[U-Boot] [PATCH v3 3/4] mtd: nand: add Freescale vf610_nfc driver
Stefan Agner
stefan at agner.ch
Sat Sep 6 19:21:20 CEST 2014
Hi Scott,
Anything missing from your side in this version of the patch? Patch 1
and 2 of this patch set recently got merged.
--
Stefan
Am 2014-08-18 18:26, schrieb Stefan Agner:
> This adds initial support for Freescale NFC (NAND Flash Controller)
> found in ARM Vybrid SoC's, Power Architecture MPC5125 and others.
> The driver is called vf610_nfc since this is the first supported
> and tested hardware platform supported by the driver.
>
> Signed-off-by: Stefan Agner <stefan at agner.ch>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/vf610_nfc.c | 714 +++++++++++++++++++++++++++++++++++++++++++
> 2 files changed, 715 insertions(+)
> create mode 100644 drivers/mtd/nand/vf610_nfc.c
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index bf1312a..eef86d1 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -51,6 +51,7 @@ obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
> obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
> obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
> obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
> +obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
> obj-$(CONFIG_NAND_MXC) += mxc_nand.o
> obj-$(CONFIG_NAND_MXS) += mxs_nand.o
> obj-$(CONFIG_NAND_NDFC) += ndfc.o
> diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c
> new file mode 100644
> index 0000000..32203fd
> --- /dev/null
> +++ b/drivers/mtd/nand/vf610_nfc.c
> @@ -0,0 +1,714 @@
> +/*
> + * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
> + *
> + * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
> + * Ported to U-Boot by Stefan Agner
> + * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
> + * Jason ported to M54418TWR and MVFA5.
> + * Authors: Stefan Agner <stefan.agner at toradex.com>
> + * Bill Pringlemeir <bpringlemeir at nbsps.com>
> + * Shaohui Xie <b21989 at freescale.com>
> + * Jason Jin <Jason.jin at freescale.com>
> + *
> + * Based on original driver mpc5121_nfc.c.
> + *
> + * This is free software; you can redistribute it and/or modify it
> + * under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * Limitations:
> + * - Untested on MPC5125 and M54418.
> + * - DMA not used.
> + * - 2K pages or less.
> + * - Only 2K page w. 64+OOB and hardware ECC.
> + */
> +
> +#include <common.h>
> +#include <malloc.h>
> +
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +
> +#include <nand.h>
> +#include <errno.h>
> +#include <asm/io.h>
> +#include <asm/processor.h>
> +
> +/* Register Offsets */
> +#define NFC_FLASH_CMD1 0x3F00
> +#define NFC_FLASH_CMD2 0x3F04
> +#define NFC_COL_ADDR 0x3F08
> +#define NFC_ROW_ADDR 0x3F0c
> +#define NFC_ROW_ADDR_INC 0x3F14
> +#define NFC_FLASH_STATUS1 0x3F18
> +#define NFC_FLASH_STATUS2 0x3F1c
> +#define NFC_CACHE_SWAP 0x3F28
> +#define NFC_SECTOR_SIZE 0x3F2c
> +#define NFC_FLASH_CONFIG 0x3F30
> +#define NFC_IRQ_STATUS 0x3F38
> +
> +/* Addresses for NFC MAIN RAM BUFFER areas */
> +#define NFC_MAIN_AREA(n) ((n) * 0x1000)
> +
> +#define PAGE_2K 0x0800
> +#define OOB_64 0x0040
> +
> +/*
> + * NFC_CMD2[CODE] values. See section:
> + * - 31.4.7 Flash Command Code Description, Vybrid manual
> + * - 23.8.6 Flash Command Sequencer, MPC5125 manual
> + *
> + * Briefly these are bitmasks of controller cycles.
> + */
> +#define READ_PAGE_CMD_CODE 0x7EE0
> +#define PROGRAM_PAGE_CMD_CODE 0x7FC0
> +#define ERASE_CMD_CODE 0x4EC0
> +#define READ_ID_CMD_CODE 0x4804
> +#define RESET_CMD_CODE 0x4040
> +#define STATUS_READ_CMD_CODE 0x4068
> +
> +/* NFC ECC mode define */
> +#define ECC_BYPASS 0
> +#define ECC_45_BYTE 6
> +
> +/*** Register Mask and bit definitions */
> +
> +/* NFC_FLASH_CMD1 Field */
> +#define CMD_BYTE2_MASK 0xFF000000
> +#define CMD_BYTE2_SHIFT 24
> +
> +/* NFC_FLASH_CM2 Field */
> +#define CMD_BYTE1_MASK 0xFF000000
> +#define CMD_BYTE1_SHIFT 24
> +#define CMD_CODE_MASK 0x00FFFF00
> +#define CMD_CODE_SHIFT 8
> +#define BUFNO_MASK 0x00000006
> +#define BUFNO_SHIFT 1
> +#define START_BIT (1<<0)
> +
> +/* NFC_COL_ADDR Field */
> +#define COL_ADDR_MASK 0x0000FFFF
> +#define COL_ADDR_SHIFT 0
> +
> +/* NFC_ROW_ADDR Field */
> +#define ROW_ADDR_MASK 0x00FFFFFF
> +#define ROW_ADDR_SHIFT 0
> +#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
> +#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
> +#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
> +#define ROW_ADDR_CHIP_SEL_SHIFT 24
> +
> +/* NFC_FLASH_STATUS2 Field */
> +#define STATUS_BYTE1_MASK 0x000000FF
> +
> +/* NFC_FLASH_CONFIG Field */
> +#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
> +#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
> +#define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
> +#define CONFIG_DMA_REQ_BIT (1<<20)
> +#define CONFIG_ECC_MODE_MASK 0x000E0000
> +#define CONFIG_ECC_MODE_SHIFT 17
> +#define CONFIG_FAST_FLASH_BIT (1<<16)
> +#define CONFIG_16BIT (1<<7)
> +#define CONFIG_BOOT_MODE_BIT (1<<6)
> +#define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
> +#define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
> +#define CONFIG_PAGE_CNT_MASK 0xF
> +#define CONFIG_PAGE_CNT_SHIFT 0
> +
> +/* NFC_IRQ_STATUS Field */
> +#define IDLE_IRQ_BIT (1<<29)
> +#define IDLE_EN_BIT (1<<20)
> +#define CMD_DONE_CLEAR_BIT (1<<18)
> +#define IDLE_CLEAR_BIT (1<<17)
> +
> +#define NFC_TIMEOUT (1000)
> +
> +/* ECC status placed at end of buffers. */
> +#define ECC_SRAM_ADDR ((PAGE_2K+256-8) >> 3)
> +#define ECC_STATUS_MASK 0x80
> +#define ECC_ERR_COUNT 0x3F
> +
> +/*
> + * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
> + * and +7 for big-endian SOC.
> + */
> +#ifdef CONFIG_VF610
> +#define ECC_OFFSET 4
> +#else
> +#define ECC_OFFSET 7
> +#endif
> +
> +struct vf610_nfc {
> + struct mtd_info *mtd;
> + struct nand_chip chip;
> +/* struct device *dev;*/
> + void __iomem *regs;
> + uint column;
> + int spareonly;
> + int page;
> + /* Status and ID are in alternate locations. */
> + int alt_buf;
> +#define ALT_BUF_ID 1
> +#define ALT_BUF_STAT 2
> + struct clk *clk;
> +};
> +
> +#define mtd_to_nfc(_mtd) (struct vf610_nfc *)((struct nand_chip
> *)_mtd->priv)->priv;
> +
> +static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
> +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
> +
> +static struct nand_bbt_descr bbt_main_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
> + NAND_BBT_2BIT | NAND_BBT_VERSION,
> + .offs = 11,
> + .len = 4,
> + .veroffs = 15,
> + .maxblocks = 4,
> + .pattern = bbt_pattern,
> +};
> +
> +static struct nand_bbt_descr bbt_mirror_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
> + NAND_BBT_2BIT | NAND_BBT_VERSION,
> + .offs = 11,
> + .len = 4,
> + .veroffs = 15,
> + .maxblocks = 4,
> + .pattern = mirror_pattern,
> +};
> +
> +static struct nand_ecclayout vf610_nfc_ecc45 = {
> + .eccbytes = 45,
> + .eccpos = {19, 20, 21, 22, 23,
> + 24, 25, 26, 27, 28, 29, 30, 31,
> + 32, 33, 34, 35, 36, 37, 38, 39,
> + 40, 41, 42, 43, 44, 45, 46, 47,
> + 48, 49, 50, 51, 52, 53, 54, 55,
> + 56, 57, 58, 59, 60, 61, 62, 63},
> + .oobfree = {
> + {.offset = 8,
> + .length = 11} }
> +};
> +
> +static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +
> + return readl(nfc->regs + reg);
> +}
> +
> +static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +
> + writel(val, nfc->regs + reg);
> +}
> +
> +static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
> +{
> + vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
> +}
> +
> +static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
> +{
> + vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
> +}
> +
> +static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
> + u32 mask, u32 shift, u32 val)
> +{
> + vf610_nfc_write(mtd, reg,
> + (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
> +}
> +
> +/* Clear flags for upcoming command */
> +static inline void vf610_nfc_clear_status(void __iomem *regbase)
> +{
> + void __iomem *reg = regbase + NFC_IRQ_STATUS;
> + u32 tmp = __raw_readl(reg);
> + tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
> + __raw_writel(tmp, reg);
> +}
> +
> +/* Wait for complete operation */
> +static inline void vf610_nfc_done(struct mtd_info *mtd)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> + uint start;
> +
> + /*
> + * Barrier is needed after this write. This write need
> + * to be done before reading the next register the first
> + * time.
> + * vf610_nfc_set implicates such a barrier by using writel
> + * to write to the register.
> + */
> + vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
> +
> + start = get_timer(0);
> +
> + while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
> + if (get_timer(start) > NFC_TIMEOUT) {
> + printf("Timeout while waiting for !BUSY.\n");
> + return;
> + }
> + }
> + vf610_nfc_clear_status(nfc->regs);
> +}
> +
> +static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
> +{
> + u32 flash_id;
> +
> + if (col < 4) {
> + flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
> + return (flash_id >> (3-col)*8) & 0xff;
> + } else {
> + flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
> + return flash_id >> 24;
> + }
> +}
> +
> +static u8 vf610_nfc_get_status(struct mtd_info *mtd)
> +{
> + return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
> +}
> +
> +/* Single command */
> +static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
> + u32 cmd_code)
> +{
> + void __iomem *reg = regbase + NFC_FLASH_CMD2;
> + u32 tmp;
> + vf610_nfc_clear_status(regbase);
> +
> + tmp = __raw_readl(reg);
> + tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
> + tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
> + tmp |= cmd_code << CMD_CODE_SHIFT;
> + __raw_writel(tmp, reg);
> +}
> +
> +/* Two commands */
> +static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
> + u32 cmd_byte2, u32 cmd_code)
> +{
> + void __iomem *reg = regbase + NFC_FLASH_CMD1;
> + u32 tmp;
> + vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
> +
> + tmp = __raw_readl(reg);
> + tmp &= ~CMD_BYTE2_MASK;
> + tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
> + __raw_writel(tmp, reg);
> +}
> +
> +static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
> +{
> + if (column != -1) {
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> + if (nfc->chip.options | NAND_BUSWIDTH_16)
> + column = column/2;
> + vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
> + COL_ADDR_SHIFT, column);
> + }
> + if (page != -1)
> + vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
> + ROW_ADDR_SHIFT, page);
> +}
> +
> +/* Send command to NAND chip */
> +static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
> + int column, int page)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +
> + nfc->column = max(column, 0);
> + nfc->spareonly = 0;
> + nfc->alt_buf = 0;
> +
> + switch (command) {
> + case NAND_CMD_PAGEPROG:
> + nfc->page = -1;
> + vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
> + command, PROGRAM_PAGE_CMD_CODE);
> + vf610_nfc_addr_cycle(mtd, column, page);
> + break;
> +
> + case NAND_CMD_RESET:
> + vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
> + break;
> + /*
> + * NFC does not support sub-page reads and writes,
> + * so emulate them using full page transfers.
> + */
> + case NAND_CMD_READOOB:
> + nfc->spareonly = 1;
> + case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
> + case NAND_CMD_READ0:
> + column = 0;
> + /* Already read? */
> + if (nfc->page == page)
> + return;
> + nfc->page = page;
> + vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
> + NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
> + vf610_nfc_addr_cycle(mtd, column, page);
> + break;
> +
> + case NAND_CMD_ERASE1:
> + if (nfc->page == page)
> + nfc->page = -1;
> + vf610_nfc_send_commands(nfc->regs, command,
> + NAND_CMD_ERASE2, ERASE_CMD_CODE);
> + vf610_nfc_addr_cycle(mtd, column, page);
> + break;
> +
> + case NAND_CMD_READID:
> + nfc->alt_buf = ALT_BUF_ID;
> + vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
> + break;
> +
> + case NAND_CMD_STATUS:
> + nfc->alt_buf = ALT_BUF_STAT;
> + vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
> + break;
> + default:
> + return;
> + }
> +
> + vf610_nfc_done(mtd);
> +}
> +
> +static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
> + int len)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +
> + len = min(mtd->oobsize, (uint)len);
> + if (len > 0)
> + memcpy(buf, nfc->regs + mtd->writesize, len);
> +}
> +
> +/* Read data from NFC buffers */
> +static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> + uint c = nfc->column;
> + uint l;
> +
> + /* Handle main area */
> + if (!nfc->spareonly) {
> + l = min((uint)len, mtd->writesize - c);
> + nfc->column += l;
> +
> + if (!nfc->alt_buf)
> + memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, l);
> + else
> + if (nfc->alt_buf & ALT_BUF_ID)
> + *buf = vf610_nfc_get_id(mtd, c);
> + else
> + *buf = vf610_nfc_get_status(mtd);
> +
> + buf += l;
> + len -= l;
> + }
> +
> + /* Handle spare area access */
> + if (len) {
> + nfc->column += len;
> + vf610_nfc_read_spare(mtd, buf, len);
> + }
> +}
> +
> +/* Write data to NFC buffers */
> +static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
> + int len)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> + uint c = nfc->column;
> + uint l;
> +
> + l = min((uint)len, mtd->writesize + mtd->oobsize - c);
> + nfc->column += l;
> + memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
> +}
> +
> +/* Read byte from NFC buffers */
> +static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
> +{
> + u8 tmp;
> + vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
> + return tmp;
> +}
> +
> +/* Read word from NFC buffers */
> +static u16 vf610_nfc_read_word(struct mtd_info *mtd)
> +{
> + u16 tmp;
> + vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
> + return tmp;
> +}
> +
> +/* If not provided, upper layers apply a fixed delay. */
> +static int vf610_nfc_dev_ready(struct mtd_info *mtd)
> +{
> + /* NFC handles R/B internally; always ready. */
> + return 1;
> +}
> +
> +/*
> + * This function supports Vybrid only (MPC5125 would have full RB and four CS)
> + */
> +static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
> +{
> +#ifdef CONFIG_VF610
> + u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
> + tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
> + tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
> +
> + if (chip == 0)
> + tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
> + else if (chip == 1)
> + tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
> +
> + vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
> +#endif
> +}
> +
> +/* Count the number of 0's in buff upto max_bits */
> +static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
> +{
> + uint32_t *buff32 = (uint32_t *)buff;
> + int k, written_bits = 0;
> +
> + for (k = 0; k < (size / 4); k++) {
> + written_bits += hweight32(~buff32[k]);
> + if (written_bits > max_bits)
> + break;
> + }
> +
> + return written_bits;
> +}
> +
> +static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
> +{
> + struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> + u8 ecc_status;
> + u8 ecc_count;
> + int flip;
> +
> + ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
> + ecc_count = ecc_status & ECC_ERR_COUNT;
> + if (!(ecc_status & ECC_STATUS_MASK))
> + return ecc_count;
> +
> + /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
> + flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
> +
> + /* ECC failed. */
> + if (flip > ecc_count) {
> + nfc->page = -1;
> + return -1;
> + }
> +
> + /* Erased page. */
> + memset(dat, 0xff, nfc->chip.ecc.size);
> + return 0;
> +}
> +
> +
> +static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
> + uint8_t *buf, int oob_required, int page)
> +{
> + int eccsize = chip->ecc.size;
> + int stat;
> + uint8_t *p = buf;
> +
> +
> + vf610_nfc_read_buf(mtd, p, eccsize);
> +
> + if (oob_required)
> + vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + stat = vf610_nfc_correct_data(mtd, p);
> +
> + if (stat < 0)
> + mtd->ecc_stats.failed++;
> + else
> + mtd->ecc_stats.corrected += stat;
> +
> + return 0;
> +}
> +
> +/*
> + * ECC will be calculated automatically
> + */
> +static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
> + const uint8_t *buf, int oob_required)
> +{
> + vf610_nfc_write_buf(mtd, buf, mtd->writesize);
> + if (oob_required)
> + vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + return 0;
> +}
> +
> +struct vf610_nfc_config {
> + int hardware_ecc;
> + int width;
> + int flash_bbt;
> +};
> +
> +static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
> +{
> + struct mtd_info *mtd = &nand_info[devnum];
> + struct nand_chip *chip;
> + struct vf610_nfc *nfc;
> + int err = 0;
> + int page_sz;
> + struct vf610_nfc_config cfg = {
> + .hardware_ecc = 1,
> +#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
> + .width = 16,
> +#else
> + .width = 8,
> +#endif
> + .flash_bbt = 1,
> + };
> +
> + nfc = malloc(sizeof(*nfc));
> + if (!nfc) {
> + printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
> + return -ENOMEM;
> + }
> +
> + chip = &nfc->chip;
> + nfc->regs = addr;
> +
> + mtd->priv = chip;
> + chip->priv = nfc;
> +
> + if (cfg.width == 16) {
> + chip->options |= NAND_BUSWIDTH_16;
> + vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
> + } else {
> + chip->options &= ~NAND_BUSWIDTH_16;
> + vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
> + }
> +
> + chip->dev_ready = vf610_nfc_dev_ready;
> + chip->cmdfunc = vf610_nfc_command;
> + chip->read_byte = vf610_nfc_read_byte;
> + chip->read_word = vf610_nfc_read_word;
> + chip->read_buf = vf610_nfc_read_buf;
> + chip->write_buf = vf610_nfc_write_buf;
> + chip->select_chip = vf610_nfc_select_chip;
> +
> + /* Bad block options. */
> + if (cfg.flash_bbt)
> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
> +
> + /* Default to software ECC until flash ID. */
> + vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
> + CONFIG_ECC_MODE_MASK,
> + CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
> +
> + chip->bbt_td = &bbt_main_descr;
> + chip->bbt_md = &bbt_mirror_descr;
> +
> + page_sz = PAGE_2K + OOB_64;
> + page_sz += cfg.width == 16 ? 1 : 0;
> + vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
> +
> + /* Set configuration register. */
> + vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
> + vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
> + vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
> + vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
> + vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
> +
> + /* Enable Idle IRQ */
> + vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
> +
> + /* PAGE_CNT = 1 */
> + vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
> + CONFIG_PAGE_CNT_SHIFT, 1);
> +
> + /* Set ECC_STATUS offset */
> + vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
> + CONFIG_ECC_SRAM_ADDR_MASK,
> + CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
> +
> + /* first scan to find the device and get the page size */
> + if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
> + err = -ENXIO;
> + goto error;
> + }
> +
> + chip->ecc.mode = NAND_ECC_SOFT; /* default */
> +
> + page_sz = mtd->writesize + mtd->oobsize;
> +
> + /* Single buffer only, max 256 OOB minus ECC status */
> + if (page_sz > PAGE_2K + 256 - 8) {
> + dev_err(nfc->dev, "Unsupported flash size\n");
> + err = -ENXIO;
> + goto error;
> + }
> + page_sz += cfg.width == 16 ? 1 : 0;
> + vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
> +
> + if (cfg.hardware_ecc) {
> + if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
> + dev_err(nfc->dev, "Unsupported flash with hwecc\n");
> + err = -ENXIO;
> + goto error;
> + }
> +
> + chip->ecc.layout = &vf610_nfc_ecc45;
> +
> + /* propagate ecc.layout to mtd_info */
> + mtd->ecclayout = chip->ecc.layout;
> + chip->ecc.read_page = vf610_nfc_read_page;
> + chip->ecc.write_page = vf610_nfc_write_page;
> + chip->ecc.mode = NAND_ECC_HW;
> +
> + chip->ecc.bytes = 45;
> + chip->ecc.size = PAGE_2K;
> + chip->ecc.strength = 24;
> +
> + /* set ECC mode to 45 bytes OOB with 24 bits correction */
> + vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
> + CONFIG_ECC_MODE_MASK,
> + CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
> +
> + /* Enable ECC_STATUS */
> + vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
> + }
> +
> + /* second phase scan */
> + err = nand_scan_tail(mtd);
> + if (err)
> + return err;
> +
> + err = nand_register(devnum);
> + if (err)
> + return err;
> +
> + return 0;
> +
> +error:
> + return err;
> +}
> +
> +void board_nand_init(void)
> +{
> + int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
> + if (err)
> + printf("VF610 NAND init failed (err %d)\n", err);
> +}
More information about the U-Boot
mailing list