[U-Boot] [PATCH v5 10/10] FSL DDR: Remove old SPD support from cpu/mpc86xx

Kumar Gala galak at kernel.crashing.org
Tue Aug 26 22:01:38 CEST 2008


All 86xx boards have been converted to the new code so we can
remove the old SPD DDR setup code.

Signed-off-by: Kumar Gala <galak at kernel.crashing.org>
---
 cpu/mpc86xx/Makefile    |    6 -
 cpu/mpc86xx/spd_sdram.c | 1346 -----------------------------------------------
 2 files changed, 0 insertions(+), 1352 deletions(-)
 delete mode 100644 cpu/mpc86xx/spd_sdram.c

diff --git a/cpu/mpc86xx/Makefile b/cpu/mpc86xx/Makefile
index 12ad66d..a9767ad 100644
--- a/cpu/mpc86xx/Makefile
+++ b/cpu/mpc86xx/Makefile
@@ -39,15 +39,9 @@ COBJS-y	+= interrupts.o
 
 COBJS-$(CONFIG_OF_LIBFDT) += fdt.o
 
-ifeq ($(CONFIG_FSL_DDR2),y)
 COBJS-$(CONFIG_MPC8641) += ddr-8641.o
 # 8610 & 8641 are identical w/regards to DDR
 COBJS-$(CONFIG_MPC8610) += ddr-8641.o
-endif
-
-ifneq ($(CONFIG_FSL_DDR2),y)
-COBJS-y	+= spd_sdram.o
-endif
 
 SRCS	:= $(START:.o=.S) $(SOBJS:.o=.S) $(COBJS-y:.o=.c)
 OBJS	:= $(addprefix $(obj),$(SOBJS) $(COBJS-y))
diff --git a/cpu/mpc86xx/spd_sdram.c b/cpu/mpc86xx/spd_sdram.c
deleted file mode 100644
index e26db7c..0000000
--- a/cpu/mpc86xx/spd_sdram.c
+++ /dev/null
@@ -1,1346 +0,0 @@
-/*
- * Copyright 2004 Freescale Semiconductor.
- * (C) Copyright 2003 Motorola Inc.
- * Xianghua Xiao (X.Xiao at motorola.com)
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
-
-#include <common.h>
-#include <asm/processor.h>
-#include <i2c.h>
-#include <spd.h>
-#include <asm/mmu.h>
-#include <asm/fsl_law.h>
-
-#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-extern void dma_init(void);
-extern uint dma_check(void);
-extern int dma_xfer(void *dest, uint count, void *src);
-#endif
-
-#ifdef CONFIG_SPD_EEPROM
-
-#ifndef	CFG_READ_SPD
-#define CFG_READ_SPD	i2c_read
-#endif
-
-/*
- * Only one of the following three should be 1; others should be 0
- * By default the cache line interleaving is selected if
- * the CONFIG_DDR_INTERLEAVE flag is defined
- */
-#define CFG_PAGE_INTERLEAVING		0
-#define CFG_BANK_INTERLEAVING		0
-#define CFG_SUPER_BANK_INTERLEAVING	0
-
-/*
- * Convert picoseconds into DRAM clock cycles (rounding up if needed).
- */
-
-static unsigned int
-picos_to_clk(unsigned int picos)
-{
-	/* use unsigned long long to avoid rounding errors */
-	const unsigned long long ULL_2e12 = 2000000000000ULL;
-	unsigned long long clks;
-	unsigned long long clks_temp;
-
-	if (! picos)
-	    return 0;
-
-	clks = get_bus_freq(0) * (unsigned long long) picos;
-	clks_temp = clks;
-	clks = clks / ULL_2e12;
-	if (clks_temp % ULL_2e12) {
-		clks++;
-	}
-
-	if (clks > 0xFFFFFFFFULL) {
-		clks = 0xFFFFFFFFULL;
-	}
-
-	return (unsigned int) clks;
-}
-
-
-/*
- * Calculate the Density of each Physical Rank.
- * Returned size is in bytes.
- *
- * Study these table from Byte 31 of JEDEC SPD Spec.
- *
- *		DDR I	DDR II
- *	Bit	Size	Size
- *	---	-----	------
- *	7 high	512MB	512MB
- *	6	256MB	256MB
- *	5	128MB	128MB
- *	4	 64MB	 16GB
- *	3	 32MB	  8GB
- *	2	 16MB	  4GB
- *	1	  2GB	  2GB
- *	0 low	  1GB	  1GB
- *
- * Reorder Table to be linear by stripping the bottom
- * 2 or 5 bits off and shifting them up to the top.
- */
-
-unsigned int
-compute_banksize(unsigned int mem_type, unsigned char row_dens)
-{
-	unsigned int bsize;
-
-	if (mem_type == SPD_MEMTYPE_DDR) {
-		/* Bottom 2 bits up to the top. */
-		bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
-		debug("DDR: DDR I rank density = 0x%08x\n", bsize);
-	} else {
-		/* Bottom 5 bits up to the top. */
-		bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
-		debug("DDR: DDR II rank density = 0x%08x\n", bsize);
-	}
-	return bsize;
-}
-
-
-/*
- * Convert a two-nibble BCD value into a cycle time.
- * While the spec calls for nano-seconds, picos are returned.
- *
- * This implements the tables for bytes 9, 23 and 25 for both
- * DDR I and II.  No allowance for distinguishing the invalid
- * fields absent for DDR I yet present in DDR II is made.
- * (That is, cycle times of .25, .33, .66 and .75 ns are
- * allowed for both DDR II and I.)
- */
-
-unsigned int
-convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
-{
-	/*
-	 * Table look up the lower nibble, allow DDR I & II.
-	 */
-	unsigned int tenths_ps[16] = {
-		0,
-		100,
-		200,
-		300,
-		400,
-		500,
-		600,
-		700,
-		800,
-		900,
-		250,
-		330,
-		660,
-		750,
-		0,	/* undefined */
-		0	/* undefined */
-	};
-
-	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
-	unsigned int tenth_ns = spd_val & 0x0F;
-	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
-
-	return ps;
-}
-
-
-/*
- * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
- * Table from SPD Spec, Byte 12, converted to picoseconds and
- * filled in with "default" normal values.
- */
-unsigned int determine_refresh_rate(unsigned int spd_refresh)
-{
-	unsigned int refresh_time_ns[8] = {
-		15625000,	/* 0 Normal    1.00x */
-		3900000,	/* 1 Reduced    .25x */
-		7800000,	/* 2 Extended   .50x */
-		31300000,	/* 3 Extended  2.00x */
-		62500000,	/* 4 Extended  4.00x */
-		125000000,	/* 5 Extended  8.00x */
-		15625000,	/* 6 Normal    1.00x  filler */
-		15625000,	/* 7 Normal    1.00x  filler */
-	};
-
-	return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
-}
-
-
-long int
-spd_init(unsigned char i2c_address, unsigned int ddr_num,
-	 unsigned int dimm_num, unsigned int start_addr)
-{
-	volatile immap_t *immap = (immap_t *)CFG_IMMR;
-	volatile ccsr_ddr_t *ddr;
-	volatile ccsr_gur_t *gur = &immap->im_gur;
-	spd_eeprom_t spd;
-	unsigned int n_ranks;
-	unsigned int rank_density;
-	unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits;
-	unsigned int odt_cfg, mode_odt_enable;
-	unsigned int refresh_clk;
-#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
-	unsigned char clk_adjust;
-#endif
-	unsigned int dqs_cfg;
-	unsigned char twr_clk, twtr_clk, twr_auto_clk;
-	unsigned int tCKmin_ps, tCKmax_ps;
-	unsigned int max_data_rate;
-	unsigned int busfreq;
-	unsigned int memsize;
-	unsigned char caslat, caslat_ctrl;
-	unsigned int trfc, trfc_clk, trfc_low, trfc_high;
-	unsigned int trcd_clk;
-	unsigned int trtp_clk;
-	unsigned char cke_min_clk;
-	unsigned char add_lat;
-	unsigned char wr_lat;
-	unsigned char wr_data_delay;
-	unsigned char four_act;
-	unsigned char cpo;
-	unsigned char burst_len;
-	unsigned int mode_caslat;
-	unsigned char d_init;
-	unsigned int tCycle_ps, modfreq;
-
-	if (ddr_num == 1)
-		ddr = &immap->im_ddr1;
-	else
-		ddr = &immap->im_ddr2;
-
-	/*
-	 * Read SPD information.
-	 */
-	debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
-	memset((void *)&spd, 0, sizeof(spd));
-	CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
-
-	/*
-	 * Check for supported memory module types.
-	 */
-	if (spd.mem_type != SPD_MEMTYPE_DDR &&
-	    spd.mem_type != SPD_MEMTYPE_DDR2) {
-		debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
-		      "         Fundamental memory type is 0x%0x\n",
-		      dimm_num,
-		      ddr_num,
-		      spd.mem_type);
-		return 0;
-	}
-
-	debug("\nFound memory of type 0x%02lx  ", spd.mem_type);
-	if (spd.mem_type == SPD_MEMTYPE_DDR)
-		debug("DDR I\n");
-	else
-		debug("DDR II\n");
-
-	/*
-	 * These test gloss over DDR I and II differences in interpretation
-	 * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks
-	 * are not supported on DDR I; and not encoded on DDR II.
-	 *
-	 * Also note that the 8548 controller can support:
-	 *    12 <= nrow <= 16
-	 * and
-	 *     8 <= ncol <= 11 (still, for DDR)
-	 *     6 <= ncol <=  9 (for FCRAM)
-	 */
-	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
-		printf("DDR: Unsupported number of Row Addr lines: %d.\n",
-		       spd.nrow_addr);
-		return 0;
-	}
-	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
-		printf("DDR: Unsupported number of Column Addr lines: %d.\n",
-		       spd.ncol_addr);
-		return 0;
-	}
-
-	/*
-	 * Determine the number of physical banks controlled by
-	 * different Chip Select signals.  This is not quite the
-	 * same as the number of DIMM modules on the board.  Feh.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		n_ranks = spd.nrows;
-	} else {
-		n_ranks = (spd.nrows & 0x7) + 1;
-	}
-
-	debug("DDR: number of ranks = %d\n", n_ranks);
-
-	if (n_ranks > 2) {
-		printf("DDR: Only 2 chip selects are supported: %d\n",
-		       n_ranks);
-		return 0;
-	}
-
-	/*
-	 * Adjust DDR II IO voltage biasing.  Rev1 only
-	 */
-	if (((get_svr() & 0xf0) == 0x10) && (spd.mem_type == SPD_MEMTYPE_DDR2)) {
-		gur->ddrioovcr = (0
-				  | 0x80000000		/* Enable */
-				  | 0x10000000		/* VSEL to 1.8V */
-				  );
-	}
-
-	/*
-	 * Determine the size of each Rank in bytes.
-	 */
-	rank_density = compute_banksize(spd.mem_type, spd.row_dens);
-
-	debug("Start address for this controller is 0x%08lx\n", start_addr);
-
-	/*
-	 * ODT configuration recommendation from DDR Controller Chapter.
-	 */
-	odt_rd_cfg = 0;			/* Never assert ODT */
-	odt_wr_cfg = 0;			/* Never assert ODT */
-	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
-		odt_wr_cfg = 1;		/* Assert ODT on writes to CS0 */
-	}
-
-	ba_bits = 0;
-	if (spd.nbanks == 0x8)
-		ba_bits = 1;
-
-#ifdef CONFIG_DDR_INTERLEAVE
-
-	if (dimm_num != 1) {
-		printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
-		return 0;
-	} else {
-		/*
-		 * Since interleaved memory only uses CS0, the
-		 * memory sticks have to be identical in size and quantity
-		 * of ranks.  That essentially gives double the size on
-		 * one rank, i.e on CS0 for both controllers put together.
-		 * Confirm this???
-		 */
-		rank_density *= 2;
-
-		/*
-		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
-		 */
-		start_addr = 0;
-		ddr->cs0_bnds = (start_addr >> 8)
-			| (((start_addr + rank_density - 1) >> 24));
-		/*
-		 * Default interleaving mode to cache-line interleaving.
-		 */
-		ddr->cs0_config = ( 1 << 31
-#if	(CFG_PAGE_INTERLEAVING == 1)
-				    | (PAGE_INTERLEAVING)
-#elif	(CFG_BANK_INTERLEAVING == 1)
-				    | (BANK_INTERLEAVING)
-#elif	(CFG_SUPER_BANK_INTERLEAVING == 1)
-				    | (SUPER_BANK_INTERLEAVING)
-#else
-				    | (CACHE_LINE_INTERLEAVING)
-#endif
-				    | (odt_rd_cfg << 20)
-				    | (odt_wr_cfg << 16)
-				    | (ba_bits << 14)
-				    | (spd.nrow_addr - 12) << 8
-				    | (spd.ncol_addr - 8) );
-
-		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
-		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
-
-		/*
-		 * Adjustment for dual rank memory to get correct memory
-		 * size (return value of this function).
-		 */
-		if (n_ranks == 2) {
-			n_ranks = 1;
-			rank_density /= 2;
-		} else {
-			rank_density /= 2;
-		}
-	}
-#else	/* CONFIG_DDR_INTERLEAVE */
-
-	if (dimm_num == 1) {
-		/*
-		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
-		 */
-		ddr->cs0_bnds = (start_addr >> 8)
-			| (((start_addr + rank_density - 1) >> 24));
-
-		ddr->cs0_config = ( 1 << 31
-				    | (odt_rd_cfg << 20)
-				    | (odt_wr_cfg << 16)
-				    | (ba_bits << 14)
-				    | (spd.nrow_addr - 12) << 8
-				    | (spd.ncol_addr - 8) );
-
-		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
-		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
-
-		if (n_ranks == 2) {
-			/*
-			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
-			 * second 256 Meg
-			 */
-			ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
-					| (( start_addr + 2*rank_density - 1)
-					   >> 24));
-			ddr->cs1_config = ( 1<<31
-					    | (odt_rd_cfg << 20)
-					    | (odt_wr_cfg << 16)
-					    | (ba_bits << 14)
-					    | (spd.nrow_addr - 12) << 8
-					    | (spd.ncol_addr - 8) );
-			debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds);
-			debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
-		}
-
-	} else {
-		/*
-		 * This is the 2nd DIMM slot for this controller
-		 */
-		/*
-		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
-		 */
-		ddr->cs2_bnds = (start_addr >> 8)
-			| (((start_addr + rank_density - 1) >> 24));
-
-		ddr->cs2_config = ( 1 << 31
-				    | (odt_rd_cfg << 20)
-				    | (odt_wr_cfg << 16)
-				    | (ba_bits << 14)
-				    | (spd.nrow_addr - 12) << 8
-				    | (spd.ncol_addr - 8) );
-
-		debug("DDR: cs2_bnds   = 0x%08x\n", ddr->cs2_bnds);
-		debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
-
-		if (n_ranks == 2) {
-			/*
-			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
-			 * second 256 Meg
-			 */
-			ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
-					| (( start_addr + 2*rank_density - 1)
-					   >> 24));
-			ddr->cs3_config = ( 1<<31
-					    | (odt_rd_cfg << 20)
-					    | (odt_wr_cfg << 16)
-					    | (ba_bits << 14)
-					    | (spd.nrow_addr - 12) << 8
-					    | (spd.ncol_addr - 8) );
-			debug("DDR: cs3_bnds   = 0x%08x\n", ddr->cs3_bnds);
-			debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
-		}
-	}
-#endif /* CONFIG_DDR_INTERLEAVE */
-
-	/*
-	 * Find the largest CAS by locating the highest 1 bit
-	 * in the spd.cas_lat field.  Translate it to a DDR
-	 * controller field value:
-	 *
-	 *	CAS Lat	DDR I	DDR II	Ctrl
-	 *	Clocks	SPD Bit	SPD Bit	Value
-	 *	-------	-------	-------	-----
-	 *	1.0	0		0001
-	 *	1.5	1		0010
-	 *	2.0	2	2	0011
-	 *	2.5	3		0100
-	 *	3.0	4	3	0101
-	 *	3.5	5		0110
-	 *	4.0		4	0111
-	 *	4.5			1000
-	 *	5.0		5	1001
-	 */
-	caslat = __ilog2(spd.cas_lat);
-	if ((spd.mem_type == SPD_MEMTYPE_DDR)
-	    && (caslat > 5)) {
-		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
-		return 0;
-
-	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
-		   && (caslat < 2 || caslat > 5)) {
-		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
-		       spd.cas_lat);
-		return 0;
-	}
-	debug("DDR: caslat SPD bit is %d\n", caslat);
-
-	/*
-	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
-	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
-	 * nanoseconds and represented as BCD.
-	 */
-	tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
-	debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
-
-	/*
-	 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
-	 */
-	max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
-	debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
-
-
-	/*
-	 * Adjust the CAS Latency to allow for bus speeds that
-	 * are slower than the DDR module.
-	 */
-	busfreq = get_bus_freq(0) / 1000000;	/* MHz */
-	tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3);
-	modfreq = 2 * 1000 * 1000 / tCycle_ps;
-
-	if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
-		printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
-		return 0;
-	} else if (busfreq < 90) {
-		printf("DDR: platform frequency too low for correct DDR1 operation\n");
-		return 0;
-	}
-
-	if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
-		caslat -= 2;
-	} else {
-		tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
-		modfreq = 2 * 1000 * 1000 / tCycle_ps;
-		if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
-			caslat -= 1;
-		else if (busfreq > max_data_rate) {
-			printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
-			busfreq, max_data_rate);
-			return 0;
-		}
-	}
-
-	/*
-	 * Empirically set ~MCAS-to-preamble override for DDR 2.
-	 * Your milage will vary.
-	 */
-	cpo = 0;
-	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
-		if (busfreq <= 333) {
-			cpo = 0x7;
-		} else if (busfreq <= 400) {
-			cpo = 0x9;
-		} else {
-			cpo = 0xa;
-		}
-	}
-
-	/*
-	 * Convert caslat clocks to DDR controller value.
-	 * Force caslat_ctrl to be DDR Controller field-sized.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		caslat_ctrl = (caslat + 1) & 0x07;
-	} else {
-		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
-	}
-
-	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
-	      caslat, caslat_ctrl);
-
-	/*
-	 * Timing Config 0.
-	 * Avoid writing for DDR I.  The new PQ38 DDR controller
-	 * dreams up non-zero default values to be backwards compatible.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
-		unsigned char taxpd_clk = 8;		/* By the book. */
-		unsigned char tmrd_clk = 2;		/* By the book. */
-		unsigned char act_pd_exit = 2;		/* Empirical? */
-		unsigned char pre_pd_exit = 6;		/* Empirical? */
-
-		ddr->timing_cfg_0 = (0
-			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
-			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
-			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
-			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
-			);
-		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
-
-	}
-
-
-	/*
-	 * Some Timing Config 1 values now.
-	 * Sneak Extended Refresh Recovery in here too.
-	 */
-
-	/*
-	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
-	 * use conservative value.
-	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
-	 */
-
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		twr_clk = 3;	/* Clocks */
-		twtr_clk = 1;	/* Clocks */
-	} else {
-		twr_clk = picos_to_clk(spd.twr * 250);
-		twtr_clk = picos_to_clk(spd.twtr * 250);
-	}
-
-	/*
-	 * Calculate Trfc, in picos.
-	 * DDR I:  Byte 42 straight up in ns.
-	 * DDR II: Byte 40 and 42 swizzled some, in ns.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		trfc = spd.trfc * 1000;		/* up to ps */
-	} else {
-		unsigned int byte40_table_ps[8] = {
-			0,
-			250,
-			330,
-			500,
-			660,
-			750,
-			0,
-			0
-		};
-
-		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
-			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
-	}
-	trfc_clk = picos_to_clk(trfc);
-
-	/*
-	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
-	 */
-	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
-
-	/*
-	 * Convert trfc_clk to DDR controller fields.  DDR I should
-	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
-	 * 8548 controller has an extended REFREC field of three bits.
-	 * The controller automatically adds 8 clocks to this value,
-	 * so preadjust it down 8 first before splitting it up.
-	 */
-	trfc_low = (trfc_clk - 8) & 0xf;
-	trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
-
-	/*
-	 * Sneak in some Extended Refresh Recovery.
-	 */
-	ddr->timing_cfg_3 = (trfc_high << 16);
-	debug("DDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
-
-	ddr->timing_cfg_1 =
-	    (0
-	     | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)	/* PRETOACT */
-	     | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)	/* ACTTOPRE */
-	     | (trcd_clk << 20)					/* ACTTORW */
-	     | (caslat_ctrl << 16)				/* CASLAT */
-	     | (trfc_low << 12)					/* REFEC */
-	     | ((twr_clk & 0x07) << 8)				/* WRRREC */
-	     | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)	/* ACTTOACT */
-	     | ((twtr_clk & 0x07) << 0)				/* WRTORD */
-	     );
-
-	debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1);
-
-
-	/*
-	 * Timing_Config_2
-	 * Was: 0x00000800;
-	 */
-
-	/*
-	 * Additive Latency
-	 * For DDR I, 0.
-	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
-	 * which comes from Trcd, and also note that:
-	 *	add_lat + caslat must be >= 4
-	 */
-	add_lat = 0;
-	if (spd.mem_type == SPD_MEMTYPE_DDR2
-	    && (odt_wr_cfg || odt_rd_cfg)
-	    && (caslat < 4)) {
-		add_lat = 4 - caslat;
-		if (add_lat >= trcd_clk) {
-			add_lat = trcd_clk - 1;
-		}
-	}
-
-	/*
-	 * Write Data Delay
-	 * Historically 0x2 == 4/8 clock delay.
-	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
-	 */
-	wr_data_delay = 3;
-
-	/*
-	 * Write Latency
-	 * Read to Precharge
-	 * Minimum CKE Pulse Width.
-	 * Four Activate Window
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		/*
-		 * This is a lie.  It should really be 1, but if it is
-		 * set to 1, bits overlap into the old controller's
-		 * otherwise unused ACSM field.  If we leave it 0, then
-		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
-		 */
-		wr_lat = 0;
-
-		trtp_clk = 2;		/* By the book. */
-		cke_min_clk = 1;	/* By the book. */
-		four_act = 1;		/* By the book. */
-
-	} else {
-		wr_lat = caslat - 1;
-
-		/* Convert SPD value from quarter nanos to picos. */
-		trtp_clk = picos_to_clk(spd.trtp * 250);
-
-		cke_min_clk = 3;	/* By the book. */
-		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
-	}
-
-	ddr->timing_cfg_2 = (0
-		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
-		| ((cpo & 0x1f) << 23)			/* CPO */
-		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
-		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
-		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
-		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
-		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
-		);
-
-	debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
-
-
-	/*
-	 * Determine the Mode Register Set.
-	 *
-	 * This is nominally part specific, but it appears to be
-	 * consistent for all DDR I devices, and for all DDR II devices.
-	 *
-	 *     caslat must be programmed
-	 *     burst length is always 4
-	 *     burst type is sequential
-	 *
-	 * For DDR I:
-	 *     operating mode is "normal"
-	 *
-	 * For DDR II:
-	 *     other stuff
-	 */
-
-	mode_caslat = 0;
-
-	/*
-	 * Table lookup from DDR I or II Device Operation Specs.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		if (1 <= caslat && caslat <= 4) {
-			unsigned char mode_caslat_table[4] = {
-				0x5,	/* 1.5 clocks */
-				0x2,	/* 2.0 clocks */
-				0x6,	/* 2.5 clocks */
-				0x3	/* 3.0 clocks */
-			};
-			mode_caslat = mode_caslat_table[caslat - 1];
-		} else {
-			puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
-			     "2.5 and 3.0 clocks are supported.\n");
-			return 0;
-		}
-
-	} else {
-		if (2 <= caslat && caslat <= 5) {
-			mode_caslat = caslat;
-		} else {
-			puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
-			     "4.0 and 5.0 clocks are supported.\n");
-			return 0;
-		}
-	}
-
-	/*
-	 * Encoded Burst Length of 4.
-	 */
-	burst_len = 2;			/* Fiat. */
-
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		twr_auto_clk = 0;	/* Historical */
-	} else {
-		/*
-		 * Determine tCK max in picos.  Grab tWR and convert to picos.
-		 * Auto-precharge write recovery is:
-		 *	WR = roundup(tWR_ns/tCKmax_ns).
-		 *
-		 * Ponder: Is twr_auto_clk different than twr_clk?
-		 */
-		tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
-		twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
-	}
-
-	/*
-	 * Mode Reg in bits 16 ~ 31,
-	 * Extended Mode Reg 1 in bits 0 ~ 15.
-	 */
-	mode_odt_enable = 0x0;			/* Default disabled */
-	if (odt_wr_cfg || odt_rd_cfg) {
-		/*
-		 * Bits 6 and 2 in Extended MRS(1)
-		 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
-		 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
-		 */
-		mode_odt_enable = 0x40;		/* 150 Ohm */
-	}
-
-	ddr->sdram_mode_1 =
-		(0
-		 | (add_lat << (16 + 3))	/* Additive Latency in EMRS1 */
-		 | (mode_odt_enable << 16)	/* ODT Enable in EMRS1 */
-		 | (twr_auto_clk << 9)		/* Write Recovery Autopre */
-		 | (mode_caslat << 4)		/* caslat */
-		 | (burst_len << 0)		/* Burst length */
-		 );
-
-	debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode_1);
-
-	/*
-	 * Clear EMRS2 and EMRS3.
-	 */
-	ddr->sdram_mode_2 = 0;
-	debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
-
-	/*
-	 * Determine Refresh Rate.
-	 */
-	refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
-
-	/*
-	 * Set BSTOPRE to 0x100 for page mode
-	 * If auto-charge is used, set BSTOPRE = 0
-	 */
-	ddr->sdram_interval =
-		(0
-		 | (refresh_clk & 0x3fff) << 16
-		 | 0x100
-		 );
-	debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
-
-
-	/*
-	 * Is this an ECC DDR chip?
-	 * But don't mess with it if the DDR controller will init mem.
-	 */
-#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-	if (spd.config == 0x02) {
-		ddr->err_disable = 0x0000000d;
-		ddr->err_sbe = 0x00ff0000;
-	}
-	debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
-	debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
-#endif
-
-	asm volatile("sync;isync");
-	udelay(500);
-
-	/*
-	 * SDRAM Cfg 2
-	 */
-
-	/*
-	 * When ODT is enabled, Chap 9 suggests asserting ODT to
-	 * internal IOs only during reads.
-	 */
-	odt_cfg = 0;
-	if (odt_rd_cfg | odt_wr_cfg) {
-		odt_cfg = 0x2;		/* ODT to IOs during reads */
-	}
-
-	/*
-	 * Try to use differential DQS with DDR II.
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR) {
-		dqs_cfg = 0;		/* No Differential DQS for DDR I */
-	} else {
-		dqs_cfg = 0x1;		/* Differential DQS for DDR II */
-	}
-
-#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-	/*
-	 * Use the DDR controller to auto initialize memory.
-	 */
-	d_init = 1;
-	ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
-	debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
-#else
-	/*
-	 * Memory will be initialized via DMA, or not at all.
-	 */
-	d_init = 0;
-#endif
-
-	ddr->sdram_cfg_2 = (0
-			    | (dqs_cfg << 26)	/* Differential DQS */
-			    | (odt_cfg << 21)	/* ODT */
-			    | (d_init << 4)	/* D_INIT auto init DDR */
-			    );
-
-	debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2);
-
-
-#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
-	/*
-	 * Setup the clock control.
-	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
-	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
-	 *	0110	3/4 cycle late
-	 *	0111	7/8 cycle late
-	 */
-	if (spd.mem_type == SPD_MEMTYPE_DDR)
-		clk_adjust = 0x6;
-	else
-		clk_adjust = 0x7;
-
-	ddr->sdram_clk_cntl = (0
-			       | 0x80000000
-			       | (clk_adjust << 23)
-			       );
-	debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
-#endif
-
-	/*
-	 * Figure out memory size in Megabytes.
-	 */
-	debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
-	memsize = n_ranks * rank_density / 0x100000;
-	return memsize;
-}
-
-
-unsigned int enable_ddr(unsigned int ddr_num)
-{
-	volatile immap_t *immap = (immap_t *)CFG_IMMR;
-	spd_eeprom_t spd1,spd2;
-	volatile ccsr_ddr_t *ddr;
-	unsigned sdram_cfg_1;
-	unsigned char sdram_type, mem_type, mod_attr;
-	unsigned char d_init;
-	unsigned int no_dimm1=0, no_dimm2=0;
-
-	/* Set up pointer to enable the current ddr controller */
-	if (ddr_num == 1)
-		ddr = &immap->im_ddr1;
-	else
-		ddr = &immap->im_ddr2;
-
-	/*
-	 * Read both dimm slots and decide whether
-	 * or not to enable this controller.
-	 */
-	memset((void *)&spd1, 0, sizeof(spd1));
-	memset((void *)&spd2, 0, sizeof(spd2));
-
-	if (ddr_num == 1) {
-		CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
-			     0, 1, (uchar *) &spd1, sizeof(spd1));
-#if defined(SPD_EEPROM_ADDRESS2)
-		CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
-			     0, 1, (uchar *) &spd2, sizeof(spd2));
-#endif
-	} else {
-#if defined(SPD_EEPROM_ADDRESS3)
-		CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
-			     0, 1, (uchar *) &spd1, sizeof(spd1));
-#endif
-#if defined(SPD_EEPROM_ADDRESS4)
-		CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
-			     0, 1, (uchar *) &spd2, sizeof(spd2));
-#endif
-	}
-
-	/*
-	 * Check for supported memory module types.
-	 */
-	if (spd1.mem_type != SPD_MEMTYPE_DDR
-	    && spd1.mem_type != SPD_MEMTYPE_DDR2) {
-		no_dimm1 = 1;
-	} else {
-		debug("\nFound memory of type 0x%02lx  ",spd1.mem_type );
-		if (spd1.mem_type == SPD_MEMTYPE_DDR)
-			debug("DDR I\n");
-		else
-			debug("DDR II\n");
-	}
-
-	if (spd2.mem_type != SPD_MEMTYPE_DDR &&
-	    spd2.mem_type != SPD_MEMTYPE_DDR2) {
-		no_dimm2 = 1;
-	} else {
-		debug("\nFound memory of type 0x%02lx  ",spd2.mem_type );
-		if (spd2.mem_type == SPD_MEMTYPE_DDR)
-			debug("DDR I\n");
-		else
-			debug("DDR II\n");
-	}
-
-#ifdef CONFIG_DDR_INTERLEAVE
-	if (no_dimm1) {
-		printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
-		return 0;
-	}
-#endif
-
-	/*
-	 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
-	 */
-	if (no_dimm1  && no_dimm2) {
-		printf("No memory modules found for DDR controller %d!!\n", ddr_num);
-		return 0;
-	} else {
-
-#if defined(CONFIG_DDR_ECC)
-		unsigned char config;
-#endif
-		mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
-
-		/*
-		 * Figure out the settings for the sdram_cfg register.
-		 * Build up the entire register in 'sdram_cfg' before
-		 * writing since the write into the register will
-		 * actually enable the memory controller; all settings
-		 * must be done before enabling.
-		 *
-		 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
-		 * sdram_cfg[1]   = 1 (self-refresh-enable)
-		 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
-		 *			010 DDR 1 SDRAM
-		 *			011 DDR 2 SDRAM
-		 */
-		sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
-		sdram_cfg_1 = (0
-			       | (1 << 31)		/* Enable */
-			       | (1 << 30)		/* Self refresh */
-			       | (sdram_type << 24)	/* SDRAM type */
-			       );
-
-		/*
-		 * sdram_cfg[3] = RD_EN - registered DIMM enable
-		 *   A value of 0x26 indicates micron registered
-		 *   DIMMS (micron.com)
-		 */
-		mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
-		if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
-			sdram_cfg_1 |= 0x10000000;		/* RD_EN */
-		}
-
-#if defined(CONFIG_DDR_ECC)
-
-		config = no_dimm2 ? spd1.config : spd2.config;
-
-		/*
-		 * If the user wanted ECC (enabled via sdram_cfg[2])
-		 */
-		if (config == 0x02) {
-			ddr->err_disable = 0x00000000;
-			asm volatile("sync;isync;");
-			ddr->err_sbe = 0x00ff0000;
-			ddr->err_int_en = 0x0000000d;
-			sdram_cfg_1 |= 0x20000000;		/* ECC_EN */
-		}
-#endif
-
-		/*
-		 * Set 1T or 2T timing based on 1 or 2 modules
-		 */
-		{
-			if (!(no_dimm1 || no_dimm2)) {
-				/*
-				 * 2T timing,because both DIMMS are present.
-				 * Enable 2T timing by setting sdram_cfg[16].
-				 */
-				sdram_cfg_1 |= 0x8000;		/* 2T_EN */
-			}
-		}
-
-		/*
-		 * 200 painful micro-seconds must elapse between
-		 * the DDR clock setup and the DDR config enable.
-		 */
-		udelay(200);
-
-		/*
-		 * Go!
-		 */
-		ddr->sdram_cfg_1 = sdram_cfg_1;
-
-		asm volatile("sync;isync");
-		udelay(500);
-
-		debug("DDR: sdram_cfg   = 0x%08x\n", ddr->sdram_cfg_1);
-
-
-#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-		d_init = 1;
-		debug("DDR: memory initializing\n");
-
-		/*
-		 * Poll until memory is initialized.
-		 * 512 Meg at 400 might hit this 200 times or so.
-		 */
-		while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
-			udelay(1000);
-		}
-		debug("DDR: memory initialized\n\n");
-#endif
-
-		debug("Enabled DDR Controller %d\n", ddr_num);
-		return 1;
-	}
-}
-
-
-long int
-spd_sdram(void)
-{
-	int memsize_ddr1_dimm1 = 0;
-	int memsize_ddr1_dimm2 = 0;
-	int memsize_ddr1 = 0;
-	unsigned int law_size_ddr1;
-#ifdef CONFIG_DDR_INTERLEAVE
-	volatile immap_t *immap = (immap_t *)CFG_IMMR;
-	volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
-#endif
-
-#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
-	int memsize_ddr2_dimm1 = 0;
-	int memsize_ddr2_dimm2 = 0;
-	int memsize_ddr2 = 0;
-	unsigned int law_size_ddr2;
-#endif
-
-	unsigned int ddr1_enabled = 0;
-	unsigned int ddr2_enabled = 0;
-	int memsize_total = 0;
-
-#ifdef CONFIG_DDR_INTERLEAVE
-	unsigned int law_size_interleaved;
-	volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;
-
-	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
-				      1, 1,
-				      (unsigned int)memsize_total * 1024*1024);
-	memsize_total += memsize_ddr1_dimm1;
-
-	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
-				      2, 1,
-				      (unsigned int)memsize_total * 1024*1024);
-	memsize_total += memsize_ddr2_dimm1;
-
-	if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
-		if (memsize_ddr1_dimm1 <  memsize_ddr2_dimm1)
-			memsize_total -= memsize_ddr1_dimm1;
-		else
-			memsize_total -= memsize_ddr2_dimm1;
-		debug("Total memory available for interleaving 0x%08lx\n",
-		      memsize_total * 1024 * 1024);
-		debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
-		ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
-		ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
-		debug("DDR1: cs0_bnds   = 0x%08x\n", ddr1->cs0_bnds);
-		debug("DDR2: cs0_bnds   = 0x%08x\n", ddr2->cs0_bnds);
-	}
-
-	ddr1_enabled = enable_ddr(1);
-	ddr2_enabled = enable_ddr(2);
-
-	/*
-	 * Both controllers need to be enabled for interleaving.
-	 */
-	if (ddr1_enabled && ddr2_enabled) {
-		law_size_interleaved = 19 + __ilog2(memsize_total);
-
-		/*
-		 * Set up LAWBAR for DDR 1 space.
-		 */
-#ifdef CONFIG_FSL_LAW
-		set_next_law(CFG_DDR_SDRAM_BASE, law_size_interleaved, LAW_TRGT_IF_DDR_INTRLV);
-#endif
-		debug("Interleaved memory size is 0x%08lx\n", memsize_total);
-
-#if (CFG_PAGE_INTERLEAVING == 1)
-		printf("Page ");
-#elif (CFG_BANK_INTERLEAVING == 1)
-		printf("Bank ");
-#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
-		printf("Super-bank ");
-#else
-		printf("Cache-line ");
-#endif
-		printf("Interleaved");
-		return memsize_total * 1024 * 1024;
-	}  else {
-		printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
-		return 0;
-	}
-
-#else
-	/*
-	 * Call spd_sdram() routine to init ddr1 - pass I2c address,
-	 * controller number, dimm number, and starting address.
-	 */
-	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
-				      1, 1,
-				      (unsigned int)memsize_total * 1024*1024);
-	memsize_total += memsize_ddr1_dimm1;
-
-#if defined(SPD_EEPROM_ADDRESS2)
-	memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
-				      1, 2,
-				      (unsigned int)memsize_total * 1024*1024);
-#endif
-	memsize_total += memsize_ddr1_dimm2;
-
-	/*
-	 * Enable the DDR controller - pass ddr controller number.
-	 */
-	ddr1_enabled = enable_ddr(1);
-
-	/* Keep track of memory to be addressed by DDR1 */
-	memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;
-
-	/*
-	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.  Fnord.
-	 */
-	if (ddr1_enabled) {
-		law_size_ddr1 = 19 + __ilog2(memsize_ddr1);
-
-		/*
-		 * Set up LAWBAR for DDR 1 space.
-		 */
-#ifdef CONFIG_FSL_LAW
-		set_next_law(CFG_DDR_SDRAM_BASE, law_size_ddr1, LAW_TRGT_IF_DDR_1);
-#endif
-	}
-
-#if  (CONFIG_NUM_DDR_CONTROLLERS > 1)
-	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
-				      2, 1,
-				      (unsigned int)memsize_total * 1024*1024);
-	memsize_total += memsize_ddr2_dimm1;
-
-	memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
-				      2, 2,
-				      (unsigned int)memsize_total * 1024*1024);
-	memsize_total += memsize_ddr2_dimm2;
-
-	ddr2_enabled = enable_ddr(2);
-
-	/* Keep track of memory to be addressed by DDR2 */
-	memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;
-
-	if (ddr2_enabled) {
-		law_size_ddr2 = 19 + __ilog2(memsize_ddr2);
-
-		/*
-		 * Set up LAWBAR for DDR 2 space.
-		 */
-#ifdef CONFIG_FSL_LAW
-		set_next_law(
-			(ddr1_enabled ? (memsize_ddr1 * 1024 * 1024) : CFG_DDR_SDRAM_BASE),
-			law_size_ddr2, LAW_TRGT_IF_DDR_2);
-#endif
-	}
-
-	debug("\nMemory size of DDR2 = 0x%08lx\n", memsize_ddr2);
-
-#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */
-
-	debug("\nMemory size of DDR1 = 0x%08lx\n", memsize_ddr1);
-
-	/*
-	 * If neither DDR controller is enabled return 0.
-	 */
-	if (!ddr1_enabled && !ddr2_enabled)
-		return 0;
-
-	printf("Non-interleaved");
-	return memsize_total * 1024 * 1024;
-
-#endif /* CONFIG_DDR_INTERLEAVE */
-}
-
-
-#endif /* CONFIG_SPD_EEPROM */
-
-
-#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-
-/*
- * Initialize all of memory for ECC, then enable errors.
- */
-
-void
-ddr_enable_ecc(unsigned int dram_size)
-{
-	uint *p = 0;
-	uint i = 0;
-	volatile immap_t *immap = (immap_t *)CFG_IMMR;
-	volatile ccsr_ddr_t *ddr1= &immap->im_ddr1;
-
-	dma_init();
-
-	for (*p = 0; p < (uint *)(8 * 1024); p++) {
-		if (((unsigned int)p & 0x1f) == 0) {
-			ppcDcbz((unsigned long) p);
-		}
-		*p = (unsigned int)CONFIG_MEM_INIT_VALUE;
-		if (((unsigned int)p & 0x1c) == 0x1c) {
-			ppcDcbf((unsigned long) p);
-		}
-	}
-
-	dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
-	dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
-	dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
-	dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
-	dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
-	dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
-	dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
-	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
-	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
-	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
-
-	for (i = 1; i < dram_size / 0x800000; i++) {
-		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
-	}
-
-	/*
-	 * Enable errors for ECC.
-	 */
-	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
-	ddr1->err_disable = 0x00000000;
-	asm volatile("sync;isync");
-	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
-}
-
-#endif	/* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
-- 
1.5.5.1



More information about the U-Boot mailing list