[U-Boot] [PATCH 1/5] e1000: New "e1000" commands for SPI EEPROM management
Kyle Moffett
Kyle.D.Moffett at boeing.com
Mon Sep 13 17:51:32 CEST 2010
For our new board ports, we are programming the EEPROMs attached to our
Intel 82571EB controllers from software (using U-Boot and Linux).
This code provides a helpful set of "e1000" subcommands for performing
EEPROM manipulation on e1000 devices, including displaying a hex-dump,
copying to and from main memory, and verifying/updating of the software
checksum.
The following commands work for programming the EEPROM from USB:
usb start
fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin
e1000 0 eeprom program $loadaddr 0 1024
e1000 0 eeprom checksum update
Please keep in mind that the Intel-provided .eep files are organized as
16-bit words. When converting them to binary form for programming you
must byteswap each 16-bit word so that it is in little-endian form.
This means that when reading and writing words to the SPI EEPROM, the
bit ordering for each word looks like this on the wire:
Time >>>
------------------------------------------------------------------
... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ...
------------------------------------------------------------------
(MSB is 15, LSB is 0).
Signed-off-by: Kyle Moffett <Kyle.D.Moffett at boeing.com>
---
drivers/net/e1000.c | 533 ++++++++++++++++++++++++++++++++++++++++++++++++++-
drivers/net/e1000.h | 2 +
2 files changed, 534 insertions(+), 1 deletions(-)
diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c
index 43b25b2..4ff845a 100644
--- a/drivers/net/e1000.c
+++ b/drivers/net/e1000.c
@@ -5152,6 +5152,8 @@ void e1000_get_bus_type(struct e1000_hw *hw)
}
}
+static LIST_HEAD(e1000_hw_list);
+
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
@@ -5226,8 +5228,9 @@ e1000_initialize(bd_t * bis)
if (e1000_check_phy_reset_block(hw))
printf("%s: ERROR: PHY Reset is blocked!\n", nic->name);
- /* Basic init was OK, reset the hardware */
+ /* Basic init was OK, reset the hardware and allow SPI access */
e1000_reset_hw(hw);
+ list_add_tail(&hw->list_node, &e1000_hw_list);
/* Validate the EEPROM and get chipset information */
#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
@@ -5255,3 +5258,531 @@ e1000_initialize(bd_t * bis)
return i;
}
+
+#ifdef CONFIG_CMD_E1000
+static struct e1000_hw *e1000_find_card(unsigned int cardnum)
+{
+ struct e1000_hw *hw;
+
+ list_for_each_entry(hw, &e1000_hw_list, list_node)
+ if (hw->cardnum == cardnum)
+ return hw;
+
+ return NULL;
+}
+
+/*-----------------------------------------------------------------------
+ * SPI transfer
+ *
+ * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
+ * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
+ *
+ * The source of the outgoing bits is the "dout" parameter and the
+ * destination of the input bits is the "din" parameter. Note that "dout"
+ * and "din" can point to the same memory location, in which case the
+ * input data overwrites the output data (since both are buffered by
+ * temporary variables, this is OK).
+ *
+ * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
+ * never return an error.
+ */
+static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
+ const void *dout_mem, void *din_mem, boolean_t intr)
+{
+ const uint8_t *dout = dout_mem;
+ uint8_t *din = din_mem;
+
+ uint8_t mask = 0;
+ uint32_t eecd;
+ unsigned long i;
+
+ /* Pre-read the control register */
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Iterate over each bit */
+ for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
+ /* Check for interrupt */
+ if (intr && ctrlc())
+ return -1;
+
+ /* Determine the output bit */
+ if (dout && dout[i >> 3] & mask)
+ eecd |= E1000_EECD_DI;
+ else
+ eecd &= ~E1000_EECD_DI;
+
+ /* Write the output bit and wait 50us */
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+
+ /* Poke the clock (waits 50us) */
+ e1000_raise_ee_clk(hw, &eecd);
+
+ /* Now read the input bit */
+ eecd = E1000_READ_REG(hw, EECD);
+ if (din) {
+ if (eecd & E1000_EECD_DO)
+ din[i >> 3] |= mask;
+ else
+ din[i >> 3] &= ~mask;
+ }
+
+ /* Poke the clock again (waits 50us) */
+ e1000_lower_ee_clk(hw, &eecd);
+ }
+
+ /* Now clear any remaining bits of the input */
+ if (din && (i & 7))
+ din[i >> 3] &= ~((mask << 1) - 1);
+
+ return 0;
+}
+
+/* The EEPROM opcodes */
+#define SPI_EEPROM_ENABLE_WR 0x06
+#define SPI_EEPROM_DISABLE_WR 0x04
+#define SPI_EEPROM_WRITE_STATUS 0x01
+#define SPI_EEPROM_READ_STATUS 0x05
+#define SPI_EEPROM_WRITE_PAGE 0x02
+#define SPI_EEPROM_READ_PAGE 0x03
+
+/* The EEPROM status bits */
+#define SPI_EEPROM_STATUS_BUSY 0x01
+#define SPI_EEPROM_STATUS_WREN 0x02
+
+static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_ENABLE_WR };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+#if 0
+static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_DISABLE_WR };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
+ u8 status, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+#endif
+
+static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
+ e1000_standby_eeprom(hw);
+ if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
+ return -1;
+ return op[1];
+}
+
+static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
+ const void *data, u16 off, u16 len, boolean_t intr)
+{
+ u8 op[] = {
+ SPI_EEPROM_WRITE_PAGE,
+ (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+ };
+
+ e1000_standby_eeprom(hw);
+ printf("%s: Write Page @0x%04hx (0x%04hx bytes)\n",
+ hw->nic->name, off, len);
+
+ if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+ return -1;
+ if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
+ return -1;
+
+ printf(" => Done!\n");
+ return 0;
+}
+
+static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
+ void *data, u16 off, u16 len, boolean_t intr)
+{
+ u8 op[] = {
+ SPI_EEPROM_READ_PAGE,
+ (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+ };
+
+ e1000_standby_eeprom(hw);
+ printf("%s: Read Page @0x%04hx (0x%04hx bytes)\n",
+ hw->nic->name, off, len);
+
+ if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+ return -1;
+ if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
+ return -1;
+
+ printf(" => Done!\n");
+ return 0;
+}
+
+static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr)
+{
+ int status;
+ while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
+ if (!(status & SPI_EEPROM_STATUS_BUSY))
+ return 0;
+ }
+ return -1;
+}
+
+int e1000_spi_eeprom_dump(struct e1000_hw *hw,
+ void *data, u16 off, unsigned int len, boolean_t intr)
+{
+ /* Interruptibly wait for the EEPROM to be ready */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* Dump each page in sequence */
+ while (len) {
+ /* Calculate the data bytes on this page */
+ u16 pg_off = off & (hw->eeprom.page_size - 1);
+ u16 pg_len = hw->eeprom.page_size - pg_off;
+ if (pg_len > len)
+ pg_len = len;
+
+ /* Now dump the page */
+ if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
+ return -1;
+
+ /* Otherwise go on to the next page */
+ len -= pg_len;
+ off += pg_len;
+ data += pg_len;
+ }
+
+ /* We're done! */
+ return 0;
+}
+
+int e1000_spi_eeprom_program(struct e1000_hw *hw,
+ const void *data, u16 off, u16 len, boolean_t intr)
+{
+ /* Program each page in sequence */
+ while (len) {
+ /* Calculate the data bytes on this page */
+ u16 pg_off = off & (hw->eeprom.page_size - 1);
+ u16 pg_len = hw->eeprom.page_size - pg_off;
+ if (pg_len > len)
+ pg_len = len;
+
+ /* Interruptibly wait for the EEPROM to be ready */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* Enable write access */
+ if (e1000_spi_eeprom_enable_wr(hw, intr))
+ return -1;
+
+ /* Now program the page */
+ if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
+ return -1;
+
+ /* Otherwise go on to the next page */
+ len -= pg_len;
+ off += pg_len;
+ data += pg_len;
+ }
+
+ /* Wait for the last write to complete */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* We're done! */
+ return 0;
+}
+
+static int do_e1000_eeprom_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char *argv[])
+{
+ unsigned int length = 0;
+ u16 i, offset = 0;
+ u8 *buffer;
+ int err;
+
+ if (argc > 3) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the offset and length */
+ if (argc >= 2)
+ offset = simple_strtoul(argv[1], NULL, 0);
+ if (argc == 3)
+ length = simple_strtoul(argv[2], NULL, 0);
+ else if (offset < (hw->eeprom.word_size << 1))
+ length = (hw->eeprom.word_size << 1) - offset;
+
+ /* Extra sanity checks */
+ if (!length) {
+ printf("%s: ERROR: Requested zero-sized dump!\n",
+ hw->nic->name);
+ return 1;
+ }
+ if ((0x10000 < length) || (0x10000 - length < offset)) {
+ printf("%s: ERROR: Can't dump past 0xFFFF!\n", hw->nic->name);
+ return 1;
+ }
+
+ /* Allocate a buffer to hold stuff */
+ buffer = malloc(length);
+ if (!buffer) {
+ printf("%s: ERROR: Out of Memory!\n", hw->nic->name);
+ return 1;
+ }
+
+ /* Acquire the EEPROM and perform the dump */
+ if (e1000_acquire_eeprom(hw)) {
+ printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+ free(buffer);
+ return 1;
+ }
+ err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE);
+ e1000_release_eeprom(hw);
+ if (err) {
+ printf("%s: Interrupted!\n", hw->nic->name);
+ free(buffer);
+ return 1;
+ }
+
+ /* Now hexdump the result */
+ printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
+ hw->nic->name, offset, offset + length - 1);
+ for (i = 0; i < length; i++) {
+ if ((i & 0xF) == 0)
+ printf("\n%s: %04hX: ", hw->nic->name, offset + i);
+ else if ((i & 0xF) == 0x8)
+ printf(" ");
+ printf(" %02hx", buffer[i]);
+ }
+ printf("\n");
+
+ /* Success! */
+ free(buffer);
+ return 0;
+}
+
+static int do_e1000_eeprom_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char *argv[])
+{
+ unsigned int length;
+ u16 offset;
+ void *dest;
+
+ if (argc != 4) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the arguments */
+ dest = (void *)simple_strtoul(argv[1], NULL, 16);
+ offset = simple_strtoul(argv[2], NULL, 0);
+ length = simple_strtoul(argv[3], NULL, 0);
+
+ /* Extra sanity checks */
+ if (!length) {
+ printf("%s: ERROR: Requested zero-sized dump!\n",
+ hw->nic->name);
+ return 1;
+ }
+ if ((0x10000 < length) || (0x10000 - length < offset)) {
+ printf("%s: ERROR: Can't dump past 0xFFFF!\n", hw->nic->name);
+ return 1;
+ }
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+ return 1;
+ }
+
+ /* Perform the programming operation */
+ if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) {
+ printf("%s: Interrupted!\n", hw->nic->name);
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
+ return 0;
+}
+
+static int do_e1000_eeprom_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char *argv[])
+{
+ unsigned int length;
+ const void *source;
+ u16 offset;
+
+ if (argc != 4) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the arguments */
+ source = (const void *)simple_strtoul(argv[1], NULL, 16);
+ offset = simple_strtoul(argv[2], NULL, 0);
+ length = simple_strtoul(argv[3], NULL, 0);
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+ return 1;
+ }
+
+ /* Perform the programming operation */
+ if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) {
+ printf("%s: Interrupted!\n", hw->nic->name);
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
+ return 0;
+}
+
+static int do_e1000_eeprom_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char *argv[])
+{
+ uint16_t i, length, checksum, checksum_reg;
+ uint16_t *buffer;
+ boolean_t upd;
+
+ if (argc == 1)
+ upd = 0;
+ else if ((argc == 2) && !strcmp(argv[1], "update"))
+ upd = 1;
+ else {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Allocate a temporary buffer */
+ length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
+ buffer = malloc(length);
+ if (!buffer) {
+ printf("%s: ERROR: Unable to allocate EEPROM buffer!\n",
+ hw->nic->name);
+ return 1;
+ }
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+ return 1;
+ }
+
+ /* Read the EEPROM */
+ if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) {
+ printf("%s: Interrupted!\n", hw->nic->name);
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ /* Compute the checksum and read the expected value */
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+ checksum += le16_to_cpu(buffer[i]);
+ checksum = ((uint16_t)EEPROM_SUM) - checksum;
+ checksum_reg = le16_to_cpu(buffer[i]);
+
+ /* Verify it! */
+ if (checksum_reg == checksum) {
+ printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
+ hw->nic->name, checksum);
+ e1000_release_eeprom(hw);
+ return 0;
+ }
+
+ /* Hrm, verification failed, print an error */
+ printf("%s: ERROR: EEPROM checksum is incorrect!\n", hw->nic->name);
+ printf("%s: ERROR: ...register was 0x%04hx, calculated 0x%04hx\n",
+ hw->nic->name, checksum_reg, checksum);
+
+ /* If they didn't ask us to update it, just return an error */
+ if (!upd) {
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ /* Ok, correct it! */
+ printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
+ buffer[i] = cpu_to_le16(checksum);
+ if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
+ sizeof(uint16_t), TRUE)) {
+ printf("%s: Interrupted!\n", hw->nic->name);
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ return 0;
+}
+
+int do_e1000(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ struct e1000_hw *hw;
+
+ if (argc < 4) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Make sure we can find the requested e1000 card */
+ hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
+ if (!hw) {
+ printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
+ return 1;
+ }
+
+ /* We only support an "eeprom" sub-command right now */
+ if (strcmp(argv[2], "eeprom")) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Make sure it has an SPI chip */
+ if (hw->eeprom.type != e1000_eeprom_spi) {
+ printf("%s: No attached SPI EEPROM found!\n", hw->nic->name);
+ return 1;
+ }
+
+ /* Check the eeprom sub-sub-command arguments */
+ if (!strcmp(argv[3], "show"))
+ return do_e1000_eeprom_show(cmdtp, hw, argc - 3, argv + 3);
+
+ if (!strcmp(argv[3], "dump"))
+ return do_e1000_eeprom_dump(cmdtp, hw, argc - 3, argv + 3);
+
+ if (!strcmp(argv[3], "program"))
+ return do_e1000_eeprom_program(cmdtp, hw, argc - 3, argv + 3);
+
+ if (!strcmp(argv[3], "checksum"))
+ return do_e1000_eeprom_checksum(cmdtp, hw, argc - 3, argv + 3);
+
+ cmd_usage(cmdtp);
+ return 1;
+}
+
+U_BOOT_CMD(
+ e1000, 7, 0, do_e1000,
+ "Intel e1000 controller management",
+ /* */"<card#> eeprom show [<offset> [<length>]]\n"
+ "e1000 <card#> eeprom dump <addr> <offset> <length>\n"
+ "e1000 <card#> eeprom program <addr> <offset> <length>\n"
+ "e1000 <card#> eeprom checksum [update]\n"
+ " - Manage the e1000 card's SPI EEPROM"
+);
+
+#endif /* CONFIG_CMD_E1000 */
diff --git a/drivers/net/e1000.h b/drivers/net/e1000.h
index 8573511..68a3409 100644
--- a/drivers/net/e1000.h
+++ b/drivers/net/e1000.h
@@ -34,6 +34,7 @@
#define _E1000_HW_H_
#include <common.h>
+#include <linux/list.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
@@ -1043,6 +1044,7 @@ typedef enum {
/* Structure containing variables used by the shared code (e1000_hw.c) */
struct e1000_hw {
+ struct list_head list_node;
struct eth_device *nic;
unsigned int cardnum;
--
1.7.1
More information about the U-Boot
mailing list