Makefile> into it.  

 
The first step is to facilitate the Makefile for the memtester. At this stage we will focus on the Makefile process, and so 
we can comment out all the code in the memtester source file, leaving only the main entry function in <memtester.c> 

and rename it to memtester to comply with Makefile linking command.  

 
In the Makefile,  
 

[…] 
extra-y        := hello_world  
[…] 

 
defines the make target for the standalone application, and so, we need to change it into memtester. Then, 

 

[…] 
LIBOBJS-y += stubs.o  
[…] 

 
defines the object file which is going to be linked into <libstubs.o>. Here we will append the memtester source “.cpp” 

files except the one with main entry function after this line.  
 
The Makefile in directory <exmaples/Makefile> should also include the subdirectory we just created by adding  

 

[…] 
subdir-y += memtester.  
[…] 

 
Executing make command now, should prompt us the following output: 

 

[…] 
CC      examples/memtester/tests.o 
CC      examples/memtester/stubs.o 
LD      examples/memtester/libstubs.o 
LD      examples/memtester/memtester  
OBJCOPY examples/memtester/memtester.srec 
OBJCOPY examples/memtester/memtester.bin 
[…] 

 
Now, we need to uncomment the memtester souce code and compile the files into the standalone application. The 
main challenge here is that for standalone application on U-Boot, we don’t have the C standard library, so we need to 
remove all the C standard library headers such as <stdlib.h>, <stdio.h> which doesn’t exist in U-Boot. We then 

need to fix the missing library functions by exporting U-Boot functions. If a given function isn’t even implemented under 
U-Boot, we either need to implement it or to replace with similar functions from U-Boot. 
 
The following U-Boot functions are exported by adding to <_exports.h>: 

 

[…] 
EXPORT_FUNC(fprintf, int, fprintf, int,const char*, ...)     
EXPORT_FUNC(get_timer_masked, ulong, get_timer_masked, void) 
EXPORT_FUNC(raise, int, raise, int) 



 

EXPORT_FUNC(strncmp, int, strncmp, __const char *, __const char *, size_t) 
EXPORT_FUNC(strlen, size_t, strlen, __const char *) 
[…] 

 
The following additional changes were made: 
 

 The rand() function from memtester source code is replaced with ‘get_timer_masked()’; 

 
 The putschar() function from memtester source code is replaced with putc(); 

 
 fflush() and exit() functions are removed; 

 
 getopt() function is removed and replaced with a simple argument parser in main entry function; 

 
 Code lines related with mmap memory are removed since no device is mapped into memory; 

 
After fixing all the compilation errors, the standalone application is ready to be tested on board. 
 

4.3.1 Running Standalone MemTester 
 
We use minicom to communicate with the Beagle board via serial port, because minicom is capable of sending our 

application to it.  
 
In order to run the application the U-Boot console command ‘loads’ is used to load the S-Record file of the memtester 

standalone application <memtester.srec> into address CONFIG_STANDALONE_LOAD_ADDR  (0x80300000), defined 

in U-Boot precompile configurations. 
 
Typing ‘loads’ on U-Boot Command console prompt us with the following output:  

 

$loads 
## Ready for S-Record download ... 

 
Afterwards: 
 

1. Press CTRL + A, then Z, on the linux machine, to open the minicom menu; 

 
2. Press S, navigate to the folder where <memtester.srec> is; 

 
3. Send the file via serial port. 

 
When the transfer is done, U-Boot console will show the message shown in Figure 17. 
 

 
Figure 17: Screenshot of memtester uploaded to BeagleBoard 

 
 



 

Now the application is loaded at the address defined in CONFIG_STANDALONE_LOAD_ADDR. To run the application, 

command “go” is used followed by the application start address and the arguments to pass into it. Figure 18 shows the 

result of memtester with 1M memory tested in 1 loop. 
 
 

 
Figure 18: Screenshot of memtester running on BeagleBoard 

4.3.2 Memtester Standalone Application Structure in Memory 
 
As has been discussed in section 4.3.1, the resulting ‘Make’ output file <memtester> is an executable and linkable 

format (ELF) file which is the standard executable file type for Unix Systems. If we prompt: 
 
$hexdump memtester 

 
what we will see is the hexdump of the contents of ‘memtester’ binary file, which is the actual machine code that is 

going to be executed. Below are parts of the hexdump of ‘memtester’ ELF file: 

 

[…] 
0000000 457f 464c 0101 0001 0000 0000 0000 0000 
0000010 0002 0028 0001 0000 0021 8030 0034 0000 
0000020 d99c 0000 0002 0500 0034 0020 0003 0028 



 

0000030 0012 000f 0001 0000 8000 0000 0000 8030 
0000040 0000 8030 12a3 0000 12a3 0000 0005 0000 
0000050 8000 0000 0001 0000 92a4 0000 92a4 8030 
0000060 92a4 8030 0085 0000 0094 0000 0006 0000 
0000070 8000 0000 e551 6474 0000 0000 0000 0000 
0000080 0000 0000 0000 0000 0000 0000 0006 0000 
0000090 0004 0000 0000 0000 0000 0000 0000 0000 
00000a0 0000 0000 0000 0000 0000 0000 0000 0000 
* 
0008000 b508 4803 f000 f93c f44f 5000 bd08 bf00 
0008010 0f46 8030 4601 4801 f000 b932 0f84 8030 
0008020 e92d 4df0 4604 b088 460d 4877 2120 f000 
0008030 f927 4876 f000 f924 4875 f000 f921 4875  
[…] 

 
Fortunately, the ARM GNU toolchain provides a useful binutils tool arm-linux-gnueabi-readelf to view this ELF 

file. A simple Executable ARM ELF file has the conceptual layout shown in Table 2 [17]: 
 

ELF Header 
Program Header Table 
Text segment 
Data segment 
BSS segment 
".symtab" section 
".strtab" section 
".shstrtab" section 
Debug sections 
Section Header Table 

Table 2: ARM ELF File layout 

The actual ordering of the file may differ from that shown in Table 2, since the only fixed position is that of the ‘ELF 
header’. The position of all other parts of the file is defined by the Program and Section headers, where the former 
defines program positions and the latter section positions. 
 
By calling: 
 
$arm-linux-gnueabi-readelf -a memtester 
 
all the information about the ELF is displayed, mainly including “ELF header”, “program headers” and “section 
headers”: 

 

ELF Header: 
  Magic:        7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00  
  Class:                             ELF32 
  Data:                              2's complement, little endian 
  Version:                           1 (current) 
  OS/ABI:                            UNIX - System V 
  ABI Version:                      0 
  Type:                              EXEC (Executable file) 
  Machine:                           ARM 
  Version:                            0x1 
  Entry point address:               0x80300021 
  Start of program headers:          52 (bytes into file) 
  Start of section headers:          55708 (bytes into file) 
  Flags:                             0x5000002, has entry point, Version5 EABI 



 

  Size of this header:               52 (bytes) 
  Size of program headers:           32 (bytes) 
  Number of program headers:    3 
  Size of section headers:           40 (bytes) 
  Number of section headers:        18 
  Section header string table index: 15 

 
Above is the first part of the ‘readelf’ output, this is, the ELF header contents:  the bytes next to the first line ‘Magic‘ 

are exactly what is seen at the beginning of the hexdump. This is a constant sequence of bytes to establish the ‘ELF’ 

file format. The Header information is completelly interpreted with the hexdump of the first 52 bytes (size of this header) 
of the ELF file.  
 
“Start of program headers” indicates the byte offset of the program header table, which is present right after the 

first 52 bytes of the header information;  
 
“Start of section headers” indicates the byte offset (55708 btyes) of the section header table inside the ELF file. 

 
The next part of the ‘readelf’ output contains information of the section headers table. This provides information on 

where these sections are located inside the ELF file:  
 

 The first column is the index of the sections. There are 18 sections in total (from 0 to 17), which is in 

accordance with the information from the first part;  
 
 The second column refers to the name of each section; and the third column refers to the type of each section. 

The definition of each section type is: 
 

 SHT_NULL: This value marks the section header as inactive; it does not have an associated section. Other 

members of the section header have undefined values. 
 

 SHT_PROGBITS: The section holds information defined by the program, whose format and meaning are 

determined solely by the program. 
 

 SHT_SYMTAB and SHT_DYNSYM: These sections hold a symbol table. 

 
 SHT_STRTAB: The section holds a string table. 

 
 SHT_NOBITS: A section of this type occupies no space in the file but otherwise resembles 

SHT_PROGBITS. Although this section contains no bytes, the sh_offset member contains the conceptual 
file offset 

 
 The third column refers to the load address of a section;  
 
 The fifth column refers to the offset of a section inside the ELF file;  
 
 The sixth column refers to the size of the section.  

 
The meaning for the rest of the columns can all be found in [19], which will not be covered by this document.  
 
Taking section header 1 as an example, it can be interpreted as: the .text section should be loaded at address 

0x80300000; the section starts at offset 0x8000 in the ELF file; and the section has a size of 0xe84 bytes. 

 

Section Headers: 
  [Nr] Name            Type            Addr     Off    Size    ES    Flg  Lk Inf Al 
  [ 0]                 NULL            00000000 000000 000000  00        0   0  0 
  [ 1] .text           PROGBITS        80300000 008000 000e84  00     AX  0   0  8 



 

  [ 2] .rodata         PROGBITS        80300e84 008e84 00041f  01     AMS 0   0  1 
  [ 3] .data           PROGBITS        803092a4 0092a4 000085  00     WA  0   0  4 
  [ 4] .bss            NOBITS          8030932c 009329 00000c  00     WA  0   0  4 
  [ 5] .comment        PROGBITS        00000000 009329 00002a  01     MS  0   0  1 
  [ 6] .ARM.attributes ARM_ATTRIBUTES  00000000 009353 000031  00         0   0  1 
  [ 7] .debug_aranges  PROGBITS        00000000 009384 0000f8  00   0   0  1 
  [ 8] .debug_info     PROGBITS        00000000 00947c 001755  00        0   0  1 
  [ 9] .debug_abbrev   PROGBITS        00000000 00abd1 0004aa  00        0   0  1 
  [10] .debug_line     PROGBITS        00000000 00b07b 000781  00        0   0  1 
  [11] .debug_frame    PROGBITS        00000000 00b7fc  0002f4 00        0   0  4 
  [12] .debug_str      PROGBITS        00000000 00baf0  000575 01    MS   0   0  1 
  [13] .debug_loc      PROGBITS        00000000 00c065 0017ba  00        0   0  1 
  [14] .debug_ranges   PROGBITS        00000000 00d81f  0000c8 00        0   0  1 
  [15] .shstrtab       STRTAB          00000000 00d8e7 0000b3  00        0   0  1 
  [16] .symtab         SYMTAB          00000000 00dc6c  000900 10         17  68 4 
  [17] .strtab         STRTAB          00000000 00e56c  000402 00        0   0  1 
 
Key to Flags: 
  W (write), A (alloc), X (execute), M (merge), S (strings) 
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown) 
  O (extra OS processing required) o (OS specific), p (processor specific)  

 
Some of the important section have the following meaning: 
 

 .text section holds the executable instructions of the application;  

 
 .rodata section holds read-only data. 

 
 .bss section holds the uninitialized data; by default, the system will initialize the data with zeros when the 

application starts running, this section does not occupy any space in ELF file, this is also why the type of this 
section is NOBITS. 
 

 .data section holds the initialized data. 

 
 
To view the binary data of the section, we use the following call:  
 
$arm-linux-gnueabi-readelf -x [section_name] memtester 
 
Taking the .rodata section as an example, we can see the hexdump of it: 

 

Hex dump of section '.rodata': 
  0x80300e84 52616e64 6f6d2056 616c7565 00436f6d  Random Value.Com 
  0x80300e94 70617265 20584f52 00436f6d 70617265  pare XOR.Compare 
  0x80300ea4 20535542 00436f6d 70617265 204d554c  SUB.Compare MUL 
  0x80300eb4 00436f6d 70617265 20444956 00436f6d  .Compare DIV.Com 
  0x80300ec4 70617265 204f5200 436f6d70 61726520  pare OR.Compare  
  0x80300ed4 414e4400 53657175 656e7469 616c2049 AND.Sequential I 
  0x80300ee4 6e637265 6d656e74 00536f6c 69642042 ncrement.Solid B 
  […] 
  0x80301274 74657374 2e2e2e0a 00080808 08080808 test............ 
  0x80301284 08080808 20202020 20202020 20202008 ....           . 
  0x80301294 08080808 08080808 08080008 200800   ............ ..  

 



 

As can be seen, this section ranges from offset 0x80300e84 to 0x803012a2, with a size of 0x41f bytes. This conforms 

with what is shown in the Section Header Table shown above. The above hexdump also shows that this section 

contains all the string literals inside the memtester source code, since they are all read only data. 
 
The next part of the ‘readelf’ output is dedicated to the Program Headers. The Program Header table is an array of 

structures, each describing a segment (or other information) needed by the system to prepare the program for execution 
[18]. In our specific case, there are three program headers, each representing a segment: 
 

 The first column is the type of the segment; 
 

 The second column is the offset of the segment inside the ELF file;  
 

 The third and fourth columns give the virtual and physical address of the segment in memory;  
 

 The fifth column ”FileSiz” is the number of bytes in the ELF file; 

 
  The sixth column “MemSiz” refers to the number of bytes in the memory; 

 

Program Headers: 
  Type        Offset    VirtAddr    PhysAddr    FileSiz MemSiz Flg  Align 
  LOAD        0x008000  0x80300000  0x80300000  0x012a3 0x012a3 R E  0x8000 
  LOAD        0x0092a4  0x803092a4  0x803092a4  0x00085 0x00094 RW   0x8000 
  GNU_STACK   0x000000  0x00000000  0x00000000  0x00000 0x00000 RW   0x4 

 
The section Header Table provides the information of each section (.text , .rodata, .data, etc.) from the Linking 

View, while the Program Header Table provides the information of each segment (Loadable Code Segment, Loadable 

Data Segment, etc.) from the execution view. A mapping from Section to Segment can also be found in the “readelf” 

output after Program Header: 

 

Section to Segment mapping: 
  Segment Sections... 
   00     .text .rodata  
   01     .data .bss  
   02      

 
This also explains why the FileSiz and MemSiz are different in the second Program Header. That is, the Loadable 

Data Segment contains both .data and .bss sections. Based on the Section Header Table, .data section has 

0x85 bytes and .bss section has 0xC bytes, which gives us a total of 0x91 byes. However, since the alignment for  

both section is 4, the total bytes should be 0x94 bytes, and this is equals to MemSiz. On the other hand, in terms of 

byte sizes inside the ELF file, since the .bss section does not occupy any bits, the “file size” is only 0x85 bytes. 

 
With the information from ‘readelf’ output, we can now associate the ELF layout with the hexdump of the ELF file, 

shown below where colors are used to separate ELF sections. 
 

[…] 
0000000 457f 464c 0101 0001 0000 0000 0000 0000 /*ELF Header                        */ 
0000010 0002 0028 0001 0000 0021 8030 0034 0000 /*byte offset 0                     */ 
0000020 d418 0000 0002 0500 0034 0020 0003 0028 /*byte size 52(0x34) bytes          */ 
0000030 0012 000f 0001 0000 8000 0000 0000 8030 /*Program Header Table              */ 
0000040 0000 8030 103b 0000 103b 0000 0005 0000 /*byte offset 52(0x34)              */ 
0000050 8000 0000 0001 0000 903c 0000 903c 8030    /* byte size 32(0x20) bytes         */ 
0000060 903c 8030 0085 0000 0094 0000 0006 0000    /* number of Program Header: 3      */ 
0000070 8000 0000 e551 6474 0000 0000 0000 0000 
0000080 0000 0000 0000 0000 0000 0000 0006 0000 
0000090 0004 0000 0000 0000 0000 0000 0000 0000 /*filled with zeroes since the */ 



 

00000a0 0000 0000 0000 0000 0000 0000 0000 0000 /*linker force the .text section */ 
*                                             /*start at offset 0x8000  */ 
0008000 b508 4803 f000 f93c f44f 5000 bd08 bf00    /* .text Section   */ 
0008010 0f46 8030 4601 4801 f000 b932 0f84 8030    /* byte offset 0x8000             */ 
0008020 e92d 4df0 4604 b088 460d 4877 2120 f000    /* byte size     0xE84             */ 
[…] 
0008e80 fa0b bd02 6152 646e 6d6f 5620 6c61 6575    /*.rodata Section   */ 
0008e90 4300 6d6f 6170 6572 5820 524f 4300 6d6f    /*byte offset 0x8e84   */ 
0008ea0 6170 6572 5320 4255 4300 6d6f 6170 6572    /* byte size    0x41f   */ 
[…] 
00092a0 0820 0000 0e84 8030 04d5 8030 0e91 8030    /* .data Section   */ 
00092b0 054d 8030 0e9d 8030 058f 8030 0ea9 8030    /*byte offset 0x92A4   */ 
00092c0 05d1 8030 0eb5 8030 0613 8030 0ec1 8030    /*byte size 0x85*/ 
[…] 
0009320 0000 0000 5c2d 2f7c 4700 4343 203a 5528    /*.comment, .debug and sections */ 
[…]              /*other sections   */ 
000d990 6775 725f 6e61 6567 0073 0000 0000 0000    /*Section Header Table  */ 
000d9a0 0000 0000 0000 0000 0000 0000 0000 0000   /*byte offset 55708(0xD99C)                
*/ 
000d9b0 0000 0000 0000 0000 0000 0000 0000 0000   /*byte size 40(0x28)                 */ 
000d9c0 0000 0000 001b 0000 0001 0000 0006 0000   /* number of Section Header: 18 */ 
[…]  
000dc60 0000 0000 0001 0000 0000 0000 0000 0000    /*.symtab section   */ 
000dc70 0000 0000 0000 0000 0000 0000 0000 0000    /*byte offset 0xDC6C   */ 
000dc80 0000 8030 0000 0000 0003 0001 0000 0000    /*byte size 0x900   */ 
[…] 
000e560 02d8 8030 0000 0000 0010 0001 6d00 6d65   /*.strtab section   */ 
000e570 6574 7473 7265 632e 2400 0064 7424 7300   /*byte offset 0xE56C   */ 
000e580 7574 7362 632e 7400 7365 7374 632e 2e00   /*byte size 0x402   */ 
000e960 6573 7200 6961 6573 6600 6572 0065         /*end of the file   */ 

 
 
 
 

  



 

5 Using U-Boot Commands 
 
In this section we will cover the usage of common U-Boot commands to handle memory and mass-storage devices, 
already included in the standard build. The aim is to provide a use-case for commands to show how they can be used 
to exercise peripheral hardware. The detailed command structure is explained in sub-section 3.1.3. 
 

5.1 bdinfo 
 
This command is implemented under <common/cmd_bdinfo>. It prints the board info structure by making a call to the 

do_bdinfo() function: 

 

int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 
{ 
 bd_t *bd = gd->bd; 
 
 print_num("mem start",  (ulong)bd->bi_memstart); 
 print_lnum("mem size",  (u64)bd->bi_memsize); 
 print_num("flash start", (ulong)bd->bi_flashstart); 
  print_num("flash size",  (ulong)bd->bi_flashsize); 
 print_num("flash offset", (ulong)bd->bi_flashoffset); 
 
#if defined(CONFIG_SYS_SRAM_BASE) 
 print_num ("sram start", (ulong)bd->bi_sramstart); 
 print_num ("sram size",  (ulong)bd->bi_sramsize); 
#endif 
 
#if defined(CONFIG_CMD_NET) 
 print_eth(0); 
 printf("ip_addr     = %s\n", getenv("ipaddr")); 
#endif 
 
 printf("baudrate    = %u bps\n", gd->baudrate); 
 
 return 0; 
} 
 

 
bd is a pointer to the board information structure, used herein to provide memory information. Other info is provided, 

depending on the defined CONFIG_ directives. 

 

5.2 md 
 
The memory display command calls the function do_mem_md(). It has the following parameters: 
 
$md [.b, .w, .l, .q] address [# of objects] 
 

 .b stands for bytes; .w stands for words and .l stands for long words, .q double long word (64b); 

 
 address, is an address in the RAM; 

 
 # of objects, “if another parameter, it is the length to display. Length is the number of objects, not number 

of bytes.” 
 



 

5.3 mw 
 
The memory write command calls the function do_mem_mw(). This command has the following parameters: 
 
$md [.b, .w, .l, .q] address [# of objects] 
 

 .b stands for bytes; .w stands for words; .l stands for long words; .q double long word (64b); 

 
 address, is address in the RAM; 

 
 # of objects, “if another parameter, it is the length to display. Length is the number of objects, not number 

of bytes.” 
 
 

5.4 usb 
 
The usb command is used to perform R/W accesses to an USB device.  
 
For a write operation, the following arguments are used: 
 
$usb write addr blk# cnt 
 

 addr is a RAM pointing to the data to be written; 

 
 blk# is the starting block to write on the usb device; 

 
 cnt is the number of blocks to write.  

 
Basically, the command copies data from the RAM address into the specified block in the USB. For this, the do_usb() 

function is called. 
 
For a read operation, the following arguments are used: 
 
$usb write addr blk# cnt  
 

 addr is a RAM pointing to the position where data read from the device will be stored; 

 
 blk# is the starting block to read from on the device; 

 
 cnt is the number of blocks to read.  

 
Basically, the command copies the desired amount of blocks in the USB into the RAM address. This command calls 
the do_usb() function. The latter has the following arguments: 

 
 cmd_tbl_t *cmdtp, 

 
 int flag,  

 
 int argc,  

 
 char * const argv[] 

 
Depending on the input, the do_usb() function will read or write as can be interpretted from the following snippet of 

<common/cmd_usb.c>: 
 



 

[…] 
if (strcmp(argv[1], "read") == 0) { 
  if (usb_stor_curr_dev < 0) { 
   printf("no current device selected\n"); 
   return 1; 
  } 
  if (argc == 5) { 
   unsigned long addr = simple_strtoul(argv[2], NULL, 16); 
   unsigned long blk  = simple_strtoul(argv[3], NULL, 16); 
   unsigned long cnt  = simple_strtoul(argv[4], NULL, 16); 
   unsigned long n; 
   printf("\nUSB read: device %d block # %ld, count %ld" 
    " ... ", usb_stor_curr_dev, blk, cnt); 
   stor_dev = usb_stor_get_dev(usb_stor_curr_dev); 
   n = stor_dev->block_read(usb_stor_curr_dev, blk, cnt, 
       (ulong *)addr); 
   printf("%ld blocks read: %s\n", n, 
    (n == cnt) ? "OK" : "ERROR"); 
   if (n == cnt) 
    return 0; 
   return 1; 
  } 
 } 
 
[…] 
 
if (strcmp(argv[1], "write") == 0) { 
  if (usb_stor_curr_dev < 0) { 
   printf("no current device selected\n"); 
   return 1; 
  } 
  if (argc == 5) { 
   unsigned long addr = simple_strtoul(argv[2], NULL, 16); 
   unsigned long blk  = simple_strtoul(argv[3], NULL, 16); 
   unsigned long cnt  = simple_strtoul(argv[4], NULL, 16); 
   unsigned long n; 
   printf("\nUSB write: device %d block # %ld, count %ld" 
    " ... ", usb_stor_curr_dev, blk, cnt); 
   stor_dev = usb_stor_get_dev(usb_stor_curr_dev); 
   n = stor_dev->block_write(usb_stor_curr_dev, blk, cnt, 
      (ulong *)addr); 
   printf("%ld blocks write: %s\n", n, 
    (n == cnt) ? "OK" : "ERROR"); 
   if (n == cnt) 
    return 0; 
   return 1; 
  } 
 } 
 

 
 

5.5 mmc 
 
The mmc command is used to perform read/write accesses to an SD card.  

 



 

For a write operation, the following arguments are used: 
 
$mmc write addr blk# cnt 
 

 Addr is the address to the RAM 
 

 Blk# is the starting block to read 
 

 Number of “cnt” blocks 
 
Similarly to the usb command, it copies data from the RAM address into the specified block in the MMC. This 

command calls do_mmcops()which then will call do_mmc_write() function. 

 
For a read operation, the following arguments are used: 
 
$mmc read addr blk# cnt 
 

 addr is a RAM pointing to the position where data read from the device will be stored; 

 
 blk# is the starting block to read from on the device; 

 
 cnt is the number of blocks to read. 

 
Similarly to usb, the mmc command copies the desired amount of blocks in the USB into the RAM address. For this, the 

commands calls do_mmcops() which then calls the do_mmc_read() function. The former has the following arguments: 

 
 cmd_tbl_t *cmdtp, 

 
 int flag,  

 
 int argc,  

 
 char * const argv[] 

 
If the input command is “mmc read”, then do_mmc_read() is called; the same goes for “mmc write” and 

do_mmc_write().  

 

5.6 Usage Examples 
 

5.6.1 USB R/W Access 
 
In this subsection we will use the Beagle setup shown in section 3.5 with a uSD and a USB card installed.  
 
Before starting to read and write to the USB device, we need to know the RAM addressable range. For this, we can 
call bdinfo from the U-Boot terminal: 

 
$bdinfo 
 
The output of this command is shown in Figure 19. 
 



 

 
Figure 19: bdinfo command output 

The “-> start” indicator refers to the initial addressable RAM address, which we will use hereafter. Before writing 

anything to the USB, we will check the USB device contents. To do so, and every time the USB needs to be accessed, 
it is necessary to start the device by typing: 
 
$usb start 
 
which will prompt the output shown in Figure 20: 
 

 
Figure 20: USB start instruction output 

 
Now we are ready to perform read/write accesses. The memory contents at 0x80000000 can be displayed with md: 

 
$ md 0x80000000 
 
which prompts us with the output shown in Figure 21. 
 



 

 
Figure 21: md output 

 
As explained in sub-section 5.4, to write to a USB device it is necessary to initialize a RAM block with the data to be 
written. This can be done with the mw command explained in section 5.3: 

 
$mw 0x80000000 0x1234ABCD 
 
$md 0x80000000 
 
Which prompts us with the output shown in Figure 22. 
 

 
Figure 22: wire/read operation on RAM 

A USB write can now be performed with: 
 
$usb write 0x80000000 1 1 



 

The information previously stored in the RAM is then copied to the USB and a confirmation message is presented, as 
shown in Figure 23. 
 

 
Figure 23: Output of usb write command 

 
To check that the USB was written porperly we empty the RAM contents at 0x80000000: 
 
$mw 0x8000000 00000000 
 
$md 0x8000000 
 
Which prompts us with the output shown in Figure 24. 
 

 
Figure 24: Memory contents reset 

$usb read 80000000 1 1 
 
Which prompts us with the output shown in Figure 25. 
 

 
Figure 25: Output of USB read command 

 
Finally, we can check the read data in the destination address: 
 
$md 80000000 



 

which prompts us with the updated memory contents: 
 

 
Figure 26: Check back read data from USB 

5.6.2 SD R/W Access 
 
The procedure to write to the MMC is the same as that of the USB, meaning, the input arguments to the mmc read and 

mm write commands are exactly the same. However in this case, we do not need to initialize the device with a ‘start’ 

command. 
 
For example we can use the mw command to fill the outgoing RAM position and issue a device write/read: 

 
# mw 80000050 10101010 10 
 
# mmc write 80000050 1 1 
 
# mw 80000050 00000000 10 
 
# md 80000000 
 
# mmc read 80000050 1 1 
 
# md 80000000 
 
And the buffer RAM memory zone will be filled with the read data as shown in Figure 27. 
 

 
Figure 27: Read data from SD card with “mmc” command  
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