[U-Boot] [PATCH 1/2] nand: Freescale Integrated Flash Controller NAND support
Kumar Gala
galak at kernel.crashing.org
Thu Jul 28 21:37:16 CEST 2011
From: Dipen Dudhat <Dipen.Dudhat at freescale.com>
Add NAND support (including spl) on IFC, such as is found on the p1010.
Note that using hardware ECC on IFC with small-page NAND (which is what
comes on the p1010rdb reference board) means there will be insufficient
OOB space for JFFS2, since IFC does not support 1-bit ECC. UBI should
work, as it does not use OOB for anything but ECC.
When hardware ECC is not enabled in CSOR, software ECC is now used.
Signed-off-by: Dipen Dudhat <Dipen.Dudhat at freescale.com>
[scottwood at freescale.com: ECC rework and misc fixes]
Signed-off-by: Scott Wood <scottwood at freescale.com>
---
arch/powerpc/cpu/mpc85xx/cpu_init_nand.c | 10 +
arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds | 18 +-
arch/powerpc/include/asm/fsl_ifc.h | 6 +-
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/fsl_ifc_nand.c | 850 ++++++++++++++++++++++++++
nand_spl/nand_boot_fsl_ifc.c | 268 ++++++++
6 files changed, 1146 insertions(+), 7 deletions(-)
create mode 100644 drivers/mtd/nand/fsl_ifc_nand.c
create mode 100644 nand_spl/nand_boot_fsl_ifc.c
diff --git a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
index 796d398..6d01479 100644
--- a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
+++ b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
@@ -21,10 +21,12 @@
*/
#include <common.h>
+#include <asm/fsl_ifc.h>
#include <asm/io.h>
void cpu_init_f(void)
{
+#ifdef CONFIG_FSL_LBC
fsl_lbc_t *lbc = LBC_BASE_ADDR;
/*
@@ -39,6 +41,14 @@ void cpu_init_f(void)
#else
#error CONFIG_SYS_NAND_BR_PRELIM, CONFIG_SYS_NAND_OR_PRELIM must be defined
#endif
+#endif
+#ifdef CONFIG_FSL_IFC
+#if defined(CONFIG_SYS_CSPR0) && defined(CONFIG_SYS_CSOR0)
+ set_ifc_cspr(IFC_CS0, CONFIG_SYS_CSPR0);
+ set_ifc_amask(IFC_CS0, CONFIG_SYS_AMASK0);
+ set_ifc_csor(IFC_CS0, CONFIG_SYS_CSOR0);
+#endif
+#endif
#if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L2_ADDR)
ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR;
diff --git a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
index 8410bd7..852f9aa 100644
--- a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
+++ b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
@@ -23,6 +23,8 @@
* MA 02111-1307 USA
*/
+#include "config.h" /* CONFIG_BOARDDIR */
+
OUTPUT_ARCH(powerpc)
SECTIONS
{
@@ -52,8 +54,18 @@ SECTIONS
. = ALIGN(8);
__init_begin = .;
__init_end = .;
-
- .resetvec ADDR(.text) + 0xffc : {
+#if defined(CONFIG_FSL_IFC) /* Restrict bootpg at 4K boundry for IFC */
+ .bootpg ADDR(.text) + 0x1000 :
+ {
+ start.o (.bootpg)
+ }
+#define RESET_VECTOR_OFFSET 0x1ffc /* IFC has 8K sram */
+#elif defined(CONFIG_FSL_ELBC)
+#define RESET_VECTOR_OFFSET 0xffc /* LBC has 4k sram */
+#else
+#error unknown NAND controller
+#endif
+ .resetvec ADDR(.text) + RESET_VECTOR_OFFSET : {
KEEP(*(.resetvec))
} = 0xffff
@@ -64,4 +76,4 @@ SECTIONS
}
__bss_end__ = .;
}
-ASSERT(__init_end <= 0xfff00ffc, "NAND bootstrap too big");
+ASSERT(__init_end <= (0xfff00000 + RESET_VECTOR_OFFSET), "NAND bootstrap too big");
diff --git a/arch/powerpc/include/asm/fsl_ifc.h b/arch/powerpc/include/asm/fsl_ifc.h
index d4d9809..fb12363 100644
--- a/arch/powerpc/include/asm/fsl_ifc.h
+++ b/arch/powerpc/include/asm/fsl_ifc.h
@@ -69,6 +69,7 @@
*/
/* Enable ECC Encoder */
#define CSOR_NAND_ECC_ENC_EN 0x80000000
+#define CSOR_NAND_ECC_MODE_MASK 0x30000000
/* 4 bit correction per 520 Byte sector */
#define CSOR_NAND_ECC_MODE_4 0x00000000
/* 8 bit correction per 528 Byte sector */
@@ -857,10 +858,7 @@ struct fsl_ifc_nand {
u32 res19[0x10];
u32 nand_fsr;
u32 res20;
- u32 nand_eccstat0;
- u32 nand_eccstat1;
- u32 nand_eccstat2;
- u32 nand_eccstat3;
+ u32 nand_eccstat[4];
u32 res21[0x20];
u32 nanndcr;
u32 res22[0x2];
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8b598f6..3353dcd 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -37,6 +37,7 @@ COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o
COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
+COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
new file mode 100644
index 0000000..b3f3c3c
--- /dev/null
+++ b/drivers/mtd/nand/fsl_ifc_nand.c
@@ -0,0 +1,850 @@
+/* Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+#include <asm/fsl_ifc.h>
+
+#define MAX_BANKS 4
+#define ERR_BYTE 0xFF /* Value returned for read bytes
+ when read failed */
+#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC
+ NAND Machine */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ struct fsl_ifc_ctrl *ctrl;
+
+ struct device *dev;
+ int bank; /* Chip select bank number */
+ unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+ u8 __iomem *vbase; /* Chip select base virtual address */
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_ctrl {
+ struct nand_hw_control controller;
+ struct fsl_ifc_mtd *chips[MAX_BANKS];
+
+ /* device info */
+ struct fsl_ifc *regs;
+ uint8_t __iomem *addr; /* Address of assigned IFC buffer */
+ unsigned int cs_nand; /* On which chipsel NAND is connected */
+ unsigned int page; /* Last page written to / read from */
+ unsigned int read_bytes; /* Number of bytes read during command */
+ unsigned int column; /* Saved column from SEQIN */
+ unsigned int index; /* Pointer to next byte to 'read' */
+ unsigned int status; /* status read from NEESR after last op */
+ unsigned int oob; /* Non zero if operating on OOB data */
+ unsigned int eccread; /* Non zero for a full-page ECC read */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/* 512-byte page with 4-bit ECC, 8-bit */
+static struct nand_ecclayout oob_512_8bit_ecc4 = {
+ .eccbytes = 8,
+ .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+ .oobfree = { {0, 5}, {6, 2} },
+};
+
+/* 512-byte page with 4-bit ECC, 16-bit */
+static struct nand_ecclayout oob_512_16bit_ecc4 = {
+ .eccbytes = 8,
+ .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+ .oobfree = { {2, 6}, },
+};
+
+/* 2048-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_2048_ecc4 = {
+ .eccbytes = 32,
+ .eccpos = {
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ },
+ .oobfree = { {2, 6}, {40, 24} },
+};
+
+/* 4096-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_4096_ecc4 = {
+ .eccbytes = 64,
+ .eccpos = {
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 66, 67, 68, 69, 70, 71,
+ },
+ .oobfree = { {2, 6}, {72, 56} },
+};
+
+/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_4096_ecc8 = {
+ .eccbytes = 128,
+ .eccpos = {
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 66, 67, 68, 69, 70, 71,
+ 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87,
+ 88, 89, 90, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99, 100, 101, 102, 103,
+ 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 132, 133, 134, 135,
+ },
+ .oobfree = { {2, 6}, {136, 82} },
+};
+
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 2, /* 0 on 8-bit small page */
+ .len = 4,
+ .veroffs = 6,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 2, /* 0 on 8-bit small page */
+ .len = 4,
+ .veroffs = 6,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ int buf_num;
+
+ ctrl->page = page_addr;
+
+ /* Program ROW0/COL0 */
+ out_be32(&ifc->ifc_nand.row0, page_addr);
+ out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+ buf_num = page_addr & priv->bufnum_mask;
+
+ ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+ ctrl->index = column;
+
+ /* for OOB data point to the second half of the buffer */
+ if (oob)
+ ctrl->index += mtd->writesize;
+}
+
+static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+ unsigned int bufnum)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
+ u32 __iomem *main = (u32 *)addr;
+ u8 __iomem *oob = addr + mtd->writesize;
+ int i;
+
+ for (i = 0; i < mtd->writesize / 4; i++) {
+ if (__raw_readl(&main[i]) != 0xffffffff)
+ return 0;
+ }
+
+ for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
+ int pos = chip->ecc.layout->eccpos[i];
+
+ if (__raw_readb(&oob[pos]) != 0xff)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+ u32 *eccstat, unsigned int bufnum)
+{
+ u32 reg = eccstat[bufnum / 4];
+ int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+ if (errors == 15) { /* uncorrectable */
+ /* Blank pages fail hw ECC checks */
+ if (is_blank(mtd, ctrl, bufnum))
+ return 1;
+
+ /*
+ * We disable ECCER reporting in hardware due to
+ * erratum IFC-A002770 -- so report it now if we
+ * see an uncorrectable error in ECCSTAT.
+ */
+ ctrl->status |= IFC_NAND_EVTER_STAT_ECCER;
+ } else if (errors > 0) {
+ mtd->ecc_stats.corrected += errors;
+ }
+
+ return 0;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static int fsl_ifc_run_command(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ long long end_tick;
+ u32 eccstat[4];
+ int i;
+
+ /* set the chip select for NAND Transaction */
+ out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
+
+ /* start read/write seq */
+ out_be32(&ifc->ifc_nand.nandseq_strt,
+ IFC_NAND_SEQ_STRT_FIR_STRT);
+
+ /* wait for NAND Machine complete flag or timeout */
+ end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();
+
+ while (end_tick > get_ticks()) {
+ ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+
+ if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
+ break;
+ }
+
+ out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);
+
+ if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
+ printf("%s: Flash Time Out Error\n", __func__);
+ if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
+ printf("%s: Write Protect Error\n", __func__);
+
+ if (ctrl->eccread) {
+ int bufperpage = mtd->writesize / 512;
+ int bufnum = (ctrl->page & priv->bufnum_mask) * bufperpage;
+ int bufnum_end = bufnum + bufperpage - 1;
+
+ for (i = bufnum / 4; i <= bufnum_end / 4; i++)
+ eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+ for (i = bufnum; i <= bufnum_end; i++) {
+ if (check_read_ecc(mtd, ctrl, eccstat, i))
+ break;
+ }
+
+ ctrl->eccread = 0;
+ }
+
+ /* returns 0 on success otherwise non-zero) */
+ return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+ int oob,
+ struct mtd_info *mtd)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+
+ /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+ if (mtd->writesize > 512) {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+ } else {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+
+ if (oob)
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+ else
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+ }
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+
+ /* clear the read buffer */
+ ctrl->read_bytes = 0;
+ if (command != NAND_CMD_PAGEPROG)
+ ctrl->index = 0;
+
+ switch (command) {
+ /* READ0 read the entire buffer to use hardware ECC. */
+ case NAND_CMD_READ0: {
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+ set_addr(mtd, 0, page_addr, 0);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+ ctrl->index += column;
+
+ if (chip->ecc.mode == NAND_ECC_HW)
+ ctrl->eccread = 1;
+
+ fsl_ifc_do_read(chip, 0, mtd);
+ fsl_ifc_run_command(mtd);
+ return;
+ }
+
+ /* READOOB reads only the OOB because no ECC is performed. */
+ case NAND_CMD_READOOB:
+ out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+ set_addr(mtd, column, page_addr, 1);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+ fsl_ifc_do_read(chip, 1, mtd);
+ fsl_ifc_run_command(mtd);
+
+ return;
+
+ /* READID must read all possible bytes while CEB is active */
+ case NAND_CMD_READID:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+ /* 4 bytes for manuf, device and exts */
+ out_be32(&ifc->ifc_nand.nand_fbcr, 4);
+ ctrl->read_bytes = 4;
+
+ set_addr(mtd, 0, 0, 0);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* ERASE1 stores the block and page address */
+ case NAND_CMD_ERASE1:
+ set_addr(mtd, 0, page_addr, 0);
+ return;
+
+ /* ERASE2 uses the block and page address from ERASE1 */
+ case NAND_CMD_ERASE2:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+ ctrl->read_bytes = 0;
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* SEQIN sets up the addr buffer and all registers except the length */
+ case NAND_CMD_SEQIN: {
+ u32 nand_fcr0;
+ ctrl->column = column;
+ ctrl->oob = 0;
+
+ if (mtd->writesize > 512) {
+ nand_fcr0 =
+ (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0);
+ } else {
+ nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+ IFC_NAND_FCR0_CMD1_SHIFT) |
+ (NAND_CMD_SEQIN <<
+ IFC_NAND_FCR0_CMD2_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1,
+ (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+ if (column >= mtd->writesize) {
+ /* OOB area --> READOOB */
+ column -= mtd->writesize;
+ nand_fcr0 |= NAND_CMD_READOOB <<
+ IFC_NAND_FCR0_CMD0_SHIFT;
+ ctrl->oob = 1;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+ } else {
+ /* Second 256 bytes --> READ1 */
+ nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+ }
+ }
+
+ out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+ set_addr(mtd, column, page_addr, ctrl->oob);
+ return;
+ }
+
+ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+ case NAND_CMD_PAGEPROG:
+ if (ctrl->oob)
+ out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index);
+ else
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+ fsl_ifc_run_command(mtd);
+ return;
+
+ case NAND_CMD_STATUS:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ /* Chip sometimes reporting write protect even when it's not */
+ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+ return;
+
+ case NAND_CMD_RESET:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ default:
+ printf("%s: error, unsupported command 0x%x.\n",
+ __func__, command);
+ }
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+ if (len <= 0) {
+ printf("%s of %d bytes", __func__, len);
+ ctrl->status = 0;
+ return;
+ }
+
+ if ((unsigned int)len > bufsize - ctrl->index) {
+ printf("%s beyond end of buffer "
+ "(%d requested, %u available)\n",
+ __func__, len, bufsize - ctrl->index);
+ len = bufsize - ctrl->index;
+ }
+
+ memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+ ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ /* If there are still bytes in the IFC buffer, then use the
+ * next byte. */
+ if (ctrl->index < ctrl->read_bytes)
+ return in_8(&ctrl->addr[ctrl->index++]);
+
+ printf("%s beyond end of buffer\n", __func__);
+ return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint16_t data;
+
+ /*
+ * If there are still bytes in the IFC buffer, then use the
+ * next byte.
+ */
+ if (ctrl->index < ctrl->read_bytes) {
+ data = in_be16((uint16_t *)&ctrl->
+ addr[ctrl->index]);
+ ctrl->index += 2;
+ return (uint8_t)data;
+ }
+
+ printf("%s beyond end of buffer\n", __func__);
+ return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int avail;
+
+ if (len < 0)
+ return;
+
+ avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+ memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+ ctrl->index += avail;
+
+ if (len > avail)
+ printf("%s beyond end of buffer "
+ "(%d requested, %d available)\n",
+ __func__, len, avail);
+}
+
+/*
+ * Verify buffer against the IFC Controller Data Buffer
+ */
+static int fsl_ifc_verify_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int i;
+
+ if (len < 0) {
+ printf("%s of %d bytes", __func__, len);
+ return -EINVAL;
+ }
+
+ if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+ printf("%s beyond end of buffer "
+ "(%d requested, %u available)\n",
+ __func__, len, ctrl->read_bytes - ctrl->index);
+
+ ctrl->index = ctrl->read_bytes;
+ return -EINVAL;
+ }
+
+ for (i = 0; i < len; i++)
+ if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+ break;
+
+ ctrl->index += len;
+ return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ u32 nand_fsr;
+
+ if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+ return NAND_STATUS_FAIL;
+
+ /* Use READ_STATUS command, but wait for the device to be ready */
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+ IFC_NAND_FCR0_CMD0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+ return NAND_STATUS_FAIL;
+
+ nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+ /* Chip sometimes reporting write protect even when it's not */
+ nand_fsr = nand_fsr | NAND_STATUS_WP;
+ return nand_fsr;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ fsl_ifc_read_buf(mtd, buf, mtd->writesize);
+ fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+ mtd->ecc_stats.failed++;
+
+ return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_ifc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ fsl_ifc_write_buf(mtd, buf, mtd->writesize);
+ fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static void fsl_ifc_ctrl_init(void)
+{
+ ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+ if (!ifc_ctrl)
+ return;
+
+ ifc_ctrl->regs = IFC_BASE_ADDR;
+
+ /* clear event registers */
+ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U);
+ out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U);
+
+ /* Enable error and event for any detected errors */
+ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en,
+ IFC_NAND_EVTER_EN_OPC_EN |
+ IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+ IFC_NAND_EVTER_EN_FTOER_EN |
+ IFC_NAND_EVTER_EN_WPER_EN);
+
+ out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0);
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+ struct fsl_ifc_mtd *priv;
+ struct nand_ecclayout *layout;
+ uint32_t cspr = 0, csor = 0;
+
+ if (!ifc_ctrl) {
+ fsl_ifc_ctrl_init();
+ if (!ifc_ctrl)
+ return -1;
+ }
+
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->ctrl = ifc_ctrl;
+ priv->vbase = nand->IO_ADDR_R;
+
+ /* Find which chip select it is connected to.
+ */
+ for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+ phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);
+
+ cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr);
+ csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor);
+
+ if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
+ (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) {
+ ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
+ break;
+ }
+ }
+
+ if (priv->bank >= MAX_BANKS) {
+ printf("%s: address did not match any "
+ "chip selects\n", __func__);
+ return -ENODEV;
+ }
+
+ ifc_ctrl->chips[priv->bank] = priv;
+
+ /* fill in nand_chip structure */
+ /* set up function call table */
+
+ nand->write_buf = fsl_ifc_write_buf;
+ nand->read_buf = fsl_ifc_read_buf;
+ nand->verify_buf = fsl_ifc_verify_buf;
+ nand->select_chip = fsl_ifc_select_chip;
+ nand->cmdfunc = fsl_ifc_cmdfunc;
+ nand->waitfunc = fsl_ifc_wait;
+
+ /* set up nand options */
+ nand->bbt_td = &bbt_main_descr;
+ nand->bbt_md = &bbt_mirror_descr;
+
+ /* set up nand options */
+ nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
+ NAND_USE_FLASH_BBT;
+
+ if (cspr & CSPR_PORT_SIZE_16) {
+ nand->read_byte = fsl_ifc_read_byte16;
+ nand->options |= NAND_BUSWIDTH_16;
+ } else {
+ nand->read_byte = fsl_ifc_read_byte;
+ }
+
+ nand->controller = &ifc_ctrl->controller;
+ nand->priv = priv;
+
+ nand->ecc.read_page = fsl_ifc_read_page;
+ nand->ecc.write_page = fsl_ifc_write_page;
+
+ /* Hardware generates ECC per 512 Bytes */
+ nand->ecc.size = 512;
+ nand->ecc.bytes = 8;
+
+ switch (csor & CSOR_NAND_PGS_MASK) {
+ case CSOR_NAND_PGS_512:
+ if (nand->options & NAND_BUSWIDTH_16) {
+ layout = &oob_512_16bit_ecc4;
+ } else {
+ layout = &oob_512_8bit_ecc4;
+
+ /* Avoid conflict with bad block marker */
+ bbt_main_descr.offs = 0;
+ bbt_mirror_descr.offs = 0;
+ }
+
+ priv->bufnum_mask = 15;
+ break;
+
+ case CSOR_NAND_PGS_2K:
+ layout = &oob_2048_ecc4;
+ priv->bufnum_mask = 3;
+ break;
+
+ case CSOR_NAND_PGS_4K:
+ if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+ CSOR_NAND_ECC_MODE_4) {
+ layout = &oob_4096_ecc4;
+ } else {
+ layout = &oob_4096_ecc8;
+ nand->ecc.bytes = 16;
+ }
+
+ priv->bufnum_mask = 1;
+ break;
+
+ default:
+ printf("ifc nand: bad csor %#x: bad page size\n", csor);
+ return -ENODEV;
+ }
+
+ /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+ if (csor & CSOR_NAND_ECC_DEC_EN) {
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.layout = layout;
+ } else {
+ nand->ecc.mode = NAND_ECC_SOFT;
+ }
+
+ return 0;
+}
diff --git a/nand_spl/nand_boot_fsl_ifc.c b/nand_spl/nand_boot_fsl_ifc.c
new file mode 100644
index 0000000..4948e70
--- /dev/null
+++ b/nand_spl/nand_boot_fsl_ifc.c
@@ -0,0 +1,268 @@
+/*
+ * NAND boot for Freescale Integrated Flash Controller, NAND Flash Control Machine
+ *
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ * Author: Dipen Dudhat <dipen.dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/fsl_ifc.h>
+#include <linux/mtd/nand.h>
+
+static inline int is_blank(uchar *addr, int page_size)
+{
+ int i;
+
+ for (i = 0; i < page_size; i++) {
+ if (__raw_readb(&addr[i]) != 0xff)
+ return 0;
+ }
+
+ /*
+ * For the SPL, don't worry about uncorrectable errors
+ * where the main area is all FFs but shouldn't be.
+ */
+ return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static inline int check_read_ecc(uchar *buf, u32 *eccstat,
+ unsigned int bufnum, int page_size)
+{
+ u32 reg = eccstat[bufnum / 4];
+ int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+ if (errors == 15) { /* uncorrectable */
+ /* Blank pages fail hw ECC checks */
+ if (is_blank(buf, page_size))
+ return 1;
+
+ puts("ecc error\n");
+ for (;;);
+ }
+
+ return 0;
+}
+
+static inline void nand_wait(uchar *buf, int bufnum, int page_size)
+{
+ struct fsl_ifc *ifc = IFC_BASE_ADDR;
+ u32 status;
+ u32 eccstat[4];
+ int bufperpage = page_size / 512;
+ int bufnum_end, i;
+
+ bufnum *= bufperpage;
+ bufnum_end = bufnum + bufperpage - 1;
+
+ do {
+ status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+ } while (!(status & IFC_NAND_EVTER_STAT_OPC));
+
+ if (status & IFC_NAND_EVTER_STAT_FTOER) {
+ puts("flash time out error\n");
+ for (;;);
+ }
+
+ for (i = bufnum / 4; i <= bufnum_end / 4; i++)
+ eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+ for (i = bufnum; i <= bufnum_end; i++) {
+ if (check_read_ecc(buf, eccstat, i, page_size))
+ break;
+ }
+
+ out_be32(&ifc->ifc_nand.nand_evter_stat, status);
+}
+
+static inline int bad_block(uchar *marker, int port_size)
+{
+ if (port_size == 8)
+ return __raw_readb(marker) != 0xff;
+ else
+ return __raw_readw((u16 *)marker) != 0xffff;
+}
+
+static void nand_load(unsigned int offs, int uboot_size, uchar *dst)
+{
+ struct fsl_ifc *ifc = IFC_BASE_ADDR;
+ uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+ int page_size;
+ int port_size;
+ int pages_per_blk;
+ int blk_size;
+ int bad_marker = 0;
+ int bufnum_mask, bufnum;
+
+ int csor, cspr;
+ int pos = 0;
+ int j = 0;
+
+ int sram_addr;
+ int pg_no;
+
+ /* Get NAND Flash configuration */
+ csor = CONFIG_SYS_NAND_CSOR;
+ cspr = CONFIG_SYS_NAND_CSPR;
+
+ if (!(csor & CSOR_NAND_ECC_DEC_EN)) {
+ /* soft ECC in SPL is unimplemented */
+ puts("WARNING: soft ECC not checked in SPL\n");
+ } else {
+ u32 hwcsor;
+
+ /* make sure board is configured with ECC on boot */
+ hwcsor = in_be32(&ifc->csor_cs[0].csor);
+ if (!(hwcsor & CSOR_NAND_ECC_DEC_EN))
+ puts("WARNING: ECC not checked in SPL, check board cfg\n");
+ }
+
+ port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
+
+ if (csor & CSOR_NAND_PGS_4K) {
+ page_size = 4096;
+ bufnum_mask = 1;
+ } else if (csor & CSOR_NAND_PGS_2K) {
+ page_size = 2048;
+ bufnum_mask = 3;
+ } else {
+ page_size = 512;
+ bufnum_mask = 15;
+
+ if (port_size == 8)
+ bad_marker = 5;
+ }
+
+ pages_per_blk =
+ 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
+
+ blk_size = pages_per_blk * page_size;
+
+ /* Open Full SRAM mapping for spare are access */
+ out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+ /* Clear Boot events */
+ out_be32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
+
+ /* Program FIR/FCR for Large/Small page */
+ if (page_size > 512) {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+ } else {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+ }
+
+ /* Program FBCR = 0 for full page read */
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+ /* Read and copy u-boot on SDRAM from NAND device, In parallel
+ * check for Bad block if found skip it and read continue to
+ * next Block
+ */
+ while (pos < uboot_size) {
+ int i = 0;
+ do {
+ pg_no = offs / page_size;
+ bufnum = pg_no & bufnum_mask;
+ sram_addr = bufnum * page_size * 2;
+
+ out_be32(&ifc->ifc_nand.row0, pg_no);
+ out_be32(&ifc->ifc_nand.col0, 0);
+ /* start read */
+ out_be32(&ifc->ifc_nand.nandseq_strt,
+ IFC_NAND_SEQ_STRT_FIR_STRT);
+
+ /* wait for read to complete */
+ nand_wait(&buf[sram_addr], bufnum, page_size);
+
+ /*
+ * If either of the first two pages are marked bad,
+ * continue to the next block.
+ */
+ if (i++ < 2 &&
+ bad_block(&buf[sram_addr + page_size + bad_marker],
+ port_size)) {
+ puts("skipping\n");
+ offs = (offs + blk_size) & ~(blk_size - 1);
+ pos &= ~(blk_size - 1);
+ break;
+ }
+
+ for (j = 0; j < page_size; j++)
+ dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
+
+ pos += page_size;
+ offs += page_size;
+ } while ((offs & (blk_size - 1)) && (pos < uboot_size));
+ }
+}
+
+/*
+ * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-boot image
+ * from NAND into SDRAM and starts from there.
+ */
+void nand_boot(void)
+{
+ __attribute__((noreturn)) void (*uboot)(void);
+
+ /*
+ * Load U-Boot image from NAND into RAM
+ */
+ nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+ (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+ nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+ (uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+ nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+ (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+
+ /*
+ * Jump to U-Boot image
+ */
+ /*
+ * Clean d-cache and invalidate i-cache, to
+ * make sure that no stale data is executed.
+ */
+ flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+ uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+ uboot();
+}
--
1.7.3.4
More information about the U-Boot
mailing list