[U-Boot] [PATCH v5 1/2] mtd: nand: add Freescale vf610_nfc driver

Stefan Agner stefan at agner.ch
Fri Sep 12 13:06:35 CEST 2014


This adds initial support for Freescale NFC (NAND Flash Controller)
found in ARM Vybrid SoC's, Power Architecture MPC5125 and others.
The driver is called vf610_nfc since this is the first supported
and tested hardware platform supported by the driver.

Signed-off-by: Stefan Agner <stefan at agner.ch>
Acked-by: Bill Pringlemeir <bpringlemeir at nbsps.com>
---
 drivers/mtd/nand/Makefile    |   1 +
 drivers/mtd/nand/vf610_nfc.c | 724 +++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 725 insertions(+)
 create mode 100644 drivers/mtd/nand/vf610_nfc.c

diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index bf1312a..eef86d1 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -51,6 +51,7 @@ obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
 obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
 obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
 obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
+obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
 obj-$(CONFIG_NAND_MXC) += mxc_nand.o
 obj-$(CONFIG_NAND_MXS) += mxs_nand.o
 obj-$(CONFIG_NAND_NDFC) += ndfc.o
diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c
new file mode 100644
index 0000000..7feb3a7
--- /dev/null
+++ b/drivers/mtd/nand/vf610_nfc.c
@@ -0,0 +1,724 @@
+/*
+ * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Ported to U-Boot by Stefan Agner
+ * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
+ * Jason ported to M54418TWR and MVFA5.
+ * Authors: Stefan Agner <stefan.agner at toradex.com>
+ *          Bill Pringlemeir <bpringlemeir at nbsps.com>
+ *          Shaohui Xie <b21989 at freescale.com>
+ *          Jason Jin <Jason.jin at freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA not used.
+ * - 2K pages or less.
+ * - Only 2K page w. 64+OOB and hardware ECC.
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+
+#include <nand.h>
+#include <errno.h>
+#include <asm/io.h>
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1			0x3F00
+#define NFC_FLASH_CMD2			0x3F04
+#define NFC_COL_ADDR			0x3F08
+#define NFC_ROW_ADDR			0x3F0c
+#define NFC_ROW_ADDR_INC		0x3F14
+#define NFC_FLASH_STATUS1		0x3F18
+#define NFC_FLASH_STATUS2		0x3F1c
+#define NFC_CACHE_SWAP			0x3F28
+#define NFC_SECTOR_SIZE			0x3F2c
+#define NFC_FLASH_CONFIG		0x3F30
+#define NFC_IRQ_STATUS			0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n)		((n) *  0x1000)
+
+#define PAGE_2K				0x0800
+#define OOB_64				0x0040
+
+/*
+ * NFC_CMD2[CODE] values. See section:
+ *  - 31.4.7 Flash Command Code Description, Vybrid manual
+ *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
+ *
+ * Briefly these are bitmasks of controller cycles.
+ */
+#define READ_PAGE_CMD_CODE		0x7EE0
+#define PROGRAM_PAGE_CMD_CODE		0x7FC0
+#define ERASE_CMD_CODE			0x4EC0
+#define READ_ID_CMD_CODE		0x4804
+#define RESET_CMD_CODE			0x4040
+#define STATUS_READ_CMD_CODE		0x4068
+
+/* NFC ECC mode define */
+#define ECC_BYPASS			0
+#define ECC_45_BYTE			6
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK				0xFF000000
+#define CMD_BYTE2_SHIFT				24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK				0xFF000000
+#define CMD_BYTE1_SHIFT				24
+#define CMD_CODE_MASK				0x00FFFF00
+#define CMD_CODE_SHIFT				8
+#define BUFNO_MASK				0x00000006
+#define BUFNO_SHIFT				1
+#define START_BIT				(1<<0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK				0x0000FFFF
+#define COL_ADDR_SHIFT				0
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK				0x00FFFFFF
+#define ROW_ADDR_SHIFT				0
+#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
+#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT			24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK			0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
+#define CONFIG_ECC_SRAM_REQ_BIT			(1<<21)
+#define CONFIG_DMA_REQ_BIT			(1<<20)
+#define CONFIG_ECC_MODE_MASK			0x000E0000
+#define CONFIG_ECC_MODE_SHIFT			17
+#define CONFIG_FAST_FLASH_BIT			(1<<16)
+#define CONFIG_16BIT				(1<<7)
+#define CONFIG_BOOT_MODE_BIT			(1<<6)
+#define CONFIG_ADDR_AUTO_INCR_BIT		(1<<5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT		(1<<4)
+#define CONFIG_PAGE_CNT_MASK			0xF
+#define CONFIG_PAGE_CNT_SHIFT			0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT				(1<<29)
+#define IDLE_EN_BIT				(1<<20)
+#define CMD_DONE_CLEAR_BIT			(1<<18)
+#define IDLE_CLEAR_BIT				(1<<17)
+
+#define NFC_TIMEOUT	(1000)
+
+/* ECC status placed at end of buffers. */
+#define ECC_SRAM_ADDR	((PAGE_2K+256-8) >> 3)
+#define ECC_STATUS_MASK	0x80
+#define ECC_ERR_COUNT	0x3F
+
+/*
+ * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
+ * and +7 for big-endian SOC.
+ */
+#ifdef CONFIG_VF610
+#define ECC_OFFSET	4
+#else
+#define ECC_OFFSET	7
+#endif
+
+struct vf610_nfc {
+	struct mtd_info	  *mtd;
+	struct nand_chip   chip;
+	void __iomem	  *regs;
+	uint               column;
+	int                spareonly;
+	int                page;
+	/* Status and ID are in alternate locations. */
+	int                alt_buf;
+#define ALT_BUF_ID   1
+#define ALT_BUF_STAT 2
+	struct clk        *clk;
+};
+
+#define mtd_to_nfc(_mtd) \
+	(struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+static struct nand_ecclayout vf610_nfc_ecc45 = {
+	.eccbytes = 45,
+	.eccpos = {19, 20, 21, 22, 23,
+		   24, 25, 26, 27, 28, 29, 30, 31,
+		   32, 33, 34, 35, 36, 37, 38, 39,
+		   40, 41, 42, 43, 44, 45, 46, 47,
+		   48, 49, 50, 51, 52, 53, 54, 55,
+		   56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = {
+		{.offset = 8,
+		 .length = 11} }
+};
+
+static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
+{
+	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
+{
+	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
+				       u32 mask, u32 shift, u32 val)
+{
+	vf610_nfc_write(mtd, reg,
+			(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
+}
+
+static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
+{
+	/*
+	 * Use this accessor for the interal SRAM buffers. On ARM we can
+	 * treat the SRAM buffer as if its memory, hence use memcpy
+	 */
+	memcpy(dst, src, n);
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(void __iomem *regbase)
+{
+	void __iomem *reg = regbase + NFC_IRQ_STATUS;
+	u32 tmp = __raw_readl(reg);
+	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+	__raw_writel(tmp, reg);
+}
+
+/* Wait for complete operation */
+static inline void vf610_nfc_done(struct mtd_info *mtd)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint start;
+
+	/*
+	 * Barrier is needed after this write. This write need
+	 * to be done before reading the next register the first
+	 * time.
+	 * vf610_nfc_set implicates such a barrier by using writel
+	 * to write to the register.
+	 */
+	vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
+
+	start = get_timer(0);
+
+	while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
+		if (get_timer(start) > NFC_TIMEOUT) {
+			printf("Timeout while waiting for !BUSY.\n");
+			return;
+		}
+	}
+	vf610_nfc_clear_status(nfc->regs);
+}
+
+static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
+{
+	u32 flash_id;
+
+	if (col < 4) {
+		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
+		return (flash_id >> (3-col)*8) & 0xff;
+	} else {
+		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
+		return flash_id >> 24;
+	}
+}
+
+static u8 vf610_nfc_get_status(struct mtd_info *mtd)
+{
+	return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
+}
+
+/* Single command */
+static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
+				   u32 cmd_code)
+{
+	void __iomem *reg = regbase + NFC_FLASH_CMD2;
+	u32 tmp;
+	vf610_nfc_clear_status(regbase);
+
+	tmp = __raw_readl(reg);
+	tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
+	tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
+	tmp |= cmd_code << CMD_CODE_SHIFT;
+	__raw_writel(tmp, reg);
+}
+
+/* Two commands */
+static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
+			      u32 cmd_byte2, u32 cmd_code)
+{
+	void __iomem *reg = regbase + NFC_FLASH_CMD1;
+	u32 tmp;
+	vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
+
+	tmp = __raw_readl(reg);
+	tmp &= ~CMD_BYTE2_MASK;
+	tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
+	__raw_writel(tmp, reg);
+}
+
+static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
+{
+	if (column != -1) {
+		struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+		if (nfc->chip.options | NAND_BUSWIDTH_16)
+			column = column/2;
+		vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
+				    COL_ADDR_SHIFT, column);
+	}
+	if (page != -1)
+		vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+				    ROW_ADDR_SHIFT, page);
+}
+
+/* Send command to NAND chip */
+static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
+			      int column, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	nfc->column     = max(column, 0);
+	nfc->spareonly	= 0;
+	nfc->alt_buf	= 0;
+
+	switch (command) {
+	case NAND_CMD_PAGEPROG:
+		nfc->page = -1;
+		vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
+					command, PROGRAM_PAGE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		break;
+
+	case NAND_CMD_RESET:
+		vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
+		break;
+	/*
+	 * NFC does not support sub-page reads and writes,
+	 * so emulate them using full page transfers.
+	 */
+	case NAND_CMD_READOOB:
+		nfc->spareonly = 1;
+	case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
+	case NAND_CMD_READ0:
+		column = 0;
+		/* Already read? */
+		if (nfc->page == page)
+			return;
+		nfc->page = page;
+		vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
+					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		break;
+
+	case NAND_CMD_ERASE1:
+		if (nfc->page == page)
+			nfc->page = -1;
+		vf610_nfc_send_commands(nfc->regs, command,
+					NAND_CMD_ERASE2, ERASE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		break;
+
+	case NAND_CMD_READID:
+		nfc->alt_buf = ALT_BUF_ID;
+		vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
+		break;
+
+	case NAND_CMD_STATUS:
+		nfc->alt_buf = ALT_BUF_STAT;
+		vf610_nfc_send_command(nfc->regs, command,
+				       STATUS_READ_CMD_CODE);
+		break;
+	default:
+		return;
+	}
+
+	vf610_nfc_done(mtd);
+}
+
+static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
+					int len)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	len = min(mtd->oobsize, (uint)len);
+	if (len > 0)
+		vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
+}
+
+/* Read data from NFC buffers */
+static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint c = nfc->column;
+	uint l;
+
+	/* Handle main area */
+	if (!nfc->spareonly) {
+		l = min((uint)len, mtd->writesize - c);
+		nfc->column += l;
+
+		if (!nfc->alt_buf)
+			vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
+					 l);
+		else
+			if (nfc->alt_buf & ALT_BUF_ID)
+				*buf = vf610_nfc_get_id(mtd, c);
+			else
+				*buf = vf610_nfc_get_status(mtd);
+
+		buf += l;
+		len -= l;
+	}
+
+	/* Handle spare area access */
+	if (len) {
+		nfc->column += len;
+		vf610_nfc_read_spare(mtd, buf, len);
+	}
+}
+
+/* Write data to NFC buffers */
+static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
+				int len)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint c = nfc->column;
+	uint l;
+
+	l = min((uint)len, mtd->writesize + mtd->oobsize - c);
+	nfc->column += l;
+	vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
+}
+
+/* Read byte from NFC buffers */
+static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
+{
+	u8 tmp;
+	vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
+	return tmp;
+}
+
+/* Read word from NFC buffers */
+static u16 vf610_nfc_read_word(struct mtd_info *mtd)
+{
+	u16 tmp;
+	vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+	return tmp;
+}
+
+/* If not provided, upper layers apply a fixed delay. */
+static int vf610_nfc_dev_ready(struct mtd_info *mtd)
+{
+	/* NFC handles R/B internally; always ready.  */
+	return 1;
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+#ifdef CONFIG_VF610
+	u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
+	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+
+	if (chip == 0)
+		tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
+	else if (chip == 1)
+		tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
+
+	vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
+#endif
+}
+
+/* Count the number of 0's in buff upto max_bits */
+static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+	uint32_t *buff32 = (uint32_t *)buff;
+	int k, written_bits = 0;
+
+	for (k = 0; k < (size / 4); k++) {
+		written_bits += hweight32(~buff32[k]);
+		if (written_bits > max_bits)
+			break;
+	}
+
+	return written_bits;
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	u8 ecc_status;
+	u8 ecc_count;
+	int flip;
+
+	ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
+	ecc_count = ecc_status & ECC_ERR_COUNT;
+	if (!(ecc_status & ECC_STATUS_MASK))
+		return ecc_count;
+
+	/* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
+	flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
+
+	/* ECC failed. */
+	if (flip > ecc_count) {
+		nfc->page = -1;
+		return -1;
+	}
+
+	/* Erased page. */
+	memset(dat, 0xff, nfc->chip.ecc.size);
+	return 0;
+}
+
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int eccsize = chip->ecc.size;
+	int stat;
+	uint8_t *p = buf;
+
+
+	vf610_nfc_read_buf(mtd, p, eccsize);
+
+	if (oob_required)
+		vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	stat = vf610_nfc_correct_data(mtd, p);
+
+	if (stat < 0)
+		mtd->ecc_stats.failed++;
+	else
+		mtd->ecc_stats.corrected += stat;
+
+	return 0;
+}
+
+/*
+ * ECC will be calculated automatically
+ */
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required)
+{
+	vf610_nfc_write_buf(mtd, buf, mtd->writesize);
+	if (oob_required)
+		vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+struct vf610_nfc_config {
+	int hardware_ecc;
+	int width;
+	int flash_bbt;
+};
+
+static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
+{
+	struct mtd_info *mtd = &nand_info[devnum];
+	struct nand_chip *chip;
+	struct vf610_nfc *nfc;
+	int err = 0;
+	int page_sz;
+	struct vf610_nfc_config cfg = {
+		.hardware_ecc = 1,
+#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
+		.width = 16,
+#else
+		.width = 8,
+#endif
+		.flash_bbt = 1,
+	};
+
+	nfc = malloc(sizeof(*nfc));
+	if (!nfc) {
+		printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
+		return -ENOMEM;
+	}
+
+	chip = &nfc->chip;
+	nfc->regs = addr;
+
+	mtd->priv = chip;
+	chip->priv = nfc;
+
+	if (cfg.width == 16) {
+		chip->options |= NAND_BUSWIDTH_16;
+		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+	} else {
+		chip->options &= ~NAND_BUSWIDTH_16;
+		vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+	}
+
+	chip->dev_ready = vf610_nfc_dev_ready;
+	chip->cmdfunc = vf610_nfc_command;
+	chip->read_byte = vf610_nfc_read_byte;
+	chip->read_word = vf610_nfc_read_word;
+	chip->read_buf = vf610_nfc_read_buf;
+	chip->write_buf = vf610_nfc_write_buf;
+	chip->select_chip = vf610_nfc_select_chip;
+
+	/* Bad block options. */
+	if (cfg.flash_bbt)
+		chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
+
+	/* Default to software ECC until flash ID. */
+	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+			    CONFIG_ECC_MODE_MASK,
+			    CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
+
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+
+	page_sz = PAGE_2K + OOB_64;
+	page_sz += cfg.width == 16 ? 1 : 0;
+	vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
+
+	/* Set configuration register. */
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+	vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+
+	/* Enable Idle IRQ */
+	vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
+
+	/* PAGE_CNT = 1 */
+	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+			    CONFIG_PAGE_CNT_SHIFT, 1);
+
+	/* Set ECC_STATUS offset */
+	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+			    CONFIG_ECC_SRAM_ADDR_MASK,
+			    CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
+		err = -ENXIO;
+		goto error;
+	}
+
+	chip->ecc.mode = NAND_ECC_SOFT; /* default */
+
+	page_sz = mtd->writesize + mtd->oobsize;
+
+	/* Single buffer only, max 256 OOB minus ECC status */
+	if (page_sz > PAGE_2K + 256 - 8) {
+		dev_err(nfc->dev, "Unsupported flash size\n");
+		err = -ENXIO;
+		goto error;
+	}
+	page_sz += cfg.width == 16 ? 1 : 0;
+	vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
+
+	if (cfg.hardware_ecc) {
+		if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+			dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+			err = -ENXIO;
+			goto error;
+		}
+
+		chip->ecc.layout = &vf610_nfc_ecc45;
+
+		/* propagate ecc.layout to mtd_info */
+		mtd->ecclayout = chip->ecc.layout;
+		chip->ecc.read_page = vf610_nfc_read_page;
+		chip->ecc.write_page = vf610_nfc_write_page;
+		chip->ecc.mode = NAND_ECC_HW;
+
+		chip->ecc.bytes = 45;
+		chip->ecc.size = PAGE_2K;
+		chip->ecc.strength = 24;
+
+		/* set ECC mode to 45 bytes OOB with 24 bits correction */
+		vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+				    CONFIG_ECC_MODE_MASK,
+				    CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
+
+		/* Enable ECC_STATUS */
+		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+	}
+
+	/* second phase scan */
+	err = nand_scan_tail(mtd);
+	if (err)
+		return err;
+
+	err = nand_register(devnum);
+	if (err)
+		return err;
+
+	return 0;
+
+error:
+	return err;
+}
+
+void board_nand_init(void)
+{
+	int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
+	if (err)
+		printf("VF610 NAND init failed (err %d)\n", err);
+}
-- 
2.1.0



More information about the U-Boot mailing list