[U-Boot] [PATCH 09/20] iMX28: Add GPMI NAND driver
Stefano Babic
sbabic at denx.de
Thu Nov 10 14:12:22 CET 2011
On 11/09/2011 10:18 AM, Marek Vasut wrote:
> Signed-off-by: Marek Vasut <marek.vasut at gmail.com>
> Cc: Scott Wood <scottwood at freescale.com>
> Cc: Stefano Babic <sbabic at denx.de>
> Cc: Wolfgang Denk <wd at denx.de>
> Cc: Detlev Zundel <dzu at denx.de>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/mxs_nand.c | 1118 +++++++++++++++++++++++++++++++++++++++++++
> 2 files changed, 1119 insertions(+), 0 deletions(-)
> create mode 100644 drivers/mtd/nand/mxs_nand.c
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 28bd350..36ee454 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -54,6 +54,7 @@ COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
> COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
> COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
> COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o
> +COBJS-$(CONFIG_NAND_MXS) += mxs_nand.o
> COBJS-$(CONFIG_NAND_NDFC) += ndfc.o
> COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o
> COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
> diff --git a/drivers/mtd/nand/mxs_nand.c b/drivers/mtd/nand/mxs_nand.c
> new file mode 100644
> index 0000000..ce2a326
> --- /dev/null
> +++ b/drivers/mtd/nand/mxs_nand.c
> @@ -0,0 +1,1118 @@
> +/*
> + * Freescale i.MX28 NAND flash driver
> + *
> + * Copyright (C) 2011 Marek Vasut <marek.vasut at gmail.com>
> + * on behalf of DENX Software Engineering GmbH
> + *
> + * Based on code from LTIB:
> + * Freescale GPMI NFC NAND Flash Driver
> + *
> + * Copyright (C) 2010 Freescale Semiconductor, Inc.
> + * Copyright (C) 2008 Embedded Alley Solutions, Inc.
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License along
> + * with this program; if not, write to the Free Software Foundation, Inc.,
> + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
> + */
> +
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/types.h>
> +#include <common.h>
> +#include <malloc.h>
> +#include <asm/errno.h>
> +#include <asm/io.h>
> +#include <asm/arch/clock.h>
> +#include <asm/arch/imx-regs.h>
> +#include <asm/arch/sys_proto.h>
> +#include <asm/arch/dma.h>
> +
> +#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
> +
> +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
> +#define MXS_NAND_METADATA_SIZE 10
> +
> +#define MXS_NAND_COMMAND_BUFFER_SIZE 32
> +
> +#define MXS_NAND_BCH_TIMEOUT 10000
> +
> +struct mxs_nand_info {
> + int cur_chip;
> +
> + uint32_t cmd_queue_len;
> +
> + uint8_t *cmd_buf;
> + uint8_t *data_buf;
> + uint8_t *oob_buf;
> +
> + uint8_t marking_block_bad;
> + uint8_t raw_oob_mode;
> +
> + /* Functions with altered behaviour */
> + int (*hooked_read_oob)(struct mtd_info *mtd,
> + loff_t from, struct mtd_oob_ops *ops);
> + int (*hooked_write_oob)(struct mtd_info *mtd,
> + loff_t to, struct mtd_oob_ops *ops);
> + int (*hooked_block_markbad)(struct mtd_info *mtd,
> + loff_t ofs);
> +
> + /* DMA descriptors */
> + struct mxs_dma_desc **desc;
> + uint32_t desc_index;
> +};
> +
> +struct nand_ecclayout fake_ecc_layout;
> +
> +static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
> +{
> + struct mxs_dma_desc *desc;
> +
> + if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
> + printf("MXS NAND: Too many DMA descriptors requested\n");
> + return NULL;
> + }
> +
> + desc = info->desc[info->desc_index];
> + info->desc_index++;
> +
> + return desc;
> +}
> +
> +static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
> +{
> + int i;
> + struct mxs_dma_desc *desc;
> +
> + for (i = 0; i < info->desc_index; i++) {
> + desc = info->desc[i];
> + memset(desc, 0, sizeof(struct mxs_dma_desc));
> + desc->address = (dma_addr_t)desc;
> + }
> +
> + info->desc_index = 0;
> +}
> +
> +static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
> +{
> + return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
> +}
> +
> +static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
> +{
> + return ecc_strength * 13;
> +}
> +
> +static uint32_t mxs_nand_aux_status_offset(void)
> +{
> + return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
> +}
> +
> +static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
> + uint32_t page_oob_size)
> +{
> + if (page_data_size == 2048)
> + return 8;
> +
> + if (page_data_size == 4096) {
> + if (page_oob_size == 128)
> + return 8;
> +
> + if (page_oob_size == 218)
> + return 16;
> + }
> +
> + return 0;
> +}
> +
> +static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
> + uint32_t ecc_strength)
> +{
> + uint32_t chunk_data_size_in_bits;
> + uint32_t chunk_ecc_size_in_bits;
> + uint32_t chunk_total_size_in_bits;
> + uint32_t block_mark_chunk_number;
> + uint32_t block_mark_chunk_bit_offset;
> + uint32_t block_mark_bit_offset;
> +
> + chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
> + chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
> +
> + chunk_total_size_in_bits =
> + chunk_data_size_in_bits + chunk_ecc_size_in_bits;
> +
> + /* Compute the bit offset of the block mark within the physical page. */
> + block_mark_bit_offset = page_data_size * 8;
> +
> + /* Subtract the metadata bits. */
> + block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
> +
> + /*
> + * Compute the chunk number (starting at zero) in which the block mark
> + * appears.
> + */
> + block_mark_chunk_number =
> + block_mark_bit_offset / chunk_total_size_in_bits;
> +
> + /*
> + * Compute the bit offset of the block mark within its chunk, and
> + * validate it.
> + */
> + block_mark_chunk_bit_offset = block_mark_bit_offset -
> + (block_mark_chunk_number * chunk_total_size_in_bits);
> +
> + if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
> + return 1;
> +
> + /*
> + * Now that we know the chunk number in which the block mark appears,
> + * we can subtract all the ECC bits that appear before it.
> + */
> + block_mark_bit_offset -=
> + block_mark_chunk_number * chunk_ecc_size_in_bits;
> +
> + return block_mark_bit_offset;
> +}
> +
> +static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
> +{
> + uint32_t ecc_strength;
> + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
> + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
> +}
> +
> +static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
> +{
> + uint32_t ecc_strength;
> + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
> + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
> +}
> +
> +/*
> + * Wait for BCH complete IRQ and clear the IRQ
> + */
> +static int mxs_nand_wait_for_bch_complete(void)
> +{
> + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
> + int timeout = MXS_NAND_BCH_TIMEOUT;
> + int ret;
> +
> + ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
> + BCH_CTRL_COMPLETE_IRQ, timeout);
> +
> + writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
> +
> + return ret;
> +}
> +
> +/*
> + * This is the function that we install in the cmd_ctrl function pointer of the
> + * owning struct nand_chip. The only functions in the reference implementation
> + * that use these functions pointers are cmdfunc and select_chip.
> + *
> + * In this driver, we implement our own select_chip, so this function will only
> + * be called by the reference implementation's cmdfunc. For this reason, we can
> + * ignore the chip enable bit and concentrate only on sending bytes to the NAND
> + * Flash.
> + */
> +static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mxs_dma_desc *d;
> + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
> + int ret;
> +
> + /*
> + * If this condition is true, something is _VERY_ wrong in MTD
> + * subsystem!
> + */
> + if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
> + printf("MXS NAND: Command queue too long\n");
> + return;
> + }
> +
> + /*
> + * Every operation begins with a command byte and a series of zero or
> + * more address bytes. These are distinguished by either the Address
> + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
> + * asserted. When MTD is ready to execute the command, it will
> + * deasert both latch enables.
> + *
> + * Rather than run a separate DMA operation for every single byte, we
> + * queue them up and run a single DMA operation for the entire series
> + * of command and data bytes.
> + */
> + if (ctrl & (NAND_ALE | NAND_CLE)) {
> + if (data != NAND_CMD_NONE)
> + nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
> + return;
> + }
> +
> + /*
> + * If control arrives here, MTD has deasserted both the ALE and CLE,
> + * which means it's ready to run an operation. Check if we have any
> + * bytes to send.
> + */
> + if (nand_info->cmd_queue_len == 0)
> + return;
> +
> + /* Compile the DMA descriptor -- a descriptor that sends command. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
> + MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
> + (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
> +
> + d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WRITE |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_CLE |
> + GPMI_CTRL0_ADDRESS_INCREMENT |
> + nand_info->cmd_queue_len;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Execute the DMA chain. */
> + ret = mxs_dma_go(channel);
> + if (ret)
> + printf("MXS NAND: Error sending command\n");
> +
> + mxs_nand_return_dma_descs(nand_info);
> +
> + /* Reset the command queue. */
> + nand_info->cmd_queue_len = 0;
> +}
> +
> +/*
> + * Test if the NAND flash is ready.
> + */
> +static int mxs_nand_device_ready(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct mxs_nand_info *nand_info = chip->priv;
> + struct mx28_gpmi_regs *gpmi_regs =
> + (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
> + uint32_t tmp;
> +
> + tmp = readl(&gpmi_regs->hw_gpmi_stat);
> + tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
> +
> + return tmp & 1;
> +}
> +
> +/*
> + * Select the NAND chip.
> + */
> +static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct mxs_nand_info *nand_info = nand->priv;
> +
> + nand_info->cur_chip = chip;
> +}
> +
> +/*
> + * Handle block mark swapping.
> + *
> + * Note that, when this function is called, it doesn't know whether it's
> + * swapping the block mark, or swapping it *back* -- but it doesn't matter
> + * because the the operation is the same.
> + */
> +static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
> + uint8_t *data_buf, uint8_t *oob_buf)
> +{
> + uint32_t bit_offset;
> + uint32_t buf_offset;
> +
> + uint32_t src;
> + uint32_t dst;
> +
> + bit_offset = mxs_nand_mark_bit_offset(mtd);
> + buf_offset = mxs_nand_mark_byte_offset(mtd);
> +
> + /*
> + * Get the byte from the data area that overlays the block mark. Since
> + * the ECC engine applies its own view to the bits in the page, the
> + * physical block mark won't (in general) appear on a byte boundary in
> + * the data.
> + */
> + src = data_buf[buf_offset] >> bit_offset;
> + src |= data_buf[buf_offset + 1] << (8 - bit_offset);
> +
> + dst = oob_buf[0];
> +
> + oob_buf[0] = src;
> +
> + data_buf[buf_offset] &= ~(0xff << bit_offset);
> + data_buf[buf_offset + 1] &= 0xff << bit_offset;
> +
> + data_buf[buf_offset] |= dst << bit_offset;
> + data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
> +}
> +
> +/*
> + * Read data from NAND.
> + */
> +static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mxs_dma_desc *d;
> + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
> + int ret;
> +
> + if (length > NAND_MAX_PAGESIZE) {
> + printf("MXS NAND: DMA buffer too big\n");
> + return;
> + }
> +
> + if (!buf) {
> + printf("MXS NAND: DMA buffer is NULL\n");
> + return;
> + }
> +
> + /* Compile the DMA descriptor - a descriptor that reads data. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
> + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
> + (length << MXS_DMA_DESC_BYTES_OFFSET);
> +
> + d->cmd.address = (dma_addr_t)nand_info->data_buf;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_READ |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA |
> + length;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /*
> + * A DMA descriptor that waits for the command to end and the chip to
> + * become ready.
> + *
> + * I think we actually should *not* be waiting for the chip to become
> + * ready because, after all, we don't care. I think the original code
> + * did that and no one has re-thought it yet.
> + */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
> + MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
> +
> + d->cmd.address = 0;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Execute the DMA chain. */
> + ret = mxs_dma_go(channel);
> + if (ret) {
> + printf("MXS NAND: DMA read error\n");
> + goto rtn;
> + }
> +
> + memcpy(buf, nand_info->data_buf, length);
> +
> +rtn:
> + mxs_nand_return_dma_descs(nand_info);
> +}
> +
> +/*
> + * Write data to NAND.
> + */
> +static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
> + int length)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mxs_dma_desc *d;
> + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
> + int ret;
> +
> + if (length > NAND_MAX_PAGESIZE) {
> + printf("MXS NAND: DMA buffer too big\n");
> + return;
> + }
> +
> + if (!buf) {
> + printf("MXS NAND: DMA buffer is NULL\n");
> + return;
> + }
> +
> + memcpy(nand_info->data_buf, buf, length);
> +
> + /* Compile the DMA descriptor - a descriptor that writes data. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
> + (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
> + (length << MXS_DMA_DESC_BYTES_OFFSET);
> +
> + d->cmd.address = (dma_addr_t)nand_info->data_buf;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WRITE |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA |
> + length;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Execute the DMA chain. */
> + ret = mxs_dma_go(channel);
> + if (ret)
> + printf("MXS NAND: DMA write error\n");
> +
> + mxs_nand_return_dma_descs(nand_info);
> +}
> +
> +/*
> + * Read a single byte from NAND.
> + */
> +static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
> +{
> + uint8_t buf;
> + mxs_nand_read_buf(mtd, &buf, 1);
> + return buf;
> +}
> +
> +/*
> + * Read a page from NAND.
> + */
> +static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
> + uint8_t *buf, int page)
> +{
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mxs_dma_desc *d;
> + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
> + uint32_t corrected = 0, failed = 0;
> + uint8_t *status;
> + int i, ret;
> +
> + /* Compile the DMA descriptor - wait for ready. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
> + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
> + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
> +
> + d->cmd.address = 0;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Compile the DMA descriptor - enable the BCH block and read. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
> + MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
> +
> + d->cmd.address = 0;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_READ |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA |
> + (mtd->writesize + mtd->oobsize);
> + d->cmd.pio_words[1] = 0;
> + d->cmd.pio_words[2] =
> + GPMI_ECCCTRL_ENABLE_ECC |
> + GPMI_ECCCTRL_ECC_CMD_DECODE |
> + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
> + d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
> + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
> + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Compile the DMA descriptor - disable the BCH block. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
> + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
> + (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
> +
> + d->cmd.address = 0;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA |
> + (mtd->writesize + mtd->oobsize);
> + d->cmd.pio_words[1] = 0;
> + d->cmd.pio_words[2] = 0;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_DEC_SEM;
> +
> + d->cmd.address = 0;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Execute the DMA chain. */
> + ret = mxs_dma_go(channel);
> + if (ret) {
> + printf("MXS NAND: DMA read error\n");
> + goto rtn;
> + }
> +
> + ret = mxs_nand_wait_for_bch_complete();
> + if (ret) {
> + printf("MXS NAND: BCH read timeout\n");
> + goto rtn;
> + }
> +
> + /* Read DMA completed, now do the mark swapping. */
> + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
> +
> + /* Loop over status bytes, accumulating ECC status. */
> + status = nand_info->oob_buf + mxs_nand_aux_status_offset();
> + for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
> + if (status[i] == 0x00)
> + continue;
> +
> + if (status[i] == 0xff)
> + continue;
> +
> + if (status[i] == 0xfe) {
> + failed++;
> + continue;
> + }
> +
> + corrected += status[i];
> + }
> +
> + /* Propagate ECC status to the owning MTD. */
> + mtd->ecc_stats.failed += failed;
> + mtd->ecc_stats.corrected += corrected;
> +
> + /*
> + * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
> + * details about our policy for delivering the OOB.
> + *
> + * We fill the caller's buffer with set bits, and then copy the block
> + * mark to the caller's buffer. Note that, if block mark swapping was
> + * necessary, it has already been done, so we can rely on the first
> + * byte of the auxiliary buffer to contain the block mark.
> + */
> + memset(nand->oob_poi, 0xff, mtd->oobsize);
> +
> + nand->oob_poi[0] = nand_info->oob_buf[0];
> +
> + memcpy(buf, nand_info->data_buf, mtd->writesize);
> +
> +rtn:
> + mxs_nand_return_dma_descs(nand_info);
> +
> + return ret;
> +}
> +
> +/*
> + * Write a page to NAND.
> + */
> +static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
> + struct nand_chip *nand, const uint8_t *buf)
> +{
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mxs_dma_desc *d;
> + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
> + int ret;
> +
> + memcpy(nand_info->data_buf, buf, mtd->writesize);
> + memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
> +
> + /* Handle block mark swapping. */
> + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
> +
> + /* Compile the DMA descriptor - write data. */
> + d = mxs_nand_get_dma_desc(nand_info);
> + d->cmd.data =
> + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
> + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
> + (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
> +
> + d->cmd.address = 0;
> +
> + d->cmd.pio_words[0] =
> + GPMI_CTRL0_COMMAND_MODE_WRITE |
> + GPMI_CTRL0_WORD_LENGTH |
> + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
> + GPMI_CTRL0_ADDRESS_NAND_DATA;
> + d->cmd.pio_words[1] = 0;
> + d->cmd.pio_words[2] =
> + GPMI_ECCCTRL_ENABLE_ECC |
> + GPMI_ECCCTRL_ECC_CMD_ENCODE |
> + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
> + d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
> + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
> + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
> +
> + mxs_dma_desc_append(channel, d);
> +
> + /* Execute the DMA chain. */
> + ret = mxs_dma_go(channel);
> + if (ret) {
> + printf("MXS NAND: DMA write error\n");
> + goto rtn;
> + }
> +
> + ret = mxs_nand_wait_for_bch_complete();
> + if (ret) {
> + printf("MXS NAND: BCH write timeout\n");
> + goto rtn;
> + }
> +
> +rtn:
> + mxs_nand_return_dma_descs(nand_info);
> +}
> +
> +/*
> + * Read OOB from NAND.
> + *
> + * This function is a veneer that replaces the function originally installed by
> + * the NAND Flash MTD code.
> + */
> +static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
> + struct mtd_oob_ops *ops)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct mxs_nand_info *nand_info = chip->priv;
> + int ret;
> +
> + if (ops->mode == MTD_OOB_RAW)
> + nand_info->raw_oob_mode = 1;
> + else
> + nand_info->raw_oob_mode = 0;
> +
> + ret = nand_info->hooked_read_oob(mtd, from, ops);
> +
> + nand_info->raw_oob_mode = 0;
> +
> + return ret;
> +}
> +
> +/*
> + * Write OOB to NAND.
> + *
> + * This function is a veneer that replaces the function originally installed by
> + * the NAND Flash MTD code.
> + */
> +static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
> + struct mtd_oob_ops *ops)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct mxs_nand_info *nand_info = chip->priv;
> + int ret;
> +
> + if (ops->mode == MTD_OOB_RAW)
> + nand_info->raw_oob_mode = 1;
> + else
> + nand_info->raw_oob_mode = 0;
> +
> + ret = nand_info->hooked_write_oob(mtd, to, ops);
> +
> + nand_info->raw_oob_mode = 0;
> +
> + return ret;
> +}
> +
> +/*
> + * Mark a block bad in NAND.
> + *
> + * This function is a veneer that replaces the function originally installed by
> + * the NAND Flash MTD code.
> + */
> +static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct mxs_nand_info *nand_info = chip->priv;
> + int ret;
> +
> + nand_info->marking_block_bad = 1;
> +
> + ret = nand_info->hooked_block_markbad(mtd, ofs);
> +
> + nand_info->marking_block_bad = 0;
> +
> + return ret;
> +}
> +
> +/*
> + * There are several places in this driver where we have to handle the OOB and
> + * block marks. This is the function where things are the most complicated, so
> + * this is where we try to explain it all. All the other places refer back to
> + * here.
> + *
> + * These are the rules, in order of decreasing importance:
> + *
> + * 1) Nothing the caller does can be allowed to imperil the block mark, so all
> + * write operations take measures to protect it.
> + *
> + * 2) In read operations, the first byte of the OOB we return must reflect the
> + * true state of the block mark, no matter where that block mark appears in
> + * the physical page.
> + *
> + * 3) ECC-based read operations return an OOB full of set bits (since we never
> + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
> + * return).
> + *
> + * 4) "Raw" read operations return a direct view of the physical bytes in the
> + * page, using the conventional definition of which bytes are data and which
> + * are OOB. This gives the caller a way to see the actual, physical bytes
> + * in the page, without the distortions applied by our ECC engine.
> + *
> + * What we do for this specific read operation depends on whether we're doing
> + * "raw" read, or an ECC-based read.
> + *
> + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
> + * easy. When reading a page, for example, the NAND Flash MTD code calls our
> + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
> + * ECC-based or raw view of the page is implicit in which function it calls
> + * (there is a similar pair of ECC-based/raw functions for writing).
> + *
> + * Since MTD assumes the OOB is not covered by ECC, there is no pair of
> + * ECC-based/raw functions for reading or or writing the OOB. The fact that the
> + * caller wants an ECC-based or raw view of the page is not propagated down to
> + * this driver.
> + *
> + * Since our OOB *is* covered by ECC, we need this information. So, we hook the
> + * ecc.read_oob and ecc.write_oob function pointers in the owning
> + * struct mtd_info with our own functions. These hook functions set the
> + * raw_oob_mode field so that, when control finally arrives here, we'll know
> + * what to do.
> + */
> +static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
> + int page, int cmd)
> +{
> + struct mxs_nand_info *nand_info = nand->priv;
> +
> + /*
> + * First, fill in the OOB buffer. If we're doing a raw read, we need to
> + * get the bytes from the physical page. If we're not doing a raw read,
> + * we need to fill the buffer with set bits.
> + */
> + if (nand_info->raw_oob_mode) {
> + /*
> + * If control arrives here, we're doing a "raw" read. Send the
> + * command to read the conventional OOB and read it.
> + */
> + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
> + nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
> + } else {
> + /*
> + * If control arrives here, we're not doing a "raw" read. Fill
> + * the OOB buffer with set bits and correct the block mark.
> + */
> + memset(nand->oob_poi, 0xff, mtd->oobsize);
> +
> + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
> + mxs_nand_read_buf(mtd, nand->oob_poi, 1);
> + }
> +
> + return 0;
> +
> +}
> +
> +/*
> + * Write OOB data to NAND.
> + */
> +static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
> + int page)
> +{
> + struct mxs_nand_info *nand_info = nand->priv;
> + uint8_t block_mark = 0;
> +
> + /*
> + * There are fundamental incompatibilities between the i.MX GPMI NFC and
> + * the NAND Flash MTD model that make it essentially impossible to write
> + * the out-of-band bytes.
> + *
> + * We permit *ONE* exception. If the *intent* of writing the OOB is to
> + * mark a block bad, we can do that.
> + */
> +
> + if (!nand_info->marking_block_bad) {
> + printf("NXS NAND: Writing OOB isn't supported\n");
> + return -EIO;
> + }
> +
> + /* Write the block mark. */
> + nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
> + nand->write_buf(mtd, &block_mark, 1);
> + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
> +
> + /* Check if it worked. */
> + if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
> + return -EIO;
> +
> + return 0;
> +}
> +
> +/*
> + * Claims all blocks are good.
> + *
> + * In principle, this function is *only* called when the NAND Flash MTD system
> + * isn't allowed to keep an in-memory bad block table, so it is forced to ask
> + * the driver for bad block information.
> + *
> + * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
> + * this function is *only* called when we take it away.
> + *
> + * Thus, this function is only called when we want *all* blocks to look good,
> + * so it *always* return success.
> + */
> +static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
> +{
> + return 0;
> +}
> +
> +/*
> + * Nominally, the purpose of this function is to look for or create the bad
> + * block table. In fact, since the we call this function at the very end of
> + * the initialization process started by nand_scan(), and we doesn't have a
> + * more formal mechanism, we "hook" this function to continue init process.
> + *
> + * At this point, the physical NAND Flash chips have been identified and
> + * counted, so we know the physical geometry. This enables us to make some
> + * important configuration decisions.
> + *
> + * The return value of this function propogates directly back to this driver's
> + * call to nand_scan(). Anything other than zero will cause this driver to
> + * tear everything down and declare failure.
> + */
> +static int mxs_nand_scan_bbt(struct mtd_info *mtd)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct mxs_nand_info *nand_info = nand->priv;
> + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
> + uint32_t tmp;
> +
> + /* Configure BCH and set NFC geometry */
> + mx28_reset_block(&bch_regs->hw_bch_ctrl_reg);
> +
> + /* Configure layout 0 */
> + tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
> + << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
> + tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
> + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
> + << BCH_FLASHLAYOUT0_ECC0_OFFSET;
> + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
> + writel(tmp, &bch_regs->hw_bch_flash0layout0);
> +
> + tmp = (mtd->writesize + mtd->oobsize)
> + << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
> + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
> + << BCH_FLASHLAYOUT1_ECCN_OFFSET;
> + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
> + writel(tmp, &bch_regs->hw_bch_flash0layout1);
> +
> + /* Set *all* chip selects to use layout 0 */
> + writel(0, &bch_regs->hw_bch_layoutselect);
> +
> + /* Enable BCH complete interrupt */
> + writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
> +
> + /* Hook some operations at the MTD level. */
> + if (mtd->read_oob != mxs_nand_hook_read_oob) {
> + nand_info->hooked_read_oob = mtd->read_oob;
> + mtd->read_oob = mxs_nand_hook_read_oob;
> + }
> +
> + if (mtd->write_oob != mxs_nand_hook_write_oob) {
> + nand_info->hooked_write_oob = mtd->write_oob;
> + mtd->write_oob = mxs_nand_hook_write_oob;
> + }
> +
> + if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
> + nand_info->hooked_block_markbad = mtd->block_markbad;
> + mtd->block_markbad = mxs_nand_hook_block_markbad;
> + }
> +
> + /* We use the reference implementation for bad block management. */
> + return nand_default_bbt(mtd);
> +}
> +
> +/*
> + * Allocate DMA buffers
> + */
> +int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
> +{
> + uint8_t *buf;
> + const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
> +
> + /* DMA buffers */
> + buf = memalign(MXS_DMA_ALIGNMENT, size);
> + if (!buf) {
> + printf("MXS NAND: Error allocating DMA buffers\n");
> + return -ENOMEM;
> + }
> +
> + memset(buf, 0, size);
> +
> + nand_info->data_buf = buf;
> + nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
> +
> + /* Command buffers */
> + nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
> + MXS_NAND_COMMAND_BUFFER_SIZE);
> + if (!nand_info->cmd_buf) {
> + free(buf);
> + printf("MXS NAND: Error allocating command buffers\n");
> + return -ENOMEM;
> + }
> + memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
> + nand_info->cmd_queue_len = 0;
> +
> + return 0;
> +}
> +
> +/*
> + * Initializes the NFC hardware.
> + */
> +int mxs_nand_init(struct mxs_nand_info *info)
> +{
> + struct mx28_gpmi_regs *gpmi_regs =
> + (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
> + int i = 0;
> +
> + info->desc = malloc(sizeof(struct mxs_dma_desc *) *
> + MXS_NAND_DMA_DESCRIPTOR_COUNT);
> + if (!info->desc)
> + goto err1;
> +
> + /* Allocate the DMA descriptors. */
> + for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
> + info->desc[i] = mxs_dma_desc_alloc();
> + if (!info->desc[i])
> + goto err2;
> + }
> +
> + /* Init the DMA controller. */
> + mxs_dma_init();
> +
> + /* Reset the GPMI block. */
> + mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
> +
> + /*
> + * Choose NAND mode, set IRQ polarity, disable write protection and
> + * select BCH ECC.
> + */
> + clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
> + GPMI_CTRL1_GPMI_MODE,
> + GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
> + GPMI_CTRL1_BCH_MODE);
> +
> + return 0;
> +
> +err2:
> + free(info->desc);
> +err1:
> + for (--i; i >= 0; i--)
> + mxs_dma_desc_free(info->desc[i]);
> + printf("MXS NAND: Unable to allocate DMA descriptors\n");
> + return -ENOMEM;
> +}
> +
> +/*!
> + * This function is called during the driver binding process.
> + *
> + * @param pdev the device structure used to store device specific
> + * information that is used by the suspend, resume and
> + * remove functions
> + *
> + * @return The function always returns 0.
> + */
> +int board_nand_init(struct nand_chip *nand)
> +{
> + struct mxs_nand_info *nand_info;
> + int err;
> +
> + nand_info = malloc(sizeof(struct mxs_nand_info));
> + if (!nand_info) {
> + printf("MXS NAND: Failed to allocate private data\n");
> + return -ENOMEM;
> + }
> + memset(nand_info, 0, sizeof(struct mxs_nand_info));
> +
> + err = mxs_nand_alloc_buffers(nand_info);
> + if (err)
> + goto err1;
> +
> + err = mxs_nand_init(nand_info);
> + if (err)
> + goto err2;
> +
> + memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
> +
> + nand->priv = nand_info;
> + nand->options |= NAND_NO_SUBPAGE_WRITE;
> +
> + nand->cmd_ctrl = mxs_nand_cmd_ctrl;
> +
> + nand->dev_ready = mxs_nand_device_ready;
> + nand->select_chip = mxs_nand_select_chip;
> + nand->block_bad = mxs_nand_block_bad;
> + nand->scan_bbt = mxs_nand_scan_bbt;
> +
> + nand->read_byte = mxs_nand_read_byte;
> +
> + nand->read_buf = mxs_nand_read_buf;
> + nand->write_buf = mxs_nand_write_buf;
> +
> + nand->ecc.read_page = mxs_nand_ecc_read_page;
> + nand->ecc.write_page = mxs_nand_ecc_write_page;
> + nand->ecc.read_oob = mxs_nand_ecc_read_oob;
> + nand->ecc.write_oob = mxs_nand_ecc_write_oob;
> +
> + nand->ecc.layout = &fake_ecc_layout;
> + nand->ecc.mode = NAND_ECC_HW;
> + nand->ecc.bytes = 9;
> + nand->ecc.size = 512;
> +
> + return 0;
> +
> +err2:
> + free(nand_info->data_buf);
> + free(nand_info->cmd_buf);
> +err1:
> + free(nand_info);
> + return err;
> +}
Applied to u-boot-imx, thanks.
Best regards,
Stefano Babic
--
=====================================================================
DENX Software Engineering GmbH, MD: Wolfgang Denk & Detlev Zundel
HRB 165235 Munich, Office: Kirchenstr.5, D-82194 Groebenzell, Germany
Phone: +49-8142-66989-0 Fax: +49-8142-66989-80 Email: office at denx.de
=====================================================================
More information about the U-Boot
mailing list