[U-Boot] [PATCH 4/5] e1000: New "e1000" commands for SPI EEPROM management

Kyle Moffett Kyle.D.Moffett at boeing.com
Sat Feb 12 00:38:01 CET 2011


For our new board ports, we are programming the EEPROMs attached to our
Intel 82571EB controllers from software (using U-Boot and Linux).

This code provides a helpful set of "e1000" subcommands for performing
EEPROM manipulation on e1000 devices, including displaying a hex-dump,
copying to and from main memory, and verifying/updating of the software
checksum.

The following commands work for programming the EEPROM from USB:
  usb start
  fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin
  e1000 0 eeprom program $loadaddr 0 1024
  e1000 0 eeprom checksum update

Please keep in mind that the Intel-provided .eep files are organized as
16-bit words.  When converting them to binary form for programming you
must byteswap each 16-bit word so that it is in little-endian form.

This means that when reading and writing words to the SPI EEPROM, the
bit ordering for each word looks like this on the wire:

  Time >>>
 -----------------------------------------------------------------
  ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ...
 -----------------------------------------------------------------
  (MSB is 15, LSB is 0).

Signed-off-by: Kyle Moffett <Kyle.D.Moffett at boeing.com>
---
 drivers/net/e1000.c |  533 ++++++++++++++++++++++++++++++++++++++++++++++++++-
 drivers/net/e1000.h |    2 +
 2 files changed, 534 insertions(+), 1 deletions(-)

diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c
index c4cedc6..b8bc27f 100644
--- a/drivers/net/e1000.c
+++ b/drivers/net/e1000.c
@@ -5153,6 +5153,8 @@ void e1000_get_bus_type(struct e1000_hw *hw)
 	}
 }
 
+static LIST_HEAD(e1000_hw_list);
+
 /**************************************************************************
 PROBE - Look for an adapter, this routine's visible to the outside
 You should omit the last argument struct pci_device * for a non-PCI NIC
@@ -5231,8 +5233,9 @@ e1000_initialize(bd_t * bis)
 		if (e1000_check_phy_reset_block(hw))
 			printf("%s: ERROR: PHY Reset is blocked!\n", nic->name);
 
-		/* Basic init was OK, reset the hardware */
+		/* Basic init was OK, reset the hardware and allow SPI access */
 		e1000_reset_hw(hw);
+		list_add_tail(&hw->list_node, &e1000_hw_list);
 
 		/* Validate the EEPROM and get chipset information */
 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
@@ -5260,3 +5263,531 @@ e1000_initialize(bd_t * bis)
 
 	return i;
 }
+
+#ifdef CONFIG_CMD_E1000
+static struct e1000_hw *e1000_find_card(unsigned int cardnum)
+{
+	struct e1000_hw *hw;
+
+	list_for_each_entry(hw, &e1000_hw_list, list_node)
+		if (hw->cardnum == cardnum)
+			return hw;
+
+	return NULL;
+}
+
+/*-----------------------------------------------------------------------
+ * SPI transfer
+ *
+ * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
+ * "bitlen" bits in the SPI MISO port.  That's just the way SPI works.
+ *
+ * The source of the outgoing bits is the "dout" parameter and the
+ * destination of the input bits is the "din" parameter.  Note that "dout"
+ * and "din" can point to the same memory location, in which case the
+ * input data overwrites the output data (since both are buffered by
+ * temporary variables, this is OK).
+ *
+ * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
+ * never return an error.
+ */
+static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
+		const void *dout_mem, void *din_mem, boolean_t intr)
+{
+	const uint8_t *dout = dout_mem;
+	uint8_t *din = din_mem;
+
+	uint8_t mask = 0;
+	uint32_t eecd;
+	unsigned long i;
+
+	/* Pre-read the control register */
+	eecd = E1000_READ_REG(hw, EECD);
+
+	/* Iterate over each bit */
+	for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
+		/* Check for interrupt */
+		if (intr && ctrlc())
+			return -1;
+
+		/* Determine the output bit */
+		if (dout && dout[i >> 3] & mask)
+			eecd |=  E1000_EECD_DI;
+		else
+			eecd &= ~E1000_EECD_DI;
+
+		/* Write the output bit and wait 50us */
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(50);
+
+		/* Poke the clock (waits 50us) */
+		e1000_raise_ee_clk(hw, &eecd);
+
+		/* Now read the input bit */
+		eecd = E1000_READ_REG(hw, EECD);
+		if (din) {
+			if (eecd & E1000_EECD_DO)
+				din[i >> 3] |=  mask;
+			else
+				din[i >> 3] &= ~mask;
+		}
+
+		/* Poke the clock again (waits 50us) */
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	/* Now clear any remaining bits of the input */
+	if (din && (i & 7))
+		din[i >> 3] &= ~((mask << 1) - 1);
+
+	return 0;
+}
+
+/* The EEPROM opcodes */
+#define SPI_EEPROM_ENABLE_WR	0x06
+#define SPI_EEPROM_DISABLE_WR	0x04
+#define SPI_EEPROM_WRITE_STATUS	0x01
+#define SPI_EEPROM_READ_STATUS	0x05
+#define SPI_EEPROM_WRITE_PAGE	0x02
+#define SPI_EEPROM_READ_PAGE	0x03
+
+/* The EEPROM status bits */
+#define SPI_EEPROM_STATUS_BUSY	0x01
+#define SPI_EEPROM_STATUS_WREN	0x02
+
+static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+	u8 op[] = { SPI_EEPROM_ENABLE_WR };
+	e1000_standby_eeprom(hw);
+	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+#if 0
+static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+	u8 op[] = { SPI_EEPROM_DISABLE_WR };
+	e1000_standby_eeprom(hw);
+	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
+		u8 status, boolean_t intr)
+{
+	u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
+	e1000_standby_eeprom(hw);
+	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+#endif
+
+static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr)
+{
+	u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
+	e1000_standby_eeprom(hw);
+	if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
+		return -1;
+	return op[1];
+}
+
+static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
+		const void *data, u16 off, u16 len, boolean_t intr)
+{
+	u8 op[] = {
+		SPI_EEPROM_WRITE_PAGE,
+		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+	};
+
+	e1000_standby_eeprom(hw);
+	printf("%s: Write Page @0x%04hx (0x%04hx bytes)\n",
+			hw->nic->name, off, len);
+
+	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+		return -1;
+	if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
+		return -1;
+
+	printf("  => Done!\n");
+	return 0;
+}
+
+static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
+		void *data, u16 off, u16 len, boolean_t intr)
+{
+	u8 op[] = {
+		SPI_EEPROM_READ_PAGE,
+		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+	};
+
+	e1000_standby_eeprom(hw);
+	printf("%s: Read Page @0x%04hx (0x%04hx bytes)\n",
+			hw->nic->name, off, len);
+
+	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+		return -1;
+	if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
+		return -1;
+
+	printf("  => Done!\n");
+	return 0;
+}
+
+static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr)
+{
+	int status;
+	while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
+		if (!(status & SPI_EEPROM_STATUS_BUSY))
+			return 0;
+	}
+	return -1;
+}
+
+int e1000_spi_eeprom_dump(struct e1000_hw *hw,
+		void *data, u16 off, unsigned int len, boolean_t intr)
+{
+	/* Interruptibly wait for the EEPROM to be ready */
+	if (e1000_spi_eeprom_poll_ready(hw, intr))
+		return -1;
+
+	/* Dump each page in sequence */
+	while (len) {
+		/* Calculate the data bytes on this page */
+		u16 pg_off = off & (hw->eeprom.page_size - 1);
+		u16 pg_len = hw->eeprom.page_size - pg_off;
+		if (pg_len > len)
+			pg_len = len;
+
+		/* Now dump the page */
+		if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
+			return -1;
+
+		/* Otherwise go on to the next page */
+		len  -= pg_len;
+		off  += pg_len;
+		data += pg_len;
+	}
+
+	/* We're done! */
+	return 0;
+}
+
+int e1000_spi_eeprom_program(struct e1000_hw *hw,
+		const void *data, u16 off, u16 len, boolean_t intr)
+{
+	/* Program each page in sequence */
+	while (len) {
+		/* Calculate the data bytes on this page */
+		u16 pg_off = off & (hw->eeprom.page_size - 1);
+		u16 pg_len = hw->eeprom.page_size - pg_off;
+		if (pg_len > len)
+			pg_len = len;
+
+		/* Interruptibly wait for the EEPROM to be ready */
+		if (e1000_spi_eeprom_poll_ready(hw, intr))
+			return -1;
+
+		/* Enable write access */
+		if (e1000_spi_eeprom_enable_wr(hw, intr))
+			return -1;
+
+		/* Now program the page */
+		if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
+			return -1;
+
+		/* Otherwise go on to the next page */
+		len  -= pg_len;
+		off  += pg_len;
+		data += pg_len;
+	}
+
+	/* Wait for the last write to complete */
+	if (e1000_spi_eeprom_poll_ready(hw, intr))
+		return -1;
+
+	/* We're done! */
+	return 0;
+}
+
+static int do_e1000_eeprom_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+		int argc, char *argv[])
+{
+	unsigned int length = 0;
+	u16 i, offset = 0;
+	u8 *buffer;
+	int err;
+
+	if (argc > 3) {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Parse the offset and length */
+	if (argc >= 2)
+		offset = simple_strtoul(argv[1], NULL, 0);
+	if (argc == 3)
+		length = simple_strtoul(argv[2], NULL, 0);
+	else if (offset < (hw->eeprom.word_size << 1))
+		length = (hw->eeprom.word_size << 1) - offset;
+
+	/* Extra sanity checks */
+	if (!length) {
+		printf("%s: ERROR: Requested zero-sized dump!\n",
+				hw->nic->name);
+		return 1;
+	}
+	if ((0x10000 < length) || (0x10000 - length < offset)) {
+		printf("%s: ERROR: Can't dump past 0xFFFF!\n", hw->nic->name);
+		return 1;
+	}
+
+	/* Allocate a buffer to hold stuff */
+	buffer = malloc(length);
+	if (!buffer) {
+		printf("%s: ERROR: Out of Memory!\n", hw->nic->name);
+		return 1;
+	}
+
+	/* Acquire the EEPROM and perform the dump */
+	if (e1000_acquire_eeprom(hw)) {
+		printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+		free(buffer);
+		return 1;
+	}
+	err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE);
+	e1000_release_eeprom(hw);
+	if (err) {
+		printf("%s: Interrupted!\n", hw->nic->name);
+		free(buffer);
+		return 1;
+	}
+
+	/* Now hexdump the result */
+	printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
+			hw->nic->name, offset, offset + length - 1);
+	for (i = 0; i < length; i++) {
+		if ((i & 0xF) == 0)
+			printf("\n%s: %04hX: ", hw->nic->name, offset + i);
+		else if ((i & 0xF) == 0x8)
+			printf(" ");
+		printf(" %02hx", buffer[i]);
+	}
+	printf("\n");
+
+	/* Success! */
+	free(buffer);
+	return 0;
+}
+
+static int do_e1000_eeprom_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+		int argc, char *argv[])
+{
+	unsigned int length;
+	u16 offset;
+	void *dest;
+
+	if (argc != 4) {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Parse the arguments */
+	dest = (void *)simple_strtoul(argv[1], NULL, 16);
+	offset = simple_strtoul(argv[2], NULL, 0);
+	length = simple_strtoul(argv[3], NULL, 0);
+
+	/* Extra sanity checks */
+	if (!length) {
+		printf("%s: ERROR: Requested zero-sized dump!\n",
+				hw->nic->name);
+		return 1;
+	}
+	if ((0x10000 < length) || (0x10000 - length < offset)) {
+		printf("%s: ERROR: Can't dump past 0xFFFF!\n", hw->nic->name);
+		return 1;
+	}
+
+	/* Acquire the EEPROM */
+	if (e1000_acquire_eeprom(hw)) {
+		printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+		return 1;
+	}
+
+	/* Perform the programming operation */
+	if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) {
+		printf("%s: Interrupted!\n", hw->nic->name);
+		e1000_release_eeprom(hw);
+		return 1;
+	}
+
+	e1000_release_eeprom(hw);
+	printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
+	return 0;
+}
+
+static int do_e1000_eeprom_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+		int argc, char *argv[])
+{
+	unsigned int length;
+	const void *source;
+	u16 offset;
+
+	if (argc != 4) {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Parse the arguments */
+	source = (const void *)simple_strtoul(argv[1], NULL, 16);
+	offset = simple_strtoul(argv[2], NULL, 0);
+	length = simple_strtoul(argv[3], NULL, 0);
+
+	/* Acquire the EEPROM */
+	if (e1000_acquire_eeprom(hw)) {
+		printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+		return 1;
+	}
+
+	/* Perform the programming operation */
+	if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) {
+		printf("%s: Interrupted!\n", hw->nic->name);
+		e1000_release_eeprom(hw);
+		return 1;
+	}
+
+	e1000_release_eeprom(hw);
+	printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
+	return 0;
+}
+
+static int do_e1000_eeprom_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+		int argc, char *argv[])
+{
+	uint16_t i, length, checksum, checksum_reg;
+	uint16_t *buffer;
+	boolean_t upd;
+
+	if (argc == 1)
+		upd = 0;
+	else if ((argc == 2) && !strcmp(argv[1], "update"))
+		upd = 1;
+	else {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Allocate a temporary buffer */
+	length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
+	buffer = malloc(length);
+	if (!buffer) {
+		printf("%s: ERROR: Unable to allocate EEPROM buffer!\n",
+				hw->nic->name);
+		return 1;
+	}
+
+	/* Acquire the EEPROM */
+	if (e1000_acquire_eeprom(hw)) {
+		printf("%s: EEPROM SPI cannot be acquired!", hw->nic->name);
+		return 1;
+	}
+
+	/* Read the EEPROM */
+	if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) {
+		printf("%s: Interrupted!\n", hw->nic->name);
+		e1000_release_eeprom(hw);
+		return 1;
+	}
+
+	/* Compute the checksum and read the expected value */
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+		checksum += le16_to_cpu(buffer[i]);
+	checksum = ((uint16_t)EEPROM_SUM) - checksum;
+	checksum_reg = le16_to_cpu(buffer[i]);
+
+	/* Verify it! */
+	if (checksum_reg == checksum) {
+		printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
+				hw->nic->name, checksum);
+		e1000_release_eeprom(hw);
+		return 0;
+	}
+
+	/* Hrm, verification failed, print an error */
+	printf("%s: ERROR: EEPROM checksum is incorrect!\n", hw->nic->name);
+	printf("%s: ERROR:   ...register was 0x%04hx, calculated 0x%04hx\n",
+			hw->nic->name, checksum_reg, checksum);
+
+	/* If they didn't ask us to update it, just return an error */
+	if (!upd) {
+		e1000_release_eeprom(hw);
+		return 1;
+	}
+
+	/* Ok, correct it! */
+	printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
+	buffer[i] = cpu_to_le16(checksum);
+	if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
+			sizeof(uint16_t), TRUE)) {
+		printf("%s: Interrupted!\n", hw->nic->name);
+		e1000_release_eeprom(hw);
+		return 1;
+	}
+
+	e1000_release_eeprom(hw);
+	return 0;
+}
+
+int do_e1000(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	struct e1000_hw *hw;
+
+	if (argc < 4) {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Make sure we can find the requested e1000 card */
+	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
+	if (!hw) {
+		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
+		return 1;
+	}
+
+	/* We only support an "eeprom" sub-command right now */
+	if (strcmp(argv[2], "eeprom")) {
+		cmd_usage(cmdtp);
+		return 1;
+	}
+
+	/* Make sure it has an SPI chip */
+	if (hw->eeprom.type != e1000_eeprom_spi) {
+		printf("%s: No attached SPI EEPROM found!\n", hw->nic->name);
+		return 1;
+	}
+
+	/* Check the eeprom sub-sub-command arguments */
+	if (!strcmp(argv[3], "show"))
+		return do_e1000_eeprom_show(cmdtp, hw, argc - 3, argv + 3);
+
+	if (!strcmp(argv[3], "dump"))
+		return do_e1000_eeprom_dump(cmdtp, hw, argc - 3, argv + 3);
+
+	if (!strcmp(argv[3], "program"))
+		return do_e1000_eeprom_program(cmdtp, hw, argc - 3, argv + 3);
+
+	if (!strcmp(argv[3], "checksum"))
+		return do_e1000_eeprom_checksum(cmdtp, hw, argc - 3, argv + 3);
+
+	cmd_usage(cmdtp);
+	return 1;
+}
+
+U_BOOT_CMD(
+	e1000, 7, 0, do_e1000,
+	"Intel e1000 controller management",
+	/*  */"<card#> eeprom show [<offset> [<length>]]\n"
+	"e1000 <card#> eeprom dump <addr> <offset> <length>\n"
+	"e1000 <card#> eeprom program <addr> <offset> <length>\n"
+	"e1000 <card#> eeprom checksum [update]\n"
+	"       - Manage the e1000 card's SPI EEPROM"
+);
+
+#endif /* CONFIG_CMD_E1000 */
diff --git a/drivers/net/e1000.h b/drivers/net/e1000.h
index 8573511..68a3409 100644
--- a/drivers/net/e1000.h
+++ b/drivers/net/e1000.h
@@ -34,6 +34,7 @@
 #define _E1000_HW_H_
 
 #include <common.h>
+#include <linux/list.h>
 #include <malloc.h>
 #include <net.h>
 #include <netdev.h>
@@ -1043,6 +1044,7 @@ typedef enum {
 
 /* Structure containing variables used by the shared code (e1000_hw.c) */
 struct e1000_hw {
+	struct list_head list_node;
 	struct eth_device *nic;
 	unsigned int cardnum;
 
-- 
1.7.2.3



More information about the U-Boot mailing list