[U-Boot] [PATCHv1 01/22] arm: socfpga: spl: Add main sdram code

dinguyen at opensource.altera.com dinguyen at opensource.altera.com
Wed Jan 14 17:40:41 CET 2015


From: Dinh Nguyen <dinguyen at opensource.altera.com>

This adds the code to configure the SDRAM controller that is found in the
SoCFGPA Cyclone5 and Arria5 platforms.

Signed-off-by: Dinh Nguyen <dinguyen at opensource.altera.com>
---
 arch/arm/cpu/armv7/socfpga/config.mk               |    3 +-
 board/altera/socfpga/Makefile                      |    1 +
 board/altera/socfpga/sdram/Makefile                |   12 +
 board/altera/socfpga/sdram/sdram_config.h          |  100 +
 board/altera/socfpga/sdram/sdram_io.h              |   44 +
 board/altera/socfpga/sdram/sequencer.c             | 7993 ++++++++++++++++++++
 board/altera/socfpga/sdram/sequencer.h             |  504 ++
 board/altera/socfpga/sdram/sequencer_auto.h        |  216 +
 .../altera/socfpga/sdram/sequencer_auto_ac_init.c  |   88 +
 .../socfpga/sdram/sequencer_auto_inst_init.c       |  273 +
 board/altera/socfpga/sdram/sequencer_defines.h     |  154 +
 board/altera/socfpga/sdram/system.h                |   15 +
 12 files changed, 9402 insertions(+), 1 deletion(-)
 create mode 100644 board/altera/socfpga/sdram/Makefile
 create mode 100644 board/altera/socfpga/sdram/sdram_config.h
 create mode 100644 board/altera/socfpga/sdram/sdram_io.h
 create mode 100644 board/altera/socfpga/sdram/sequencer.c
 create mode 100644 board/altera/socfpga/sdram/sequencer.h
 create mode 100644 board/altera/socfpga/sdram/sequencer_auto.h
 create mode 100644 board/altera/socfpga/sdram/sequencer_auto_ac_init.c
 create mode 100644 board/altera/socfpga/sdram/sequencer_auto_inst_init.c
 create mode 100644 board/altera/socfpga/sdram/sequencer_defines.h
 create mode 100644 board/altera/socfpga/sdram/system.h

diff --git a/arch/arm/cpu/armv7/socfpga/config.mk b/arch/arm/cpu/armv7/socfpga/config.mk
index 2a99c72..8113dc2 100644
--- a/arch/arm/cpu/armv7/socfpga/config.mk
+++ b/arch/arm/cpu/armv7/socfpga/config.mk
@@ -8,4 +8,5 @@ ALL-y	+= u-boot.img
 endif
 
 # Added for handoff support
-PLATFORM_RELFLAGS += -Iboard/$(VENDOR)/$(BOARD)
+PLATFORM_RELFLAGS += -Iboard/$(VENDOR)/$(BOARD) \
+-Iboard/$(VENDOR)/$(BOARD)/sdram
diff --git a/board/altera/socfpga/Makefile b/board/altera/socfpga/Makefile
index 44baa00..72f5d70 100644
--- a/board/altera/socfpga/Makefile
+++ b/board/altera/socfpga/Makefile
@@ -8,3 +8,4 @@
 
 obj-y	:= socfpga_cyclone5.o
 obj-$(CONFIG_SPL_BUILD) += pinmux_config.o iocsr_config.o
+obj-$(CONFIG_SPL_BUILD) += sdram/
diff --git a/board/altera/socfpga/sdram/Makefile b/board/altera/socfpga/sdram/Makefile
new file mode 100644
index 0000000..bcab43f
--- /dev/null
+++ b/board/altera/socfpga/sdram/Makefile
@@ -0,0 +1,12 @@
+#
+# (C) Copyright 2000-2003
+# Wolfgang Denk, DENX Software Engineering, wd at denx.de.
+#
+# (C) Copyright 2010, Thomas Chou <thomas at wytron.com.tw>
+# Copyright (C) 2014 Altera Corporation <www.altera.com>
+#
+# SPDX-License-Identifier:	GPL-2.0+
+#
+
+obj-$(CONFIG_SPL_BUILD):= sequencer.o sequencer_auto_ac_init.o \
+			  sequencer_auto_inst_init.o
diff --git a/board/altera/socfpga/sdram/sdram_config.h b/board/altera/socfpga/sdram/sdram_config.h
new file mode 100644
index 0000000..5c3ba86
--- /dev/null
+++ b/board/altera/socfpga/sdram/sdram_config.h
@@ -0,0 +1,100 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#ifndef __SDRAM_CONFIG_H
+#define __SDRAM_CONFIG_H
+
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_MEMTYPE			(2)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_MEMBL			(8)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ADDRORDER		(0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ECCEN			(1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ECCCORREN		(1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_REORDEREN		(1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_STARVELIMIT		(10)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_DQSTRKEN			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_NODMPINS			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TCWL			(6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_AL			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TCL			(7)
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRRD			(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TFAW			(19)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRFC			(139)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TREFI		(4160)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRCD		(8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRP		(8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWR		(8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWTR		(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRTP			(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRAS			(19)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRC			(26)
+#else
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRRD			(3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TFAW			(14)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRFC			(104)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TREFI		(3120)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRCD		(6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRP		(6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWR		(6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWTR		(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRTP			(3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRAS			(14)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRC			(20)
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TMRD			(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TCCD			(4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING4_SELFRFSHEXIT		(512)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING4_PWRDOWNEXIT		(3)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWRTIMING_AUTOPDCYCLES	(0)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWRTIMING_CLKDISABLECYCLES	(8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_COLBITS		(10)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_ROWBITS		(15)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_BANKBITS		(3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_CSBITS			(1)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMIFWIDTH_IFWIDTH		(40)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMDEVWIDTH_DEVWIDTH		(8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMINTR_INTREN			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWREQ_SELFRFSHMASK		(3)
+#define CONFIG_HPS_SDR_CTRLCFG_STATICCFG_MEMBL			(2)
+#define CONFIG_HPS_SDR_CTRLCFG_STATICCFG_USEECCASDATA		(0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLWIDTH_CTRLWIDTH		(2)
+#define CONFIG_HPS_SDR_CTRLCFG_PORTCFG_AUTOPCHEN		(0)
+#define CONFIG_HPS_SDR_CTRLCFG_FIFOCFG_SYNCMODE			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_FIFOCFG_INCSYNC			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPRIORITY_USERPRIORITY		(0x3FFD1088)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_0_STATICWEIGHT_31_0	(0x21084210)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_1_STATICWEIGHT_49_32	(0x1EF84)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_1_SUMOFWEIGHT_13_0	(0x2020)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_2_SUMOFWEIGHT_45_14	(0x0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_3_SUMOFWEIGHT_63_46	(0xF800)
+#define CONFIG_HPS_SDR_CTRLCFG_PHYCTRL_PHYCTRL_0		(0x200)
+
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTWIDTH_CPORTWIDTH		(0x44555)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTWMAP_CPORTWMAP		(0x2C011000)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTRMAP_CPORTRMAP		(0xB00088)
+#define CONFIG_HPS_SDR_CTRLCFG_RFIFOCMAP_RFIFOCMAP		(0x760210)
+#define CONFIG_HPS_SDR_CTRLCFG_WFIFOCMAP_WFIFOCMAP		(0x980543)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTRDWR_CPORTRDWR		(0x5A56A)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_0_THRESHOLD1_31_0	(0x20820820)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_1_THRESHOLD1_59_32	(0x8208208)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_1_THRESHOLD2_3_0	(0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_2_THRESHOLD2_35_4	(0x41041041)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_3_THRESHOLD2_59_36	(0x410410)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_0_THRESHOLDRSTCYCLES_31_0 \
+(0x01010101)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_1_THRESHOLDRSTCYCLES_63_32 \
+(0x01010101)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_2_THRESHOLDRSTCYCLES_79_64 \
+(0x0101)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMODT_READ			(0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMODT_WRITE			(1)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_READ_PORT_USED	(0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_WRITE_PORT_USED	(0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_COMMAND_PORT_USED	(0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST			(0)
+
+#endif	/*#ifndef__SDRAM_CONFIG_H*/
diff --git a/board/altera/socfpga/sdram/sdram_io.h b/board/altera/socfpga/sdram/sdram_io.h
new file mode 100644
index 0000000..f24308d
--- /dev/null
+++ b/board/altera/socfpga/sdram/sdram_io.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#include <asm/io.h>
+
+#ifdef CONFIG_SPL_SERIAL_SUPPORT
+#define HPS_HW_SERIAL_SUPPORT
+#endif
+
+#define	HPS_SDR_BASE		SOCFPGA_SDR_ADDRESS
+#define MGR_SELECT_MASK		0xf8000
+
+#define APB_BASE_SCC_MGR	SDR_PHYGRP_SCCGRP_ADDRESS
+#define APB_BASE_PHY_MGR	SDR_PHYGRP_PHYMGRGRP_ADDRESS
+#define APB_BASE_RW_MGR		SDR_PHYGRP_RWMGRGRP_ADDRESS
+#define APB_BASE_DATA_MGR	SDR_PHYGRP_DATAMGRGRP_ADDRESS
+#define APB_BASE_REG_FILE	SDR_PHYGRP_REGFILEGRP_ADDRESS
+#define APB_BASE_MMR		SDR_CTRLGRP_ADDRESS
+
+#define __AVL_TO_APB(ADDR) \
+	((((ADDR) & MGR_SELECT_MASK) == (BASE_PHY_MGR))  ? \
+	(APB_BASE_PHY_MGR)  | (((ADDR) >> (14-6)) & (0x1<<6))  | \
+	((ADDR) & 0x3f) : \
+	(((ADDR) & MGR_SELECT_MASK) == (BASE_RW_MGR))   ? \
+	(APB_BASE_RW_MGR)   | ((ADDR) & 0x1fff) : \
+	(((ADDR) & MGR_SELECT_MASK) == (BASE_DATA_MGR)) ? \
+	(APB_BASE_DATA_MGR) | ((ADDR) & 0x7ff) : \
+	(((ADDR) & MGR_SELECT_MASK) == (BASE_SCC_MGR))  ? \
+	(APB_BASE_SCC_MGR)  | ((ADDR) & 0xfff) : \
+	(((ADDR) & MGR_SELECT_MASK) == (BASE_REG_FILE)) ? \
+	(APB_BASE_REG_FILE) | ((ADDR) & 0x7ff) : \
+	(((ADDR) & MGR_SELECT_MASK) == (BASE_MMR))      ? \
+	(APB_BASE_MMR)      | ((ADDR) & 0xfff) : -1)
+
+#define IOWR_32DIRECT(BASE, OFFSET, DATA) \
+	writel(DATA, HPS_SDR_BASE + __AVL_TO_APB((uint32_t)((BASE) + \
+	(OFFSET))))
+
+#define IORD_32DIRECT(BASE, OFFSET) \
+	readl(HPS_SDR_BASE + __AVL_TO_APB((uint32_t)((BASE) + (OFFSET))))
+
diff --git a/board/altera/socfpga/sdram/sequencer.c b/board/altera/socfpga/sdram/sequencer.c
new file mode 100644
index 0000000..c0ba0e5
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer.c
@@ -0,0 +1,7993 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/sdram.h>
+#include "sdram_io.h"
+#include "sequencer.h"
+#include "sequencer_auto.h"
+#include "sequencer_defines.h"
+#include "system.h"
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
+static void rw_mgr_mem_dll_lock_wait(void);
+
+/******************************************************************************
+ ******************************************************************************
+ ** NOTE: Special Rules for Globale Variables                                **
+ **                                                                          **
+ ** All global variables that are explicitly initialized (including          **
+ ** explicitly initialized to zero), are only initialized once, during       **
+ ** configuration time, and not again on reset.  This means that they        **
+ ** preserve their current contents across resets, which is needed for some  **
+ ** special cases involving communication with external modules.  In         **
+ ** addition, this avoids paying the price to have the memory initialized,   **
+ ** even for zeroed data, provided it is explicitly set to zero in the code, **
+ ** and doesn't rely on implicit initialization.                             **
+ ******************************************************************************
+ ******************************************************************************/
+
+#if ARRIAV
+/*
+ * Temporary workaround to place the initial stack pointer at a safe
+ * offset from end
+ */
+#define STRINGIFY(s)		STRINGIFY_STR(s)
+#define STRINGIFY_STR(s)	#s
+asm(".global __alt_stack_pointer");
+asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
+#endif
+
+#if CYCLONEV
+/*
+ * Temporary workaround to place the initial stack pointer at a safe
+ * offset from end
+ */
+#define STRINGIFY(s)		STRINGIFY_STR(s)
+#define STRINGIFY_STR(s)	#s
+asm(".global __alt_stack_pointer");
+asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
+#endif
+
+/* Just to make the debugging code more uniform */
+#ifndef RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM
+#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 0
+#endif
+
+#if HALF_RATE
+#define HALF_RATE_MODE 1
+#else
+#define HALF_RATE_MODE 0
+#endif
+
+#if QUARTER_RATE
+#define QUARTER_RATE_MODE 1
+#else
+#define QUARTER_RATE_MODE 0
+#endif
+#define DELTA_D 1
+
+/*
+ * case:56390
+ * VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated
+ * per DQS. This is always one except:
+ * AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2
+ * RLDRAMII x36 and x36w2 where it is 2.
+ * In 12.0sp1 we set this to 4 for all of the special cases above to
+ * keep it simple.
+ * In 12.0sp2 or 12.1 this should get moved to generation and unified with
+ * the same constant used in the phy mgr
+ */
+
+#define VFIFO_CONTROL_WIDTH_PER_DQS 1
+
+#if ARRIAV
+
+#if QDRII
+ #if RW_MGR_MEM_DQ_PER_READ_DQS > 9
+  #undef VFIFO_CONTROL_WIDTH_PER_DQS
+  #define VFIFO_CONTROL_WIDTH_PER_DQS 4
+ #endif
+#endif /* protocol check */
+
+#if RLDRAMII
+ #if RW_MGR_MEM_DQ_PER_READ_DQS > 9
+  #undef VFIFO_CONTROL_WIDTH_PER_DQS
+  #define VFIFO_CONTROL_WIDTH_PER_DQS 2
+ #endif
+#endif /* protocol check */
+
+#endif /* family check */
+
+/*
+ * In order to reduce ROM size, most of the selectable calibration steps are
+ * decided at compile time based on the user's calibration mode selection,
+ * as captured by the STATIC_CALIB_STEPS selection below.
+ *
+ * However, to support simulation-time selection of fast simulation mode, where
+ * we skip everything except the bare minimum, we need a few of the steps to
+ * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
+ * check, which is based on the rtl-supplied value, or we dynamically compute
+ * the value to use based on the dynamically-chosen calibration mode
+ */
+
+#if QDRII
+#define BTFLD_FMT "%llx"
+#else
+#define BTFLD_FMT "%u"
+#endif
+
+/* For HPS running on actual hardware */
+
+#define DLEVEL 0
+#ifdef HPS_HW_SERIAL_SUPPORT
+/*
+ * space around comma is required for varargs macro to remove comma if args
+ * is empty
+ */
+#define DPRINT(level, fmt, args...)	if (DLEVEL >= (level)) \
+					printf("SEQ.C: " fmt "\n" , ## args)
+#define IPRINT(fmt, args...)	        printf("SEQ.C: " fmt "\n" , ## args)
+#else
+#define DPRINT(level, fmt, args...)
+#define IPRINT(fmt, args...)
+#endif
+#define BFM_GBL_SET(field, value)
+#define BFM_GBL_GET(field)		((long unsigned int)0)
+#define BFM_STAGE(stage)
+#define BFM_INC_VFIFO
+#define COV(label)
+
+#define TRACE_FUNC(fmt, args...) \
+	DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args)
+
+#define DYNAMIC_CALIB_STEPS (dyn_calib_steps)
+
+#if STATIC_SIM_FILESET
+#define STATIC_IN_RTL_SIM CALIB_IN_RTL_SIM
+#else
+#define STATIC_IN_RTL_SIM 0
+#endif
+
+#if STATIC_SKIP_MEM_INIT
+#define STATIC_SKIP_DELAY_LOOPS CALIB_SKIP_DELAY_LOOPS
+#else
+#define STATIC_SKIP_DELAY_LOOPS 0
+#endif
+
+#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
+	STATIC_SKIP_DELAY_LOOPS)
+
+/* calibration steps requested by the rtl */
+uint16_t dyn_calib_steps;
+
+/*
+ * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
+ * instead of static, we use boolean logic to select between
+ * non-skip and skip values
+ *
+ * The mask is set to include all bits when not-skipping, but is
+ * zero when skipping
+ */
+
+uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
+
+#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
+	((non_skip_value) & skip_delay_mask)
+
+struct gbl_type *gbl;
+struct param_type *param;
+uint32_t curr_shadow_reg;
+
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+	uint32_t write_group, uint32_t use_dm,
+	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
+
+#if ENABLE_BRINGUP_DEBUGGING
+#define DI_BUFFER_DEBUG_SIZE   64
+
+uint8_t di_buf_gbl[DI_BUFFER_DEBUG_SIZE*4] = {0};
+
+void load_di_buf_gbl(void)
+{
+	int i;
+	int j;
+
+	for (i = 0; i < DI_BUFFER_DEBUG_SIZE; i++) {
+		uint32_t val = IORD_32DIRECT(RW_MGR_DI_BASE + i*4, 0);
+		for (j = 0; j < 4; j++) {
+			uint8_t byte = (val >> (8*j)) & 0xff;
+			di_buf_gbl[i*4 + j] = byte;
+		}
+	}
+}
+#endif	/* ENABLE_BRINGUP_DEBUGGING */
+
+
+#if ENABLE_DQSEN_SWEEP
+void init_di_buffer(void)
+{
+	uint32_t i;
+
+	debug_data->di_report.flags = 0;
+	debug_data->di_report.cur_samples = 0;
+
+	for (i = 0; i < NUM_DI_SAMPLE; i++) {
+		debug_data->di_report.di_buffer[i].bit_chk = 0;
+		debug_data->di_report.di_buffer[i].delay = 0;
+		debug_data->di_report.di_buffer[i].d = 0;
+		debug_data->di_report.di_buffer[i].v = 0;
+		debug_data->di_report.di_buffer[i].p = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_0a = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_0b = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_1a = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_1b = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_2a = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_2b = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_3a = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_3b = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_4a = 0;
+		debug_data->di_report.di_buffer[i].di_buffer_4b = 0;
+	}
+}
+
+void wait_di_buffer(void)
+{
+	if (debug_data->di_report.cur_samples == NUM_DI_SAMPLE)	{
+		debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
+		while (debug_data->di_report.cur_samples != 0)
+			;
+		debug_data->di_report.flags = 0;
+	}
+}
+
+void sample_di_data(uint32_t bit_chk, uint32_t delay, uint32_t d,
+	uint32_t v, uint32_t p)
+{
+	uint32_t k;
+	uint32_t di_status_word;
+	uint32_t di_word_avail;
+	uint32_t di_write_to_read_ratio;
+	uint32_t di_write_to_read_ratio_2_exp;
+
+	wait_di_buffer();
+
+	k = debug_data->di_report.cur_samples;
+
+	debug_data->di_report.di_buffer[k].bit_chk = bit_chk;
+	debug_data->di_report.di_buffer[k].delay = delay;
+	debug_data->di_report.di_buffer[k].d = d;
+	debug_data->di_report.di_buffer[k].v = v;
+	debug_data->di_report.di_buffer[k].p = p;
+
+	di_status_word = IORD_32DIRECT(BASE_RW_MGR + 8, 0);
+	di_word_avail = di_status_word & 0x0000FFFF;
+	di_write_to_read_ratio = (di_status_word & 0x00FF0000) >> 16;
+	di_write_to_read_ratio_2_exp = (di_status_word & 0xFF000000) >> 24;
+
+	debug_data->di_report.di_buffer[k].di_buffer_0a =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 0*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_0b =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 1*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_1a =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 2*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_1b =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 3*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_2a =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 4*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_2b =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 5*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_3a =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 6*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_3b =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 7*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_4a =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 8*4, 0);
+	debug_data->di_report.di_buffer[k].di_buffer_4b =
+		IORD_32DIRECT(BASE_RW_MGR + 16 + 9*4, 0);
+
+	debug_data->di_report.cur_samples =
+		debug_data->di_report.cur_samples + 1;
+}
+#endif
+
+/*
+ * This (TEST_SIZE) is used to test handling of large roms, to make
+ * sure we are sizing things correctly
+ * Note, the initialized data takes up twice the space in rom, since
+ *there needs to be a copy with the initial value and a copy that is
+ * written too, since on soft-reset, it needs to have the initial values
+ * without reloading the memory from external sources
+ */
+
+
+#ifdef TEST_SIZE
+
+#define PRE_POST_TEST_SIZE 3
+
+unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3};
+unsigned int test_size_mem[TEST_SIZE/sizeof(unsigned int)] = { 100, 200, 300 };
+unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = {10, 20, 30};
+void write_test_mem(void)
+{
+	int i;
+
+	for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+		pre_test_size_mem[i] = (i+1)*10;
+		post_test_size_mem[i] = (i+1);
+	}
+
+	for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++)
+		test_size_mem[i] = i;
+}
+
+int check_test_mem(int start)
+{
+	int i;
+
+	for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+		if (start) {
+			if (pre_test_size_mem[i] != (i+1))
+				return 0;
+			if (post_test_size_mem[i] != (i+1)*10)
+				return 0;
+		} else {
+			if (pre_test_size_mem[i] != (i+1)*10)
+				return 0;
+			if (post_test_size_mem[i] != (i+1))
+				return 0;
+		}
+	}
+
+	for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++) {
+		if (start) {
+			if (i < 3) {
+				if (test_size_mem[i] != (i+1)*100)
+					return 0;
+			} else {
+				if (test_size_mem[i] != 0)
+					return 0;
+			}
+		} else {
+			if (test_size_mem[i] != i)
+				return 0;
+		}
+	}
+
+	return 1;
+}
+
+#endif /* TEST_SIZE */
+
+static void set_failing_group_stage(uint32_t group, uint32_t stage,
+	uint32_t substage)
+{
+	ALTERA_ASSERT(group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/*
+	 * Only set the global stage if there was not been any other
+	 * failing group
+	 */
+	if (gbl->error_stage == CAL_STAGE_NIL)	{
+		gbl->error_substage = substage;
+		gbl->error_stage = stage;
+		gbl->error_group = group;
+	}
+}
+
+static inline void reg_file_set_group(uint32_t set_group)
+{
+	/* Read the current group and stage */
+	uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+	/* Clear the group */
+	cur_stage_group &= 0x0000FFFF;
+
+	/* Set the group */
+	cur_stage_group |= (set_group << 16);
+
+	/* Write the data back */
+	IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline void reg_file_set_stage(uint32_t set_stage)
+{
+	/* Read the current group and stage */
+	uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+	/* Clear the stage and substage */
+	cur_stage_group &= 0xFFFF0000;
+
+	/* Set the stage */
+	cur_stage_group |= (set_stage & 0x000000FF);
+
+	/* Write the data back */
+	IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline void reg_file_set_sub_stage(uint32_t set_sub_stage)
+{
+	/* Read the current group and stage */
+	uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+	/* Clear the substage */
+	cur_stage_group &= 0xFFFF00FF;
+
+	/* Set the sub stage */
+	cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
+
+	/* Write the data back */
+	IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline uint32_t is_write_group_enabled_for_dm(uint32_t write_group)
+{
+#if DM_PINS_ENABLED
+ #if RLDRAMII
+	int32_t decrement_counter = write_group + 1;
+
+	while (decrement_counter > 0)
+		decrement_counter -= RW_MGR_MEM_IF_WRITE_DQS_WIDTH /
+			RW_MGR_MEM_DATA_MASK_WIDTH;
+
+	if (decrement_counter == 0)
+		return 1;
+	return 0;
+ #else
+	return 1;
+ #endif
+#else
+	return 0;
+#endif
+}
+
+static inline void select_curr_shadow_reg_using_rank(uint32_t rank)
+{
+#if USE_SHADOW_REGS
+	/* USER Map the rank to its shadow reg and set the global variable  */
+	curr_shadow_reg = (rank >> (NUM_RANKS_PER_SHADOW_REG - 1));
+#endif
+}
+
+void initialize(void)
+{
+	TRACE_FUNC();
+
+	/* USER calibration has control over path to memory */
+#if HARD_PHY
+	/*
+	 * In Hard PHY this is a 2-bit control:
+	 * 0: AFI Mux Select
+	 * 1: DDIO Mux Select
+	 */
+	IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x3);
+#else
+	IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 1);
+#endif
+
+	/* USER memory clock is not stable we begin initialization  */
+
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 0);
+
+	/* USER calibration status all set to zero */
+
+	IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, 0);
+	IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0);
+
+	if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
+		param->read_correct_mask_vg  = ((uint32_t)1 <<
+			(RW_MGR_MEM_DQ_PER_READ_DQS /
+			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+		param->write_correct_mask_vg = ((uint32_t)1 <<
+			(RW_MGR_MEM_DQ_PER_READ_DQS /
+			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+		param->read_correct_mask     = ((uint32_t)1 <<
+			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
+		param->write_correct_mask    = ((uint32_t)1 <<
+			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
+		param->dm_correct_mask       = ((uint32_t)1 <<
+			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
+			- 1;
+	}
+}
+
+
+#if MRS_MIRROR_PING_PONG_ATSO
+/*
+ * This code is specific to the ATSO setup.  There are two ways to set
+ * the cs/odt mask:
+ * 1. the normal way (set_rank_and_odt_mask)
+ * This method will be used in general.  The behavior will be to unmask
+ * BOTH CS (i.e. broadcast to both sides as if calibrating one large interface).
+ * 2. this function
+ * This method will be used for MRS settings only.  This allows us to do
+ * settings on a per-side basis.  This is needed because Slot 1 Rank 1 needs
+ * a mirrored MRS. This function is specific to our setup ONLY.
+ */
+void set_rank_and_odt_mask_for_ping_pong_atso(uint32_t side, uint32_t odt_mode)
+{
+	uint32_t odt_mask_0 = 0;
+	uint32_t odt_mask_1 = 0;
+	uint32_t cs_and_odt_mask;
+
+	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+		/*
+		 * USER 1 Rank
+		 * USER Read: ODT = 0
+		 * USER Write: ODT = 1
+		 */
+		odt_mask_0 = 0x0;
+		odt_mask_1 = 0x1;
+	} else	{
+		odt_mask_0 = 0x0;
+		odt_mask_1 = 0x0;
+	}
+
+	cs_and_odt_mask =
+		(0xFF & ~(1 << side)) |
+		((0xFF & odt_mask_0) << 8) |
+		((0xFF & odt_mask_1) << 16);
+
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#endif
+
+#if DDR3
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+	uint32_t odt_mask_0 = 0;
+	uint32_t odt_mask_1 = 0;
+	uint32_t cs_and_odt_mask;
+
+	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+#if USE_SHADOW_REGS
+		uint32_t rank_one_hot = (0xFF & (1 << rank));
+		select_curr_shadow_reg_using_rank(rank);
+
+		/*
+		 * Assert afi_rrank and afi_wrank. These signals ultimately
+		 * drive the read/write rank select signals which select the
+		 * shadow register.
+		 */
+		IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
+#endif
+
+		if (LRDIMM) {
+			/*
+			 * LRDIMMs have two cases to consider: single-slot and
+			 * dual-slot. In single-slot, assert ODT for write only.
+			 * In dual-slot, assert ODT for both slots for write,
+			 * and on the opposite slot only for reads.
+			 *
+			 * Further complicating this is that both DIMMs have
+			 * either 1 or 2 ODT inputs, which do the same thing
+			 * (only one is actually required).
+			 */
+			if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+			     RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) {
+				/* USER Single-slot case */
+				if (RW_MGR_MEM_ODT_WIDTH == 1) {
+					/* USER Read = 0, Write = 1*/
+					odt_mask_0 = 0x0;
+					odt_mask_1 = 0x1;
+				} else if (RW_MGR_MEM_ODT_WIDTH == 2) {
+					/* USER Read = 00, Write = 11*/
+					odt_mask_0 = 0x0;
+					odt_mask_1 = 0x3;
+				}
+			} else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+				    RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
+				/* USER Dual-slot case*/
+				if (RW_MGR_MEM_ODT_WIDTH == 2) {
+					/*
+					 * USER Read: asserted for opposite
+					 * slot, Write: asserted for both
+					 */
+					odt_mask_0 = (rank < 2) ? 0x2 : 0x1;
+					odt_mask_1 = 0x3;
+				} else if (RW_MGR_MEM_ODT_WIDTH == 4) {
+					/*
+					 * USER Read: asserted for opposite
+					 * slot, Write: asserted for both
+					 */
+					odt_mask_0 = (rank < 2) ? 0xC : 0x3;
+					odt_mask_1 = 0xF;
+				}
+			}
+		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+			/*
+			 * 1 Rank
+			 * Read: ODT = 0
+			 * Write: ODT = 1
+			 */
+			odt_mask_0 = 0x0;
+			odt_mask_1 = 0x1;
+		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+			/* 2 Ranks */
+			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
+			    (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+			    RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
+				/* - Dual-Slot , Single-Rank
+				 * (1 chip-select per DIMM)
+				 * OR
+				 * - RDIMM, 4 total CS (2 CS per DIMM)
+				 * means 2 DIMM
+				 * Since MEM_NUMBER_OF_RANKS is 2 they are
+				 * both single rank
+				 * with 2 CS each (special for RDIMM)
+				 * Read: Turn on ODT on the opposite rank
+				 * Write: Turn on ODT on all ranks
+				 */
+				odt_mask_0 = 0x3 & ~(1 << rank);
+				odt_mask_1 = 0x3;
+			} else {
+				/*
+				 * USER - Single-Slot , Dual-rank DIMMs
+				 * (2 chip-selects per DIMM)
+				 * USER Read: Turn on ODT off on all ranks
+				 * USER Write: Turn on ODT on active rank
+				 */
+				odt_mask_0 = 0x0;
+				odt_mask_1 = 0x3 & (1 << rank);
+			}
+				} else {
+			/* 4 Ranks
+			 * Read:
+			 * ----------+-----------------------+
+			 *           |                       |
+			 *           |         ODT           |
+			 * Read From +-----------------------+
+			 *   Rank    |  3  |  2  |  1  |  0  |
+			 * ----------+-----+-----+-----+-----+
+			 *     0     |  0  |  1  |  0  |  0  |
+			 *     1     |  1  |  0  |  0  |  0  |
+			 *     2     |  0  |  0  |  0  |  1  |
+			 *     3     |  0  |  0  |  1  |  0  |
+			 * ----------+-----+-----+-----+-----+
+			 *
+			 * Write:
+			 * ----------+-----------------------+
+			 *           |                       |
+			 *           |         ODT           |
+			 * Write To  +-----------------------+
+			 *   Rank    |  3  |  2  |  1  |  0  |
+			 * ----------+-----+-----+-----+-----+
+			 *     0     |  0  |  1  |  0  |  1  |
+			 *     1     |  1  |  0  |  1  |  0  |
+			 *     2     |  0  |  1  |  0  |  1  |
+			 *     3     |  1  |  0  |  1  |  0  |
+			 * ----------+-----+-----+-----+-----+
+			 */
+			switch (rank) {
+			case 0:
+				odt_mask_0 = 0x4;
+				odt_mask_1 = 0x5;
+				break;
+			case 1:
+				odt_mask_0 = 0x8;
+				odt_mask_1 = 0xA;
+				break;
+			case 2:
+				odt_mask_0 = 0x1;
+				odt_mask_1 = 0x5;
+				break;
+			case 3:
+				odt_mask_0 = 0x2;
+				odt_mask_1 = 0xA;
+				break;
+			}
+		}
+	} else {
+		odt_mask_0 = 0x0;
+		odt_mask_1 = 0x0;
+	}
+
+#if MRS_MIRROR_PING_PONG_ATSO
+	/* See set_cs_and_odt_mask_for_ping_pong_atso*/
+	cs_and_odt_mask =
+			(0xFC) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+#else
+	if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+	    RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 &&
+	    RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+		/* See RDIMM special case above */
+		cs_and_odt_mask =
+			(0xFF & ~(1 << (2*rank))) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+	} else if (LRDIMM) {
+#if LRDIMM
+		/*
+		 * USER LRDIMM special cases - When RM=2, CS[2] is remapped
+		 * to A[16] so skip it, and when RM=4, CS[3:2] are remapped
+		 * to A[17:16] so skip them both.
+		 */
+		uint32_t lrdimm_rank = 0;
+		uint32_t lrdimm_rank_mask = 0;
+
+		/*
+		 * USER When rank multiplication is active, the remapped CS
+		 * pins must be forced low instead of high for proper
+		 * targetted RTT_NOM programming.
+		 */
+		if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 2)
+			/* USER Mask = CS[5:0] = 011011 */
+			lrdimm_rank_mask = (0x3 | (0x3 << 3));
+		else if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 4)
+			/* USER Mask = CS[7:0] = 00110011 */
+			lrdimm_rank_mask = (0x3 | (0x3 << 4));
+
+		/*
+		 * USER Handle LRDIMM cases where Rank multiplication
+		 * may be active
+		 */
+		if (((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+		      RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1)) {
+			/* USER Single-DIMM case */
+			lrdimm_rank = ~(1 << rank);
+		} else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+			    RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
+			if (rank < (RW_MGR_MEM_NUMBER_OF_RANKS >> 1)) {
+			/* USER Dual-DIMM case, accessing first slot */
+				lrdimm_rank = ~(1 << rank);
+			} else {
+			/* USER Dual-DIMM case, accessing second slot */
+				lrdimm_rank = ~(1 << (rank +
+				RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM -
+				(RW_MGR_MEM_NUMBER_OF_RANKS>>1)));
+			}
+		}
+		cs_and_odt_mask =
+			(lrdimm_rank_mask & lrdimm_rank) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+#endif /* LRDIMM */
+	} else {
+		cs_and_odt_mask =
+			(0xFF & ~(1 << rank)) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+	}
+#endif
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#else
+#if DDR2
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+	uint32_t odt_mask_0 = 0;
+	uint32_t odt_mask_1 = 0;
+	uint32_t cs_and_odt_mask;
+
+	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+			/*
+			 * 1 Rank
+			 * Read: ODT = 0
+			 * Write: ODT = 1
+			 */
+			odt_mask_0 = 0x0;
+			odt_mask_1 = 0x1;
+		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+			/* 2 Ranks */
+			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
+			    (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+			    RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
+				/*
+				 * USER - Dual-Slot ,
+				 * Single-Rank (1 chip-select per DIMM)
+				 * OR
+				 * - RDIMM, 4 total CS (2 CS per DIMM) means
+				 * 2 DIMM
+				 * Since MEM_NUMBER_OF_RANKS is 2 they are both
+				 * single rank with 2 CS each (special for
+				 * RDIMM)
+				 * Read/Write: Turn on ODT on the opposite rank
+				 */
+				odt_mask_0 = 0x3 & ~(1 << rank);
+				odt_mask_1 = 0x3 & ~(1 << rank);
+			} else {
+				/*
+				 * USER - Single-Slot , Dual-rank DIMMs
+				 * (2 chip-selects per DIMM)
+				 * Read: Turn on ODT off on all ranks
+				 * Write: Turn on ODT on active rank
+				 */
+				odt_mask_0 = 0x0;
+				odt_mask_1 = 0x3 & (1 << rank);
+			}
+		} else {
+			/*
+			 * 4 Ranks
+			 * Read/Write:
+			 * -----------+-----------------------+
+			 *            |                       |
+			 *            |         ODT           |
+			 * Read/Write |                       |
+			 *   From     +-----------------------+
+			 *   Rank     |  3  |  2  |  1  |  0  |
+			 * -----------+-----+-----+-----+-----+
+			 *     0      |  0  |  1  |  0  |  0  |
+			 *     1      |  1  |  0  |  0  |  0  |
+			 *     2      |  0  |  0  |  0  |  1  |
+			 *     3      |  0  |  0  |  1  |  0  |
+			 * -----------+-----+-----+-----+-----+
+			 */
+			switch (rank) {
+			case 0:
+				odt_mask_0 = 0x4;
+				odt_mask_1 = 0x4;
+				break;
+			case 1:
+				odt_mask_0 = 0x8;
+				odt_mask_1 = 0x8;
+				break;
+			case 2:
+				odt_mask_0 = 0x1;
+				odt_mask_1 = 0x1;
+				break;
+			case 3:
+				odt_mask_0 = 0x2;
+				odt_mask_1 = 0x2;
+				break;
+			}
+		}
+	} else {
+		odt_mask_0 = 0x0;
+		odt_mask_1 = 0x0;
+	}
+
+	if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+	    RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 &&
+	    RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+		/* See RDIMM/LRDIMM special case above */
+		cs_and_odt_mask =
+			(0xFF & ~(1 << (2*rank))) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+	} else {
+		cs_and_odt_mask =
+			(0xFF & ~(1 << rank)) |
+			((0xFF & odt_mask_0) << 8) |
+			((0xFF & odt_mask_1) << 16);
+	}
+
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#else /* QDRII and RLDRAMx */
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+	uint32_t cs_and_odt_mask =
+		(0xFF & ~(1 << rank));
+
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#endif
+#endif
+
+/*
+ * Given a rank, select the set of shadow registers that is responsible
+ * for the delays of such rank, so that subsequent SCC updates will
+ * go to those shadow registers.
+ */
+void select_shadow_regs_for_update(uint32_t rank, uint32_t group,
+	uint32_t update_scan_chains)
+{
+#if USE_SHADOW_REGS
+	uint32_t rank_one_hot = (0xFF & (1 << rank));
+
+	/*
+	 * USER Assert afi_rrank and afi_wrank. These signals ultimately drive
+	 * the read/write rank select signals which select the shadow register.
+	 */
+	IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
+
+	/*
+	 * USER Cause the SCC manager to switch its register file, which is used
+	 * as local cache of the various dtap/ptap settings. There's one
+	 * register file per shadow register set.
+	 */
+	IOWR_32DIRECT(SCC_MGR_ACTIVE_RANK, 0, rank_one_hot);
+
+	if (update_scan_chains) {
+		uint32_t i;
+
+		/*
+		 * USER On the read side, a memory read is required because the
+		 * read rank select signal (as well as the postamble delay
+		 * chain settings) is clocked into the periphery by the
+		 * postamble signal. Simply asserting afi_rrank is not enough.
+		 * If update_scc_regfile is not set, we assume there'll be a
+		 * subsequent read that'll handle this.
+		 */
+		for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; ++i) {
+			/*
+			 * USER The dummy read can go to any non-skipped rank.
+			 * Skipped ranks are uninitialized and their banks are
+			 * un-activated. Accessing skipped ranks can lead to
+			 * bad behavior.
+			 */
+			if (!param->skip_ranks[i]) {
+				set_rank_and_odt_mask(i,
+						      RW_MGR_ODT_MODE_READ_WRITE);
+				/*
+				 * must re-assert afi_wrank/afi_rrank prior to
+				 * issuing read because set_rank_and_odt_mask
+				 * may have changed the signals.
+				 */
+				IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0,
+					      rank_one_hot);
+
+				IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
+				IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+					      __RW_MGR_READ_B2B_WAIT1);
+
+				IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
+				IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+					      __RW_MGR_READ_B2B_WAIT2);
+
+				IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0);
+				IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+					      __RW_MGR_READ_B2B);
+
+				IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
+				IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+					      __RW_MGR_READ_B2B);
+
+				IOWR_32DIRECT(RW_MGR_RUN_ALL_GROUPS, 0,
+					      __RW_MGR_READ_B2B);
+
+				/*
+				 * USER The dummy read above may cause the DQS
+				 * enable signal to be stuck high. The
+				 * following corrects this.
+				 */
+				IOWR_32DIRECT(RW_MGR_RUN_ALL_GROUPS, 0,
+					      __RW_MGR_CLEAR_DQS_ENABLE);
+
+				set_rank_and_odt_mask(i, RW_MGR_ODT_MODE_OFF);
+
+				break;
+			}
+		}
+
+		/* Reset the fifos to get pointers to known state */
+		IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+		IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+		/*
+		 * USER On the write side the afi_wrank signal eventually
+		 * propagates to the I/O
+		 * through the write datapath. We need to make sure we wait
+		 * long enough for this to happen. The operations above should
+		 * be enough, hence no extra delay
+		 * inserted here.
+		 */
+
+		/*
+		 * USER Make sure the data in the I/O scan chains are in-sync
+		 * with the register file inside the SCC manager. If we don't
+		 * do this, a subsequent SCC_UPDATE may cause stale data for
+		 * the other shadow register to be loaded. This must
+		 * be done for every scan chain of the current group.
+		 * that in shadow register mode, the SCC_UPDATE signal is
+		 * per-group.
+		 */
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, group);
+		IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, group);
+		IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+
+		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
+			IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, i);
+		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
+			IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, i);
+	}
+
+	/* Map the rank to its shadow reg */
+	select_curr_shadow_reg_using_rank(rank);
+#endif
+}
+
+void scc_mgr_initialize(void)
+{
+	/*
+	 * Clear register file for HPS
+	 * 16 (2^4) is the size of the full register file in the scc mgr:
+	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
+	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
+	 */
+	uint32_t i;
+	for (i = 0; i < 16; i++) {
+		DPRINT(1, "Clearing SCC RFILE index %u", i);
+		IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0);
+	}
+}
+
+inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
+{
+	ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_IN_DELAY(read_group, delay);
+}
+
+static inline void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
+	uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_IO_IN_DELAY(delay);
+}
+
+static inline void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
+{
+	ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_EN_PHASE(read_group, phase);
+}
+
+void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, uint32_t phase)
+{
+	uint32_t r;
+	uint32_t update_scan_chains;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+	     r += NUM_RANKS_PER_SHADOW_REG) {
+		/*
+		 * USER although the h/w doesn't support different phases per
+		 * shadow register, for simplicity our scc manager modeling
+		 * keeps different phase settings per shadow reg, and it's
+		 * important for us to keep them in sync to match h/w.
+		 * for efficiency, the scan chain update should occur only
+		 * once to sr0.
+		 */
+		update_scan_chains = (r == 0) ? 1 : 0;
+
+		select_shadow_regs_for_update(r, read_group,
+					      update_scan_chains);
+		scc_mgr_set_dqs_en_phase(read_group, phase);
+
+		if (update_scan_chains) {
+			IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+			IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		}
+	}
+}
+
+static inline void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
+	uint32_t phase)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	#if CALIBRATE_BIT_SLIPS
+	uint32_t num_fr_slips = 0;
+	while (phase > IO_DQDQS_OUT_PHASE_MAX) {
+		phase -= IO_DLL_CHAIN_LENGTH;
+		num_fr_slips++;
+	}
+	IOWR_32DIRECT(PHY_MGR_FR_SHIFT, write_group*4, num_fr_slips);
+#endif
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase);
+}
+
+static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
+	uint32_t phase)
+{
+	uint32_t r;
+	uint32_t update_scan_chains;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+	     r += NUM_RANKS_PER_SHADOW_REG) {
+		/*
+		 * USER although the h/w doesn't support different phases per
+		 * shadow register, for simplicity our scc manager modeling
+		 * keeps different phase settings per shadow reg, and it's
+		 * important for us to keep them in sync to match h/w.
+		 * for efficiency, the scan chain update should occur only
+		 * once to sr0.
+		 */
+		update_scan_chains = (r == 0) ? 1 : 0;
+
+		select_shadow_regs_for_update(r, write_group,
+					      update_scan_chains);
+		scc_mgr_set_dqdqs_output_phase(write_group, phase);
+
+		if (update_scan_chains) {
+			IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
+			IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		}
+	}
+}
+
+static inline void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
+{
+	ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_EN_DELAY(read_group, delay);
+}
+
+static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
+	uint32_t delay)
+{
+	uint32_t r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+		r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, read_group, 0);
+
+		scc_mgr_set_dqs_en_delay(read_group, delay);
+
+		IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+
+#if !USE_SHADOW_REGS
+		/*
+		 * In shadow register mode, the T11 settings are stored in
+		 * registers in the core, which are updated by the DQS_ENA
+		 * signals. Not issuing the SCC_MGR_UPD command allows us to
+		 * save lots of rank switching overhead, by calling
+		 * select_shadow_regs_for_update with update_scan_chains
+		 * set to 0.
+		 */
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+#endif
+	}
+}
+
+static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
+{
+	uint32_t read_group;
+
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/*
+	 * Load the setting in the SCC manager
+	 * Although OCT affects only write data, the OCT delay is controlled
+	 * by the DQS logic block which is instantiated once per read group.
+	 * For protocols where a write group consists of multiple read groups,
+	 * the setting must be set multiple times.
+	 */
+	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+		WRITE_SCC_OCT_OUT1_DELAY(read_group, delay);
+}
+
+static void scc_mgr_set_oct_out2_delay(uint32_t write_group, uint32_t delay)
+{
+	uint32_t read_group;
+
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/*
+	 * Load the setting in the SCC manager
+	 * Although OCT affects only write data, the OCT delay is controlled
+	 * by the DQS logic block which is instantiated once per read group.
+	 * For protocols where a write group consists
+	 * of multiple read groups, the setting must be set multiple times.
+	 */
+	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+		WRITE_SCC_OCT_OUT2_DELAY(read_group, delay);
+}
+
+static inline void scc_mgr_set_dqs_bypass(uint32_t write_group, uint32_t bypass)
+{
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_BYPASS(write_group, bypass);
+}
+
+inline void scc_mgr_set_dq_out1_delay(uint32_t write_group,
+	uint32_t dq_in_group, uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay);
+}
+
+inline void scc_mgr_set_dq_out2_delay(uint32_t write_group,
+	uint32_t dq_in_group, uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay);
+}
+
+inline void scc_mgr_set_dq_in_delay(uint32_t write_group,
+	uint32_t dq_in_group, uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay);
+}
+
+static inline void scc_mgr_set_dq_bypass(uint32_t write_group,
+	uint32_t dq_in_group, uint32_t bypass)
+{
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQ_BYPASS(dq_in_group, bypass);
+}
+
+static inline void scc_mgr_set_rfifo_mode(uint32_t write_group,
+	uint32_t dq_in_group, uint32_t mode)
+{
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_RFIFO_MODE(dq_in_group, mode);
+}
+
+static inline void scc_mgr_set_hhp_extras(void)
+{
+	/*
+	 * Load the fixed setting in the SCC manager
+	 * bits: 0:0 = 1'b1   - dqs bypass
+	 * bits: 1:1 = 1'b1   - dq bypass
+	 * bits: 4:2 = 3'b001   - rfifo_mode
+	 * bits: 6:5 = 2'b01  - rfifo clock_select
+	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
+	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
+	 */
+	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
+	WRITE_SCC_HHP_EXTRAS(value);
+}
+
+static inline void scc_mgr_set_hhp_dqse_map(void)
+{
+	/* Load the fixed setting in the SCC manager */
+	WRITE_SCC_HHP_DQSE_MAP(0);
+}
+
+static inline void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
+	uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
+}
+
+static inline void scc_mgr_set_dqs_out2_delay(uint32_t write_group,
+	uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DQS_IO_OUT2_DELAY(delay);
+}
+
+inline void scc_mgr_set_dm_out1_delay(uint32_t write_group,
+	uint32_t dm, uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
+}
+
+inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm,
+	uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay);
+}
+
+static inline void scc_mgr_set_dm_in_delay(uint32_t write_group,
+	uint32_t dm, uint32_t delay)
+{
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DM_IO_IN_DELAY(dm, delay);
+}
+
+static inline void scc_mgr_set_dm_bypass(uint32_t write_group, uint32_t dm,
+	uint32_t bypass)
+{
+	/* Load the setting in the SCC manager */
+	WRITE_SCC_DM_BYPASS(dm, bypass);
+}
+
+/*
+ * USER Zero all DQS config
+ * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
+ */
+void scc_mgr_zero_all(void)
+{
+	uint32_t i, r;
+
+	/*
+	 * USER Zero all DQS config settings, across all groups and all
+	 * shadow registers
+	 */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+	     NUM_RANKS_PER_SHADOW_REG) {
+		/*
+		 * Strictly speaking this should be called once per group to
+		 * make sure each group's delay chain is refreshed from the
+		 * SCC register file, but since we're resetting all delay
+		 * chains anyway, we can save some runtime by calling
+		 * select_shadow_regs_for_update just once to switch rank.
+		 */
+		select_shadow_regs_for_update(r, 0, 1);
+
+		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+			/*
+			 * The phases actually don't exist on a per-rank basis,
+			 * but there's no harm updating them several times, so
+			 * let's keep the code simple.
+			 */
+			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
+			scc_mgr_set_dqs_en_phase(i, 0);
+			scc_mgr_set_dqs_en_delay(i, 0);
+		}
+
+		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+			scc_mgr_set_dqdqs_output_phase(i, 0);
+#if ARRIAV || CYCLONEV
+			/* av/cv don't have out2 */
+			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
+#else
+			scc_mgr_set_oct_out1_delay(i, 0);
+			scc_mgr_set_oct_out2_delay(i, IO_DQS_OUT_RESERVE);
+#endif
+		}
+
+		/* multicast to all DQS group enables */
+		IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
+#if USE_SHADOW_REGS
+		/*
+		 * USER in shadow-register mode, SCC_UPDATE is done on a
+		 * per-group basis unless we explicitly ask for a multicast
+		 * via the group counter
+		 */
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+}
+
+void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
+{
+	/* mode = 0 : Do NOT bypass - Half Rate Mode */
+	/* mode = 1 : Bypass - Full Rate Mode */
+
+	/* only need to set once for all groups, pins, dq, dqs, dm */
+	if (write_group == 0) {
+		DPRINT(1, "Setting HHP Extras");
+		scc_mgr_set_hhp_extras();
+		DPRINT(1, "Done Setting HHP Extras");
+	}
+	/* multicast to all DQ enables */
+	IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+	IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+
+	/* update current DQS IO enable */
+	IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+
+	/* update the DQS logic */
+	IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
+
+	/* hit update */
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+}
+
+void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
+	int32_t out_only)
+{
+	uint32_t i, r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+		NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+
+		/* Zero all DQ config settings */
+		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+			scc_mgr_set_dq_out1_delay(write_group, i, 0);
+			scc_mgr_set_dq_out2_delay(write_group, i,
+						  IO_DQ_OUT_RESERVE);
+			if (!out_only)
+				scc_mgr_set_dq_in_delay(write_group, i, 0);
+		}
+
+		/* multicast to all DQ enables */
+		IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+
+		/* Zero all DM config settings */
+		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+			scc_mgr_set_dm_out1_delay(write_group, i, 0);
+			scc_mgr_set_dm_out2_delay(write_group, i,
+						  IO_DM_OUT_RESERVE);
+		}
+
+		/* multicast to all DM enables */
+		IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+
+		/* zero all DQS io settings */
+		if (!out_only)
+			scc_mgr_set_dqs_io_in_delay(write_group, 0);
+#if ARRIAV || CYCLONEV
+		/* av/cv don't have out2 */
+		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+		scc_mgr_load_dqs_for_write_group(write_group);
+#else
+		scc_mgr_set_dqs_out1_delay(write_group, 0);
+		scc_mgr_set_dqs_out2_delay(write_group, IO_DQS_OUT_RESERVE);
+		scc_mgr_set_oct_out1_delay(write_group, 0);
+		scc_mgr_set_oct_out2_delay(write_group, IO_DQS_OUT_RESERVE);
+		scc_mgr_load_dqs_for_write_group(write_group);
+#endif
+		/* multicast to all DQS IO enables (only 1) */
+		IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+#if USE_SHADOW_REGS
+		/*
+		 * in shadow-register mode, SCC_UPDATE is done on a per-group
+		 * basis unless we explicitly ask for a multicast via the group
+		 * counter
+		 */
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+		/* hit update to zero everything */
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+}
+
+/* load up dqs config settings */
+static void scc_mgr_load_dqs(uint32_t dqs)
+{
+	IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, dqs);
+}
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
+{
+	uint32_t read_group;
+
+	/*
+	 * Although OCT affects only write data, the OCT delay is controlled
+	 * by the DQS logic block which is instantiated once per read group.
+	 * For protocols where a write group consists of multiple read groups,
+	 * the setting must be scanned multiple times.
+	 */
+	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+		IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+}
+
+/* load up dqs io config settings */
+static void scc_mgr_load_dqs_io(void)
+{
+	IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+}
+
+/* load up dq config settings */
+static void scc_mgr_load_dq(uint32_t dq_in_group)
+{
+	IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, dq_in_group);
+}
+
+/* load up dm config settings */
+static void scc_mgr_load_dm(uint32_t dm)
+{
+	IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, dm);
+}
+
+/*
+ * apply and load a particular input delay for the DQ pins in a group
+ * group_bgn is the index of the first dq pin (in the write group)
+ */
+static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
+	uint32_t group_bgn, uint32_t delay)
+{
+	uint32_t i, p;
+
+	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+		scc_mgr_set_dq_in_delay(write_group, p, delay);
+		scc_mgr_load_dq(p);
+	}
+}
+
+/* apply and load a particular output delay for the DQ pins in a group */
+static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
+	uint32_t group_bgn, uint32_t delay1)
+{
+	uint32_t i, p;
+
+	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+		scc_mgr_set_dq_out1_delay(write_group, i, delay1);
+		scc_mgr_load_dq(i);
+	}
+}
+
+/* apply and load a particular output delay for the DM pins in a group */
+static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
+	uint32_t delay1)
+{
+	uint32_t i;
+
+	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+		scc_mgr_set_dm_out1_delay(write_group, i, delay1);
+		scc_mgr_load_dm(i);
+	}
+}
+
+
+/* apply and load delay on both DQS and OCT out1 */
+static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
+	uint32_t delay)
+{
+	scc_mgr_set_dqs_out1_delay(write_group, delay);
+	scc_mgr_load_dqs_io();
+
+	scc_mgr_set_oct_out1_delay(write_group, delay);
+	scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/*
+ * set delay on both DQS and OCT out1 by incrementally changing
+ * the settings one dtap at a time towards the target value, to avoid
+ * breaking the lock of the DLL/PLL on the memory device.
+ */
+static void scc_mgr_set_group_dqs_io_and_oct_out1_gradual(uint32_t write_group,
+	uint32_t delay)
+{
+	uint32_t d = READ_SCC_DQS_IO_OUT1_DELAY();
+
+	while (d > delay) {
+		--d;
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		if (QDRII)
+			rw_mgr_mem_dll_lock_wait();
+	}
+	while (d < delay) {
+		++d;
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		if (QDRII)
+			rw_mgr_mem_dll_lock_wait();
+	}
+}
+
+/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+static void scc_mgr_apply_group_all_out_delay(uint32_t write_group,
+	uint32_t group_bgn, uint32_t delay)
+{
+	/* dq shift */
+	scc_mgr_apply_group_dq_out1_delay(write_group, group_bgn, delay);
+
+	/* dm shift */
+	scc_mgr_apply_group_dm_out1_delay(write_group, delay);
+
+	/* dqs and oct shift */
+	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, delay);
+}
+
+/*
+ * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
+ * and to all ranks
+ */
+static void scc_mgr_apply_group_all_out_delay_all_ranks(uint32_t write_group,
+	uint32_t group_bgn, uint32_t delay)
+{
+	uint32_t r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+	     r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+		scc_mgr_apply_group_all_out_delay(write_group, group_bgn,
+						  delay);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+}
+
+/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
+	uint32_t group_bgn, uint32_t delay)
+{
+	uint32_t i, p, new_delay;
+
+	/* dq shift */
+	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+		new_delay = READ_SCC_DQ_OUT2_DELAY(i);
+		new_delay += delay;
+
+		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+			DPRINT(1, "%s(%u, %u, %u) DQ[%u,%u]: %u > %lu => %lu",
+			       __func__, write_group, group_bgn, delay, i, p,
+			       new_delay,
+			       (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+			       (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+			new_delay = IO_IO_OUT2_DELAY_MAX;
+		}
+
+		scc_mgr_set_dq_out2_delay(write_group, i, new_delay);
+		scc_mgr_load_dq(i);
+	}
+
+	/* dm shift */
+	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+		new_delay = READ_SCC_DM_IO_OUT2_DELAY(i);
+		new_delay += delay;
+
+		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+			DPRINT(1, "%s(%u, %u, %u) DM[%u]: %u > %lu => %lu",
+			       __func__, write_group, group_bgn, delay, i,
+			       new_delay,
+			       (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+			       (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+			new_delay = IO_IO_OUT2_DELAY_MAX;
+		}
+
+		scc_mgr_set_dm_out2_delay(write_group, i, new_delay);
+		scc_mgr_load_dm(i);
+	}
+
+	/* dqs shift */
+	new_delay = READ_SCC_DQS_IO_OUT2_DELAY();
+	new_delay += delay;
+
+	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+		DPRINT(1, "%s(%u, %u, %u) DQS: %u > %d => %d;"
+			" adding %u to OUT1",
+			__func__, write_group, group_bgn, delay,
+			new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+			new_delay - IO_IO_OUT2_DELAY_MAX);
+		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
+					   IO_IO_OUT2_DELAY_MAX);
+		new_delay = IO_IO_OUT2_DELAY_MAX;
+	}
+
+	scc_mgr_set_dqs_out2_delay(write_group, new_delay);
+	scc_mgr_load_dqs_io();
+
+	/* oct shift */
+	new_delay = READ_SCC_OCT_OUT2_DELAY(write_group);
+	new_delay += delay;
+
+	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+		DPRINT(1, "%s(%u, %u, %u) DQS: %u > %d => %d;"
+		       " adding %u to OUT1",
+		       __func__, write_group, group_bgn, delay,
+		       new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+		       new_delay - IO_IO_OUT2_DELAY_MAX);
+		scc_mgr_set_oct_out1_delay(write_group, new_delay -
+					   IO_IO_OUT2_DELAY_MAX);
+		new_delay = IO_IO_OUT2_DELAY_MAX;
+	}
+
+	scc_mgr_set_oct_out2_delay(write_group, new_delay);
+	scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/*
+ * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
+ * and to all ranks
+ */
+static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
+	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
+{
+	uint32_t r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+		r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+		scc_mgr_apply_group_all_out_delay_add(write_group,
+						      group_bgn, delay);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+}
+
+static inline void scc_mgr_spread_out2_delay_all_ranks(uint32_t write_group,
+	uint32_t test_bgn)
+{
+#if STRATIXV || ARRIAVGZ
+	uint32_t found;
+	uint32_t i;
+	uint32_t p;
+	uint32_t d;
+	uint32_t r;
+
+	const uint32_t delay_step = IO_IO_OUT2_DELAY_MAX /
+		(RW_MGR_MEM_DQ_PER_WRITE_DQS-1);
+		/* we start at zero, so have one less dq to devide among */
+
+	TRACE_FUNC("(%lu,%lu)", write_group, test_bgn);
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+	     r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+		for (i = 0, p = test_bgn, d = 0;
+		     i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
+		     i++, p++, d += delay_step) {
+			scc_mgr_set_dq_out2_delay(write_group, i, d);
+			scc_mgr_load_dq(i);
+		}
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+#endif
+}
+
+#if DDR3
+/* optimization used to recover some slots in ddr3 inst_rom */
+/* could be applied to other protocols if we wanted to */
+static void set_jump_as_return(void)
+{
+	/*
+	 * to save space, we replace return with jump to special shared
+	 * RETURN instruction so we set the counter to large value so that
+	 * we always jump
+	 */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0xFF);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN);
+}
+#endif
+
+/*
+ * should always use constants as argument to ensure all computations are
+ * performed at compile time
+ */
+static inline void delay_for_n_mem_clocks(const uint32_t clocks)
+{
+	uint32_t afi_clocks;
+	uint8_t inner = 0;
+	uint8_t outer = 0;
+	uint16_t c_loop = 0;
+
+	TRACE_FUNC("clocks=%u ... start", clocks);
+
+	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
+	/* scale (rounding up) to get afi clocks */
+
+	/*
+	 * Note, we don't bother accounting for being off a little bit
+	 * because of a few extra instructions in outer loops
+	 * Note, the loops have a test at the end, and do the test before
+	 * the decrement, and so always perform the loop
+	 * 1 time more than the counter value
+	 */
+	if (afi_clocks == 0) {
+		;
+	} else if (afi_clocks <= 0x100) {
+		inner = afi_clocks-1;
+		outer = 0;
+		c_loop = 0;
+	} else if (afi_clocks <= 0x10000) {
+		inner = 0xff;
+		outer = (afi_clocks-1) >> 8;
+		c_loop = 0;
+	} else {
+		inner = 0xff;
+		outer = 0xff;
+		c_loop = (afi_clocks-1) >> 16;
+	}
+
+	/*
+	 * rom instructions are structured as follows:
+	 *
+	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
+	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
+	 *                return
+	 *
+	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
+	 * TARGET_B is set to IDLE_LOOP2 as well
+	 *
+	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
+	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
+	 *
+	 * a little confusing, but it helps save precious space in the inst_rom
+	 * and sequencer rom and keeps the delays more accurate and reduces
+	 * overhead
+	 */
+	if (afi_clocks <= 0x100) {
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+			      SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1);
+	} else {
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+			      SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+			      SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
+
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2);
+
+		/* hack to get around compiler not being smart enough */
+		if (afi_clocks <= 0x10000) {
+			/* only need to run once */
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_IDLE_LOOP2);
+		} else {
+			do {
+				IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+					      __RW_MGR_IDLE_LOOP2);
+			} while (c_loop-- != 0);
+		}
+	}
+	TRACE_FUNC("clocks=%u ... end", clocks);
+}
+
+/*
+ * should always use constants as argument to ensure all computations are
+ * performed at compile time
+ */
+static inline void delay_for_n_ns(const uint32_t nanoseconds)
+{
+	TRACE_FUNC("nanoseconds=%u ... end", nanoseconds);
+	delay_for_n_mem_clocks((1000*nanoseconds) /
+			       (1000000/AFI_CLK_FREQ) * AFI_RATE_RATIO);
+}
+
+#if RLDRAM3
+/*
+ * Special routine to recover memory device from illegal state after
+ * ck/dk relationship is potentially violated.
+ */
+static inline void recover_mem_device_after_ck_dqs_violation(void)
+{
+	/*
+	 * Issue MRS0 command. For some reason this is required once we
+	 * violate tCKDK. Without this all subsequent write tests will
+	 * fail even with known good delays.
+	 */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+
+	/* Wait MRSC */
+	delay_for_n_mem_clocks(12);
+}
+#else
+/*
+ * Special routine to recover memory device from illegal state after
+ * ck/dqs relationship is violated.
+ */
+static inline void recover_mem_device_after_ck_dqs_violation(void)
+{
+	/* Current protocol doesn't require any special recovery */
+}
+#endif
+
+#if (LRDIMM && DDR3)
+/* Routine to program specific LRDIMM control words. */
+static void rw_mgr_lrdimm_rc_program(uint32_t fscw, uint32_t rc_addr,
+	uint32_t rc_val)
+{
+	uint32_t i;
+	const uint32_t AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
+	/* These values should be dynamically loaded instead of hard-coded */
+	const uint32_t AC_ADDRESS_POSITION = 0x0;
+	const uint32_t AC_BANK_ADDRESS_POSITION = 0xD;
+	uint32_t ac_content;
+	uint32_t lrdimm_cs_msk = RW_MGR_RANK_NONE;
+
+	TRACE_FUNC();
+
+	/* Turn on only CS0 and CS1 for each DIMM. */
+	for (i = 0; i < RW_MGR_MEM_CHIP_SELECT_WIDTH;
+	     i += RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM)
+		lrdimm_cs_msk &= (~(3 << i));
+
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, lrdimm_cs_msk);
+
+	/* Program the fscw first (RC7), followed by the actual value */
+	for (i = 0; i < 2; i++)	{
+		uint32_t addr;
+		uint32_t val;
+
+		addr = (i == 0) ? 7 : rc_addr;
+		val = (i == 0) ? fscw : rc_val;
+
+		ac_content =
+			AC_BASE_CONTENT |
+			/* Word address */
+			((addr & 0x7) << AC_ADDRESS_POSITION) |
+			(((addr >> 3) & 0x1) <<
+			(AC_BANK_ADDRESS_POSITION + 2)) |
+			/* Configuration Word */
+			(((val >> 2) & 0x3) << (AC_BANK_ADDRESS_POSITION)) |
+			((val & 0x3) << (AC_ADDRESS_POSITION + 3));
+
+		/* Override the AC row with the RDIMM command */
+		IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 + (__RW_MGR_ac_rdimm << 2),
+			      ac_content);
+
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
+	}
+
+	/*
+	 * USER The following registers require a delay of tSTAB (6us)
+	 * USER for proper functionality.
+	 * USER F0RC2, F0RC10, F0RC11, F1RC8, F1RC11-F1RC15
+	 * USER Note that it is only necessary to wait tSTAB after all of these
+	 * USER control words have been written, not after each one. Only
+	 * USER F0RC0-F0RC15
+	 * USER are guaranteed to be written (and in order), but F1* are not so
+	 * USER wait after each.
+	 */
+	if (((fscw == 0) && (rc_addr == 11)) ||
+	    ((fscw == 1) && (rc_addr >= 8)))
+		delay_for_n_ns(6000);
+}
+#endif
+#if (RDIMM || LRDIMM) && DDR3
+void rw_mgr_rdimm_initialize(void)
+{
+	uint32_t i;
+	uint32_t conf_word;
+#if RDIMM
+	const uint32_t AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
+	/* These values should be dynamically loaded instead of hard-coded */
+	const uint32_t AC_ADDRESS_POSITION = 0x0;
+	const uint32_t AC_BANK_ADDRESS_POSITION = 0xD;
+	uint32_t ac_content;
+#endif
+
+	TRACE_FUNC();
+
+	/*
+	 * RDIMM registers are programmed by writing 16 configuration words
+	 * 1. An RDIMM command is a NOP with all CS asserted
+	 * 2. The 4-bit address of the configuration words is
+	 *    * { mem_ba[2] , mem_a[2] , mem_a[1] , mem_a[0] }
+	 * 3. The 4-bit configuration word is
+	 *    * { mem_ba[1] , mem_ba[0] , mem_a[4] , mem_a[3] }
+	 */
+
+#if RDIMM
+	/* Turn on all ranks */
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
+#endif
+
+	for (i = 0; i < 16; i++)	{
+		if (i < 8)
+			conf_word = (RDIMM_CONFIG_WORD_LOW >> (i * 4)) & 0xF;
+		else
+			conf_word = (RDIMM_CONFIG_WORD_HIGH >> ((i - 8) * 4))
+				& 0xF;
+
+#if RDIMM
+		ac_content =
+			AC_BASE_CONTENT |
+			/* Word address */
+			((i & 0x7) << AC_ADDRESS_POSITION) |
+			(((i >> 3) & 0x1) << (AC_BANK_ADDRESS_POSITION + 2)) |
+			/* Configuration Word */
+			(((conf_word >> 2) & 0x3) <<
+			(AC_BANK_ADDRESS_POSITION)) |
+			((conf_word & 0x3) << (AC_ADDRESS_POSITION + 3));
+
+		/* Override the AC row with the RDIMM command */
+		IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 +
+			      (__RW_MGR_ac_rdimm << 2), ac_content);
+
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
+		/*
+		 * When sending the RC2 or RC10 word, tSTAB time must
+		 * elapse before the next command
+		 * is sent out. tSTAB is currently hard-coded to 6us.
+		 */
+		if ((i == 2) || (i == 10))
+			/* tSTAB = 6 us */
+			delay_for_n_ns(6000);
+#endif
+#if LRDIMM
+		/* USER Program configuration word with FSCW set to zero. */
+		rw_mgr_lrdimm_rc_program(0, i, conf_word);
+#endif
+	}
+}
+#else
+void rw_mgr_rdimm_initialize(void) { }
+#endif
+
+#if DDR3
+
+#if LRDIMM
+uint32_t ddr3_mirror_mrs_cmd(uint32_t bit_vector)
+{
+	/*
+	 * This function performs address mirroring of an AC ROM command, which
+	 * requires swapping the following DDR3 bits:
+	 *     A[3] <=> A[4]
+	 *     A[5] <=> A[6]
+	 *     A[7] <=> A[8]
+	 *    BA[0] <=>BA[1]
+	 * We assume AC_ROM_ENTRY = {BA[2:0], A[15:0]}.
+	 */
+	uint32_t unchanged_bits;
+	uint32_t mask_a;
+	uint32_t mask_b;
+	uint32_t retval;
+
+	unchanged_bits = (~(DDR3_AC_MIRR_MASK | (DDR3_AC_MIRR_MASK << 1)))
+			  & bit_vector;
+	mask_a = DDR3_AC_MIRR_MASK & bit_vector;
+	mask_b = (DDR3_AC_MIRR_MASK << 1) & bit_vector;
+
+	retval = unchanged_bits | (mask_a << 1) | (mask_b >> 1);
+
+	return retval;
+}
+
+void rtt_change_MRS1_MRS2_NOM_WR(uint32_t prev_ac_mr , uint32_t odt_ac_mr,
+	uint32_t mirr_on, uint32_t mr_cmd) {
+	/*
+	 * This function updates the ODT-specific Mode Register bits
+	 * (MRS1 or MRS2) in the AC ROM.
+	 * Parameters:  prev_ac_mr - Original, *un-mirrored* AC ROM Entry
+	 *              odt_ac_mr  - ODT bits to update (un-mirrored)
+	 *              mirr_on    - boolean flag indicating if the regular
+	 * 			     or mirrored entry is updated
+	 *              mr_cmd     - Mode register command (only MR1 and MR2
+	 *			     are supported for DDR3)
+	 */
+	uint32_t new_ac_mr;
+	uint32_t ac_rom_entry = 0;
+	uint32_t ac_rom_mask;
+
+	switch (mr_cmd) {
+		case 1: {
+			/* USER MRS1 = RTT_NOM, RTT_DRV */
+			ac_rom_mask = DDR3_MR1_ODT_MASK;
+			ac_rom_entry = mirr_on ? (0x1C00 |
+				(__RW_MGR_ac_mrs1_mirr << 2))
+				: (0x1C00 | (__RW_MGR_ac_mrs1 << 2));
+		} break;
+		case 2: {
+			/* USER MRS2 = RTT_WR */
+			ac_rom_mask = DDR3_MR2_ODT_MASK;
+			ac_rom_entry = mirr_on ? (0x1C00 |
+				(__RW_MGR_ac_mrs2_mirr << 2))
+				: (0x1C00 | (__RW_MGR_ac_mrs2 << 2));
+		} break;
+	}
+
+	/* USER calculate new AC values and update ROM */
+	new_ac_mr  = odt_ac_mr;
+	new_ac_mr |= (prev_ac_mr & ac_rom_mask);
+	if (mirr_on)
+		new_ac_mr = ddr3_mirror_mrs_cmd(new_ac_mr);
+	IOWR_32DIRECT(BASE_RW_MGR, ac_rom_entry, new_ac_mr);
+}
+#endif /*LRDIMM */
+
+void rw_mgr_mem_initialize(void)
+{
+	uint32_t r;
+
+#if LRDIMM
+	uint32_t rtt_nom;
+	uint32_t rtt_drv;
+	uint32_t rtt_wr;
+#endif /* LRDIMM */
+
+	TRACE_FUNC();
+
+	/* The reset / cke part of initialization is broadcasted to all ranks */
+	IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
+
+	/*
+	 * Here's how you load register for a loop
+	 * Counters are located @ 0x800
+	 * Jump address are located @ 0xC00
+	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
+	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+	 * I know this ain't pretty, but Avalon bus throws away the 2 least
+	 * significant bits
+	 */
+
+	/* start with memory RESET activated */
+
+	/* tINIT = 200us */
+
+	/*
+	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
+	 * If a and b are the number of iteration in 2 nested loops
+	 * it takes the following number of cycles to complete the operation:
+	 * number_of_cycles = ((2 + n) * a + 2) * b
+	 * where n is the number of instruction in the inner loop
+	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
+	 * b = 6A
+	 */
+
+	/* Load counters */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+
+	/* Execute count instruction */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/*
+	 * transition the RESET to high
+	 * Wait for 500us
+	 */
+
+	/*
+	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
+	 * If a and b are the number of iteration in 2 nested loops
+	 * it takes the following number of cycles to complete the operation
+	 * number_of_cycles = ((2 + n) * a + 2) * b
+	 * where n is the number of instruction in the inner loop
+	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
+	 * b = FF
+	 */
+
+	/* Load counters */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+
+	/* bring up clock enable */
+
+	/* tXRP < 250 ck cycles */
+	delay_for_n_mem_clocks(250);
+
+#ifdef RDIMM
+	/*
+	 * USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will
+	 * USER be propagated to discrete memory devices
+	 */
+	rw_mgr_rdimm_initialize();
+#endif
+
+#if LRDIMM
+	/*
+	 * USER initialize LRDIMM MB so MRS and RZQ Calibrate commands will be
+	 * USER propagated to all sub-ranks.  Per LRDIMM spec, all LRDIMM ranks
+	 * USER must have
+	 * USER RTT_WR set, but only physical ranks 0 and 1 should have RTT_NOM
+	 * USER set.
+	 * USER Therefore RTT_NOM=0 is broadcast to all ranks, and the non-zero
+	 * USER value is
+	 * USER programmed directly into Ranks 0 and 1 using physical MRS
+	 * targetting.
+	 */
+	rw_mgr_rdimm_initialize();
+
+	rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
+	rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
+	rtt_wr  = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
+
+	/* Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks */
+	rw_mgr_lrdimm_rc_program(0, 14, 0x9); /*broadcast mode */
+
+	/*
+	 * USER Update contents of AC ROM with new RTT WR, DRV values only
+	 * (NOM = Off)
+	 */
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr,  0, 2);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr,  1, 2);
+#endif
+#if RDIMM
+	/*
+	 * USER initialize RDIMM buffer so MRS and RZQ Calibrate commands
+	 * USER will be
+	 * USER propagated to discrete memory devices
+	 */
+	rw_mgr_rdimm_initialize();
+#endif
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r]) {
+			/* request to skip the rank */
+
+			continue;
+		}
+
+		/* set rank */
+#if MRS_MIRROR_PING_PONG_ATSO
+		/* Special case */
+		/* SIDE 0 */
+		set_rank_and_odt_mask_for_ping_pong_atso(0,
+							 RW_MGR_ODT_MODE_OFF);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MRS0_DLL_RESET);
+
+		/* SIDE 1 */
+		set_rank_and_odt_mask_for_ping_pong_atso(1,
+							 RW_MGR_ODT_MODE_OFF);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MRS0_DLL_RESET_MIRR);
+
+		/* Unmask all CS */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+#else
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * USER Use Mirror-ed commands for odd ranks if address
+		 * mirrorring is on
+		 */
+		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS2_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS3_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS0_DLL_RESET_MIRR);
+		} else {
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS2);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS3);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS0_DLL_RESET);
+		}
+#endif
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
+
+		/* tZQinit = tDLLK = 512 ck cycles */
+		delay_for_n_mem_clocks(512);
+	}
+#if LRDIMM
+	/*
+	 * USER Configure LRDIMM to target physical ranks decoded by
+	 * RM bits only (ranks 0,1 only)
+	 */
+	rw_mgr_lrdimm_rc_program(0, 14, 0xD);
+	/* USER update AC ROM MR1 entry to include RTT_NOM */
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+				    (rtt_drv|rtt_nom), 0, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+				    (rtt_drv|rtt_nom), 1, 1);
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r]) {
+			/* USER request to skip the rank */
+			continue;
+		}
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * Use Mirror-ed commands for odd ranks if address
+		 * mirrorring is on
+		 */
+		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1_MIRR);
+			delay_for_n_mem_clocks(4);
+		} else {
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1);
+			delay_for_n_mem_clocks(4);
+		}
+	}
+
+	/*
+	 * USER Initiate LRDIMM MB->Physical Rank training here
+	 * USER -> Set minimum skew mode for levelling - F3RC6 = 0001
+	 */
+	rw_mgr_lrdimm_rc_program(3, 6, 0x1);
+	/*
+	 * USER -> Set error status output in register F2RC3 for debugging
+	 * purposes
+	 */
+	rw_mgr_lrdimm_rc_program(2, 3, 0x8);
+
+#ifdef LRDIMM_EXT_CONFIG_ARRAY
+	/* USER Configure LRDIMM ODT/Drive parameters using SPD information */
+	{
+		static const uint8_t lrdimm_cfg_array[][3] =
+			LRDIMM_EXT_CONFIG_ARRAY;
+		uint32_t cfg_reg_ctr;
+
+		for (cfg_reg_ctr = 0; cfg_reg_ctr < (sizeof(lrdimm_cfg_array) /
+			sizeof(lrdimm_cfg_array[0])); cfg_reg_ctr++) {
+			uint32_t lrdimm_fp  = (uint32_t)lrdimm_cfg_array
+				[cfg_reg_ctr][0];
+			uint32_t lrdimm_rc  = (uint32_t)lrdimm_cfg_array
+				[cfg_reg_ctr][1];
+			uint32_t lrdimm_val = (uint32_t)lrdimm_cfg_array
+				[cfg_reg_ctr][2];
+
+			rw_mgr_lrdimm_rc_program(lrdimm_fp, lrdimm_rc,
+						 lrdimm_val);
+		}
+	}
+#endif /* LRDIMM_EXT_CONFIG_ARRAY */
+
+	/* USER -> Initiate MB->DIMM training on the LRDIMM */
+	rw_mgr_lrdimm_rc_program(0, 12, 0x2);
+#if (!STATIC_SKIP_DELAY_LOOPS)
+	/*
+	 * USER Wait for max(tcal) * number of physical ranks. Tcal is approx.
+	 * 10ms.
+	 */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS *
+	     RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM; r++)
+		delay_for_n_ns(40000000UL);
+#endif /* !STATIC_SKIP_DELAY_LOOPS */
+	/* USER Place MB back in normal operating mode */
+	rw_mgr_lrdimm_rc_program(0, 12, 0x0);
+#endif /* LRDIMM */
+}
+#endif /* DDR3 */
+
+#if DDR2
+void rw_mgr_mem_initialize(void)
+{
+	uint32_t r;
+
+	TRACE_FUNC();
+
+	/* *** NOTE *** */
+	/* The following STAGE (n) notation refers to the corresponding
+	stage in the Micron datasheet */
+
+	/*
+	 *Here's how you load register for a loop
+	 * Counters are located @ 0x800
+	 * Jump address are located @ 0xC00
+	 * For both, registers 0 to 3 are selected using bits 3 and 2,
+	 like in
+	 * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+	 * I know this ain't pretty, but Avalon bus throws away the 2 least
+	 significant bits
+	 */
+
+	/* *** STAGE (1, 2, 3) *** */
+
+	/* start with CKE low */
+
+	/* tINIT = 200us */
+
+	/* 200us @ 300MHz (3.33 ns) ~ 60000 clock cycles
+	* If a and b are the number of iteration in 2 nested loops
+	* it takes the following number of cycles to complete the operation:
+	* number_of_cycles = ((2 + n) * b + 2) * a
+	* where n is the number of instruction in the inner loop
+	* One possible solution is n = 0 , a = 256 , b = 118 => a = FF,
+	* b = 76
+	*/
+
+	/*TODO: Need to manage multi-rank */
+
+	/* Load counters */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_CKE_0);
+
+	/* Execute count instruction */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/* Bring up CKE */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+
+	/* *** STAGE (4) */
+	delay_for_n_ns(400);
+
+	/* Multi-rank section begins here */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * * **** *
+		 * * NOTE *
+		 * * **** *
+		 * The following commands must be spaced by tMRD or tRPA
+		 * which are in the order
+		 * of 2 to 4 full rate cycles. This is peanuts in the
+		 * NIOS domain, so for now
+		 * we can avoid redundant wait loops
+		 */
+
+		/*
+		 * Possible FIXME BEN: for HHP, we need to add delay loops
+		 * to be sure although, the sequencer write interface by itself
+		 * likely has enough delay
+		 */
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* *** STAGE (5) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
+
+		/* *** STAGE (6) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
+
+		/* *** STAGE (7) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+		/* *** STAGE (8) */
+		/* DLL reset */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MR_DLL_RESET);
+
+		/* *** STAGE (9) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* *** STAGE (10) */
+
+		/* Issue 2 refresh commands spaced by tREF */
+
+		/* First REFRESH */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+		/* tREF = 200ns */
+		delay_for_n_ns(200);
+
+		/* Second REFRESH */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+		/* Second idle loop */
+		delay_for_n_ns(200);
+
+		/* *** STAGE (11) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MR_CALIB);
+
+		/* *** STAGE (12) */
+		/* OCD defaults */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_EMR_OCD_ENABLE);
+
+		/* *** STAGE (13) */
+		/* OCD exit */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+		/* *** STAGE (14) */
+
+		/*
+		 * The memory is now initialized. Before being able to
+		 * use it, we must still
+		 * wait for the DLL to lock, 200 clock cycles after it
+		 * was reset @ STAGE (8).
+		 * Since we cannot keep track of time in any other way,
+		 * let's start counting from now
+		 */
+		delay_for_n_mem_clocks(200);
+	}
+}
+#endif /* DDR2 */
+
+#if LPDDR2
+void rw_mgr_mem_initialize(void)
+{
+	uint32_t r;
+
+	/*
+	 * The following STAGE (n) notation refers to the corresponding
+	 * stage in the Micron datasheet
+	 */
+
+	/*
+	 * Here's how you load register for a loop
+	 * Counters are located @ 0x800
+	 * Jump address are located @ 0xC00
+	 * For both, registers 0 to 3 are selected using bits 3 and 2,
+	 * like in
+	 * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+	 * I know this ain't pretty, but Avalon bus throws away the 2 least
+	 * significant bits
+	 */
+
+
+	/* *** STAGE (1, 2, 3) *** */
+
+	/* start with CKE low */
+
+	/* tINIT1 = 100ns */
+
+	/*
+	 * 100ns @ 300MHz (3.333 ns) ~ 30 cycles
+	 * If a is the number of iteration in a loop
+	 * it takes the following number of cycles to complete the operation
+	 * number_of_cycles = (2 + n) * a
+	 * where n is the number of instruction in the inner loop
+	 * One possible solution is n = 0 , a = 15 => a = 0x10
+	 */
+
+	/* Load counter */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x10));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
+
+	/* Execute count instruction */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
+
+	/* tINIT3 = 200us */
+	delay_for_n_ns(200000);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/* Multi-rank section begins here */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* MRW RESET */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR63_RESET);
+	}
+
+	/* tINIT5 = 10us */
+	delay_for_n_ns(10000);
+
+	/* Multi-rank section begins here */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * MRW ZQC
+		 * Note: We cannot calibrate other ranks when the current rank
+		 * is calibrating for tZQINIT
+		 */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR10_ZQC);
+
+		/* tZQINIT = 1us */
+		delay_for_n_ns(1000);
+
+		/*
+		 * * **** *
+		 * * NOTE *
+		 * * **** *
+		 * The following commands must be spaced by tMRW which is
+		 * in the order
+		 * of 3 to 5 full rate cycles. This is peanuts in the NIOS
+		 * domain, so for now
+		 * we can avoid redundant wait loops
+		 */
+
+		/* MRW MR1 */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_CALIB);
+
+		/* MRW MR2 */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
+
+		/* MRW MR3 */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
+	}
+}
+#endif /* LPDDR2 */
+
+#if LPDDR1
+void rw_mgr_mem_initialize(void)
+{
+	uint32_t r;
+
+	TRACE_FUNC();
+
+	/* *** NOTE *** */
+	/*
+	 * The following STAGE (n) notation refers to the corresponding
+	 * stage in the Micron datasheet
+	 */
+
+	/*
+	 * Here's how you load register for a loop
+	 * Counters are located @ 0x800
+	 * Jump address are located @ 0xC00
+	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
+	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+	 * I know this ain't pretty, but Avalon bus throws away the 2 least
+	 * significant bits
+	 */
+
+	/* *** STAGE (1, 2, 3) *** */
+
+	/* start with CKE high */
+
+	/* tINIT = 200us */
+
+	/*
+	 * 200us @ 300MHz (3.33 ns) ~ 60000 clock cycles
+	 * If a and b are the number of iteration in 2 nested loops
+	 * it takes the following number of cycles to complete the operation
+	 * number_of_cycles = ((2 + n) * b + 2) * a
+	 * where n is the number of instruction in the inner loop
+	 * One possible solution is n = 0 , a = 256 , b = 118 => a = FF,
+	 * b = 76
+	 */
+
+	/* TODO: Need to manage multi-rank */
+
+	/* Load counters */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x76));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_1);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_1_inloop);
+
+	/*Execute count instruction and bring up CKE */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_1);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/* Multi-rank section begins here */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * * **** *
+		 * * NOTE *
+		 * * **** *
+		 * The following commands must be spaced by tMRD or tRPA
+		 * which are in the order
+		 * of 2 to 4 full rate cycles. This is peanuts in the
+		 * NIOS domain, so for now
+		 * we can avoid redundant wait loops
+		 */
+
+		/*
+		 * Possible FIXME BEN: for HHP, we need to add delay loops
+		 * to be sure although, the sequencer write interface by
+		 * itself likely has enough delay
+		 */
+
+		/* *** STAGE (9) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* *** STAGE (10) */
+
+		/* Issue 2 refresh commands spaced by tREF */
+
+		/* First REFRESH */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+		/* tREF = 200ns */
+		delay_for_n_ns(200);
+
+		/* Second REFRESH */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+		/* Second idle loop */
+		delay_for_n_ns(200);
+
+		/* *** STAGE (11) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_CALIB);
+
+		/* *** STAGE (13) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+	}
+}
+#endif /* LPDDR1 */
+
+#if QDRII
+void rw_mgr_mem_initialize(void)
+{
+	TRACE_FUNC();
+
+	/* Turn off QDRII DLL to reset it */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE);
+
+	/* Turn on QDRII DLL and wait 25us for it to lock */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+	delay_for_n_ns(25000);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_dll_lock_wait(void)
+{
+	/* The DLL in QDR requires 25us to lock */
+	delay_for_n_ns(25000);
+}
+#else
+void rw_mgr_mem_dll_lock_wait(void) { }
+#endif
+
+#if RLDRAMII
+void rw_mgr_mem_initialize(void)
+{
+	TRACE_FUNC();
+
+	/* start with memory RESET activated */
+
+	/* tINIT = 200us */
+	delay_for_n_ns(200000);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/*
+	 * Dummy MRS, followed by valid MRS commands to reset the DLL on
+	 * memory device
+	 */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS_INIT);
+
+	/*
+	 * 8192 memory cycles for DLL to lock.
+	 * 8192 cycles are required by Renesas LLDRAM-II, though we don't
+	 * officially support it.
+	 */
+	delay_for_n_mem_clocks(8192);
+
+	/* Refresh all banks */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REF_X8);
+
+	/* 1024 memory cycles */
+	delay_for_n_mem_clocks(1024);
+}
+#endif
+
+#if RLDRAM3
+void rw_mgr_mem_initialize(void)
+{
+	TRACE_FUNC();
+	uint32_t r;
+
+	/*
+	 * Here's how you load register for a loop
+	 * Counters are located @ 0x800
+	 * Jump address are located @ 0xC00
+	 * For both, registers 0 to 3 are selected using bits 3 and 2, like in
+	 * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+	 * I know this ain't pretty, but Avalon bus throws away the 2
+	 * least significant bits
+	 */
+
+	/* start with memory RESET activated */
+
+	/* tINIT = 200us */
+
+	/*
+	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
+	 * If a and b are the number of iteration in 2 nested loops
+	 * it takes the following number of cycles to complete the operation:
+	 * number_of_cycles = ((2 + n) * a + 2) * b
+	 * where n is the number of instruction in the inner loop
+	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
+	 * b = 6A
+	 */
+
+	/* Load counters */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+		      SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x6A));
+
+	/* Load jump address */
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_inloop);
+
+	/* Execute count instruction */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0);
+
+	/* indicate that memory is stable */
+	IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+	/* transition the RESET to high */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+
+	/* Wait for 10000 cycles */
+	delay_for_n_mem_clocks(10000);
+
+	/* Load MR0 */
+	if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+	} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+	} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4) {
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+		/* Wait MRSC */
+		delay_for_n_mem_clocks(12);
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF3);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MRS0_QUAD_RANK);
+	} else {
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+	}
+
+	/* Wait MRSC */
+	delay_for_n_mem_clocks(12);
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+		/* Load MR1 (reset DLL reset & kick off long ZQ calibration) */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_CALIB);
+	}
+
+	/*
+	 * Wait 512 cycles for DLL to reset and for ZQ
+	 * calibration to complete
+	 */
+	delay_for_n_mem_clocks(512);
+
+	/* Load MR2 (set write protocol to Single Bank) */
+	if (RW_MGR_MEM_NUMBER_OF_RANKS == 1)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+	else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+	else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
+	else
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_CALIB);
+
+	/* Wait MRSC and a bit more */
+	delay_for_n_mem_clocks(64);
+}
+#endif
+
+/*
+ * At the end of calibration we have to program the user settings in, and
+ * USER  hand off the memory to the user.
+ */
+#if DDR3
+void rw_mgr_mem_handoff(void)
+{
+	uint32_t r;
+#if LRDIMM
+	uint32_t rtt_nom;
+	uint32_t rtt_drv;
+	uint32_t rtt_wr;
+#endif /* LRDIMM */
+
+	TRACE_FUNC();
+
+#if LRDIMM
+	rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
+	rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
+	rtt_wr  = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
+
+	/* Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks */
+	rw_mgr_lrdimm_rc_program(0, 14, 0x9); /*broadcast mode */
+
+	/* USER Update contents of AC ROM with new RTT WR, DRV values */
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr,  0, 2);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr,  1, 2);
+#endif /* LRDIMM */
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+#if MRS_MIRROR_PING_PONG_ATSO
+		/* Side 0 */
+		set_rank_and_odt_mask_for_ping_pong_atso(0,
+							 RW_MGR_ODT_MODE_OFF);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
+
+		/* Side 1 */
+		set_rank_and_odt_mask_for_ping_pong_atso(1,
+							 RW_MGR_ODT_MODE_OFF);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
+		delay_for_n_mem_clocks(4);
+		set_jump_as_return();
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_MRS0_USER_MIRR);
+
+		/* Unmask all CS */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+#else
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* precharge all banks ... */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* load up MR settings specified by user */
+
+		/*
+		 * Use Mirror-ed commands for odd ranks if address
+		 * mirrorring is on
+		 */
+		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS2_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS3_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1_MIRR);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS0_USER_MIRR);
+		} else {
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS2);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS3);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1);
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS0_USER);
+		}
+#endif
+		/*
+		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
+		 * other commands, but we will have plenty of NIOS cycles before
+		 * actual handoff so its okay.
+		 */
+	}
+
+
+#if LRDIMM
+	delay_for_n_mem_clocks(12);
+	/* USER Set up targetted MRS commands */
+	rw_mgr_lrdimm_rc_program(0, 14, 0xD);
+	/*
+	 * USER update AC ROM MR1 entry to include RTT_NOM for physical
+	 * ranks 0,1 only
+	 */
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+				    (rtt_drv|rtt_nom), 0, 1);
+	rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+				    (rtt_drv|rtt_nom), 1, 1);
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/*
+		 * Use Mirror-ed commands for odd ranks if address
+		 * mirrorring is on
+		 */
+		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1_MIRR);
+			delay_for_n_mem_clocks(4);
+		} else {
+			delay_for_n_mem_clocks(4);
+			set_jump_as_return();
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+				      __RW_MGR_MRS1);
+			delay_for_n_mem_clocks(4);
+		}
+	}
+#endif /* LRDIMM */
+}
+#endif /* DDR3 */
+
+#if DDR2
+void rw_mgr_mem_handoff(void)
+{
+	uint32_t r;
+
+	TRACE_FUNC();
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* precharge all banks ... */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* load up MR settings specified by user */
+
+		/*
+		 * FIXME BEN: for HHP, we need to add delay loops to be sure
+		 * We can check this with BFM perhaps
+		 * Likely enough delay in RW_MGR though
+		 */
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
+
+		/*
+		 * USER need to wait tMOD (12CK or 15ns) time before issuing
+		 * other commands,
+		 * USER but we will have plenty of NIOS cycles before actual
+		 * handoff so its okay.
+		 */
+	}
+}
+#endif /* DDR2 */
+
+#if LPDDR2
+void rw_mgr_mem_handoff(void)
+{
+	uint32_t r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* precharge all banks... */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* load up MR settings specified by user */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_USER);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
+	}
+}
+#endif /* LPDDR2 */
+
+#if LPDDR1
+void rw_mgr_mem_handoff(void)
+{
+	uint32_t r;
+
+	TRACE_FUNC();
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* precharge all banks ... */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		/* load up MR settings specified by user */
+
+		/*
+		 * FIXME BEN: for HHP, we need to add delay loops to be sure
+		 * We can check this with BFM perhaps
+		 * Likely enough delay in RW_MGR though
+		 */
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
+
+		/*
+		 * need to wait tMOD (12CK or 15ns) time before issuing
+		 * other commands,
+		 * but we will have plenty of NIOS cycles before actual
+		 * handoff so its okay.
+		 */
+	}
+}
+#endif /* LPDDR1 */
+
+#if RLDRAMII
+void rw_mgr_mem_handoff(void)
+{
+	TRACE_FUNC();
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS);
+}
+#endif
+
+#if RLDRAM3
+void rw_mgr_mem_handoff(void)
+{
+	TRACE_FUNC();
+
+	uint32_t r;
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* Load user requested MR1 */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+	}
+
+	if (RW_MGR_MEM_NUMBER_OF_RANKS == 1)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+	else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+	else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4)
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
+	else
+		IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+	/* Load user requested MR2 */
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+
+	/* Wait MRSC and a bit more */
+	delay_for_n_mem_clocks(64);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_handoff(void)
+{
+	TRACE_FUNC();
+}
+#endif
+
+#if DDRX
+/*
+ * performs a guaranteed read on the patterns we are going to use during a
+ * read test to ensure memory works
+ */
+uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
+	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
+	uint32_t all_ranks)
+{
+	uint32_t r, vg;
+	uint32_t correct_mask_vg;
+	uint32_t tmp_bit_chk;
+	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+	*bit_chk = param->read_correct_mask;
+	correct_mask_vg = param->read_correct_mask_vg;
+
+	for (r = rank_bgn; r < rank_end; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		/* Load up a constant bursts of read commands */
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_GUARANTEED_READ);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_GUARANTEED_READ_CONT);
+
+		tmp_bit_chk = 0;
+		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+			/* reset the fifos to get pointers to known state */
+
+			IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+			IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+			IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP,
+				      ((group *
+				      RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
+				      vg) << 2), __RW_MGR_GUARANTEED_READ);
+			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+				~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+
+			if (vg == 0)
+				break;
+		}
+		*bit_chk &= tmp_bit_chk;
+	}
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
+		      __RW_MGR_CLEAR_DQS_ENABLE);
+
+	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+	DPRINT(2, "test_load_patterns(%u,ALL) => (%u == %u) => %lu",
+	       group, *bit_chk, param->read_correct_mask,
+	       (long unsigned int)(*bit_chk == param->read_correct_mask));
+	return *bit_chk == param->read_correct_mask;
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
+{
+	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
+		num_tries, bit_chk, 1);
+}
+#endif
+
+/* load up the patterns we are going to use during a read test */
+#if DDRX
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+	uint32_t all_ranks)
+{
+	uint32_t r;
+	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+	TRACE_FUNC();
+
+	for (r = rank_bgn; r < rank_end; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		/* Load up a constant bursts */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT0);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT1);
+
+#if QUARTER_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x01);
+#endif
+#if HALF_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x02);
+#endif
+#if FULL_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x04);
+#endif
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT2);
+
+#if QUARTER_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x01);
+#endif
+#if HALF_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x02);
+#endif
+#if FULL_RATE
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x04);
+#endif
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT3);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_GUARANTEED_WRITE);
+	}
+
+	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+	uint32_t all_ranks)
+{
+	TRACE_FUNC();
+
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+		      __RW_MGR_GUARANTEED_WRITE_WAIT0);
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+		      __RW_MGR_GUARANTEED_WRITE_WAIT1);
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+		      __RW_MGR_GUARANTEED_WRITE);
+}
+#endif
+
+#if RLDRAMX
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+	uint32_t all_ranks)
+{
+	TRACE_FUNC();
+	uint32_t r;
+	uint32_t rank_end = RW_MGR_MEM_NUMBER_OF_RANKS;
+#if QUARTER_RATE
+	uint32_t write_data_cycles = 0x10;
+#else
+	uint32_t write_data_cycles = 0x20;
+#endif
+
+	for (r = rank_bgn; r < rank_end; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, write_data_cycles);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT0);
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, write_data_cycles);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT1);
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, write_data_cycles);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT2);
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, write_data_cycles);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+			      __RW_MGR_GUARANTEED_WRITE_WAIT3);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_GUARANTEED_WRITE);
+	}
+	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+#endif
+
+/*
+ * try a read and see if it returns correct data back. has dummy reads
+ * inserted into the mix used to align dqs enable. has more thorough checks
+ * than the regular read test.
+ */
+
+uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
+	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+	uint32_t all_groups, uint32_t all_ranks)
+{
+	uint32_t r, vg;
+	uint32_t correct_mask_vg;
+	uint32_t tmp_bit_chk;
+	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+#if LRDIMM
+	/* USER Disable MB Write-levelling mode and enter normal operation */
+	rw_mgr_lrdimm_rc_program(0, 12, 0x0);
+#endif
+
+	*bit_chk = param->read_correct_mask;
+	correct_mask_vg = param->read_correct_mask_vg;
+
+	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
+		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
+
+	for (r = rank_bgn; r < rank_end; r++) {
+		if (param->skip_ranks[r])
+			/* request to skip the rank */
+			continue;
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_READ_B2B_WAIT1);
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+			      __RW_MGR_READ_B2B_WAIT2);
+
+		if (quick_read_mode)
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1);
+			/* need at least two (1+1) reads to capture failures */
+		else if (all_groups)
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x06);
+		else
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x32);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
+		if (all_groups)
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0,
+				      RW_MGR_MEM_IF_READ_DQS_WIDTH *
+				      RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
+		else
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
+
+		tmp_bit_chk = 0;
+		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+			/* reset the fifos to get pointers to known state */
+			IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+			IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+			IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS :
+				      RW_MGR_RUN_SINGLE_GROUP, ((group *
+				      RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS
+				      + vg) << 2), __RW_MGR_READ_B2B);
+			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+				~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+
+			if (vg == 0)
+				break;
+		}
+		*bit_chk &= tmp_bit_chk;
+	}
+
+#if ENABLE_BRINGUP_DEBUGGING
+	load_di_buf_gbl();
+#endif
+
+	#if DDRX
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
+		      __RW_MGR_CLEAR_DQS_ENABLE);
+	#endif
+
+	if (all_correct) {
+		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+		DPRINT(2, "read_test(%u,ALL,%u) => (%u == %u) => %lu",
+		       group, all_groups, *bit_chk, param->read_correct_mask,
+		       (long unsigned int)(*bit_chk ==
+		       param->read_correct_mask));
+		return *bit_chk == param->read_correct_mask;
+	} else	{
+		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+		DPRINT(2, "read_test(%u,ONE,%u) => (%u != %lu) => %lu",
+		       group, all_groups, *bit_chk, (long unsigned int)0,
+		       (long unsigned int)(*bit_chk != 0x00));
+		return *bit_chk != 0x00;
+	}
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
+	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+	uint32_t all_groups)
+{
+	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
+					      bit_chk, all_groups, 1);
+}
+
+void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
+{
+	/* fiddle with FIFO */
+	if (HARD_PHY) {
+		IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp);
+	} else if (QUARTER_RATE_MODE && !HARD_VFIFO) {
+		if ((*v & 3) == 3)
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0, grp);
+		else if ((*v & 2) == 2)
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, grp);
+		else if ((*v & 1) == 1)
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
+		else
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+	} else if (HARD_VFIFO) {
+		/* Arria V & Cyclone V have a hard full-rate VFIFO that only
+		has a single incr signal */
+		IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+	} else {
+		if (!HALF_RATE_MODE || (*v & 1) == 1)
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
+		else
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+	}
+
+	(*v)++;
+	BFM_INC_VFIFO;
+}
+
+/*Used in quick cal to properly loop through the duplicated VFIFOs in
+AV QDRII/RLDRAM */
+static inline void rw_mgr_incr_vfifo_all(uint32_t grp, uint32_t *v)
+{
+#if VFIFO_CONTROL_WIDTH_PER_DQS == 1
+	rw_mgr_incr_vfifo(grp, v);
+#else
+	uint32_t i;
+	for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+		rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, v);
+		if (i != 0)
+			(*v)--;
+	}
+#endif
+}
+
+void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
+{
+	uint32_t i;
+
+	for (i = 0; i < VFIFO_SIZE-1; i++)
+		rw_mgr_incr_vfifo(grp, v);
+}
+
+/* find a good dqs enable to use */
+#if QDRII || RLDRAMX
+uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+	uint32_t v;
+	uint32_t found;
+	uint32_t dtaps_per_ptap, tmp_delay;
+	uint32_t bit_chk;
+
+	TRACE_FUNC("%lu", grp);
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_DQS_EN_PHASE);
+
+	found = 0;
+
+	/* first push vfifo until we get a passing read */
+	for (v = 0; v < VFIFO_SIZE && found == 0;) {
+		DPRINT(2, "find_dqs_en_phase: vfifo %lu",
+		       BFM_GBL_GET(vfifo_idx));
+		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+							     PASS_ONE_BIT,
+							     &bit_chk, 0)) {
+			found = 1;
+		}
+
+		if (!found) {
+			/* fiddle with FIFO */
+#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
+			uint32_t i;
+			for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+				rw_mgr_incr_vfifo(grp *
+					VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
+				v--;
+				/* undo increment of v in rw_mgr_incr_vfifo */
+			}
+			v++;	/* add back single increment */
+#else
+			rw_mgr_incr_vfifo(grp, &v);
+#endif
+		}
+	}
+
+#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
+	if (found) {
+		/*
+		 * we found a vfifo setting that works for at least one vfifo
+		 * "group"
+		 * Some groups may need next vfifo setting, so check each one to
+		 * see if we get new bits passing by increment the vfifo
+		 */
+		uint32_t i;
+		uint32_t best_bit_chk_inv;
+		uint8_t found_on_first_check = (v == 1);
+
+		best_bit_chk_inv = ~bit_chk;
+
+		for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+			rw_mgr_incr_vfifo(grp * VFIFO_CONTROL_WIDTH_PER_DQS+i,
+					  &v);
+			v--;
+			/*
+			 * undo increment of v in rw_mgr_incr_vfifo,
+			 * just in case it matters for next check
+			 */
+			rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+								 PASS_ONE_BIT,
+								 &bit_chk, 0);
+			if ((bit_chk & best_bit_chk_inv) != 0) {
+				/* found some new bits */
+				best_bit_chk_inv = ~bit_chk;
+			} else {
+				/* no improvement, so put back */
+				rw_mgr_decr_vfifo(grp *
+					VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
+				v++;
+				if (found_on_first_check) {
+					/* found on first vfifo check, so we
+					also need to check earlier vfifo
+					values */
+					rw_mgr_decr_vfifo(grp *
+						VFIFO_CONTROL_WIDTH_PER_DQS +
+						i, &v);
+					v++; /* undo decrement of v in
+					rw_mgr_incr_vfifo, just in case it
+					matters for next check */
+					rw_mgr_mem_calibrate_read_test_all_ranks
+					(grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+					if ((bit_chk & best_bit_chk_inv) != 0) {
+						/* found some new bits */
+						best_bit_chk_inv = ~bit_chk;
+					} else {
+						/* no improvement,
+						so put back */
+						rw_mgr_incr_vfifo(grp *
+						VFIFO_CONTROL_WIDTH_PER_DQS +
+						i, &v);
+						v--;
+					}
+				} /* found_on_first_check */
+			} /* check for new bits */
+		} /* loop over all vfifo control bits */
+	}
+#endif
+
+	if (found) {
+		DPRINT(2, "find_dqs_en_phase: found vfifo=%lu",
+		       BFM_GBL_GET(vfifo_idx));
+		/*
+		 * Not really dqs_enable left/right edge, but close enough
+		 * for testing purposes.
+		 */
+		BFM_GBL_SET(dqs_enable_left_edge[grp].v,
+			    BFM_GBL_GET(vfifo_idx));
+		BFM_GBL_SET(dqs_enable_right_edge[grp].v,
+			    BFM_GBL_GET(vfifo_idx));
+		BFM_GBL_SET(dqs_enable_mid[grp].v,
+			    BFM_GBL_GET(vfifo_idx));
+	} else {
+		DPRINT(2, "find_dqs_en_phase: no valid vfifo found");
+	}
+
+	return found;
+}
+#endif
+
+#if DDRX
+uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+	uint32_t i, d, v, p;
+	uint32_t max_working_cnt;
+	uint32_t fail_cnt;
+	uint32_t bit_chk;
+	uint32_t dtaps_per_ptap;
+	uint32_t found_begin, found_end;
+	uint32_t work_bgn, work_mid, work_end, tmp_delay;
+	uint32_t test_status;
+	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
+
+	TRACE_FUNC("%u", grp);
+	BFM_STAGE("find_dqs_en_phase");
+	ALTERA_ASSERT(grp < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
+
+	fail_cnt = 0;
+
+	/* ************************************************************** */
+	/* * Step 0 : Determine number of delay taps for each phase tap * */
+
+	dtaps_per_ptap = 0;
+	tmp_delay = 0;
+	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+		dtaps_per_ptap++;
+		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+	}
+	dtaps_per_ptap--;
+	ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
+	tmp_delay = 0;
+
+	/* VFIFO sweep */
+#if ENABLE_DQSEN_SWEEP
+	init_di_buffer();
+	work_bgn = 0;
+	for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+		work_bgn = tmp_delay;
+		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+		for (i = 0; i < VFIFO_SIZE; i++) {
+			for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn +=
+				IO_DELAY_PER_OPA_TAP) {
+				scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+				test_status =
+				rw_mgr_mem_calibrate_read_test_all_ranks(grp,
+									 1,
+									 PASS_ONE_BIT,
+									 &bit_chk, 0);
+
+				/*if (p ==0 && d == 0) */
+				sample_di_data(bit_chk, work_bgn, d, i, p);
+			}
+			/*Increment FIFO */
+			rw_mgr_incr_vfifo(grp, &v);
+		}
+
+		work_bgn++;
+	}
+	debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
+	debug_data->di_report.flags |= DI_REPORT_FLAGS_DONE;
+#endif
+
+	/* ********************************************************* */
+	/* * Step 1 : First push vfifo until we get a failing read * */
+	for (v = 0; v < VFIFO_SIZE; ) {
+		DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET
+		       (vfifo_idx));
+		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
+			(grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+		if (!test_status) {
+			fail_cnt++;
+
+			if (fail_cnt == 2)
+				break;
+		}
+
+		/* fiddle with FIFO */
+		rw_mgr_incr_vfifo(grp, &v);
+	}
+
+	if (v >= VFIFO_SIZE) {
+		/* no failing read found!! Something must have gone wrong */
+		DPRINT(2, "find_dqs_en_phase: vfifo failed");
+		return 0;
+	}
+
+	max_working_cnt = 0;
+
+	/* ******************************************************** */
+	/* * step 2: find first working phase, increment in ptaps * */
+	found_begin = 0;
+	work_bgn = 0;
+	for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+		work_bgn = tmp_delay;
+		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+		for (i = 0; i < VFIFO_SIZE; i++) {
+			for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn +=
+				IO_DELAY_PER_OPA_TAP) {
+				scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+				test_status =
+				rw_mgr_mem_calibrate_read_test_all_ranks
+				(grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+
+				if (test_status) {
+					max_working_cnt = 1;
+					found_begin = 1;
+					break;
+				}
+			}
+
+			if (found_begin)
+				break;
+
+			if (p > IO_DQS_EN_PHASE_MAX)
+				/* fiddle with FIFO */
+				rw_mgr_incr_vfifo(grp, &v);
+		}
+
+		if (found_begin)
+			break;
+	}
+
+	if (i >= VFIFO_SIZE) {
+		/* cannot find working solution */
+		DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap");
+		return 0;
+	}
+
+	work_end = work_bgn;
+
+	/*  If d is 0 then the working window covers a phase tap and
+	we can follow the old procedure otherwise, we've found the beginning,
+	and we need to increment the dtaps until we find the end */
+	if (d == 0) {
+		/* ********************************************************* */
+		/* * step 3a: if we have room, back off by one and
+		increment in dtaps * */
+		COV(EN_PHASE_PTAP_OVERLAP);
+
+		/* Special case code for backing up a phase */
+		if (p == 0) {
+			p = IO_DQS_EN_PHASE_MAX ;
+			rw_mgr_decr_vfifo(grp, &v);
+		} else {
+			p = p - 1;
+		}
+		tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
+		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+		found_begin = 0;
+		for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn;
+			d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+			if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+								     PASS_ONE_BIT,
+								     &bit_chk, 0)) {
+				found_begin = 1;
+				work_bgn = tmp_delay;
+				break;
+			}
+		}
+
+		/* We have found a working dtap before the ptap found above */
+		if (found_begin == 1)
+			max_working_cnt++;
+
+		/* Restore VFIFO to old state before we decremented it
+		(if needed) */
+		p = p + 1;
+		if (p > IO_DQS_EN_PHASE_MAX) {
+			p = 0;
+			rw_mgr_incr_vfifo(grp, &v);
+		}
+
+		scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+
+		/* ********************************************************* */
+		/* * step 4a: go forward from working phase to non working
+		phase, increment in ptaps * */
+		p = p + 1;
+		work_end += IO_DELAY_PER_OPA_TAP;
+		if (p > IO_DQS_EN_PHASE_MAX) {
+			/* fiddle with FIFO */
+			p = 0;
+			rw_mgr_incr_vfifo(grp, &v);
+		}
+
+		found_end = 0;
+		for (; i < VFIFO_SIZE + 1; i++) {
+			for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end
+				+= IO_DELAY_PER_OPA_TAP) {
+				scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+				if (!rw_mgr_mem_calibrate_read_test_all_ranks
+					(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+					found_end = 1;
+					break;
+				} else {
+					max_working_cnt++;
+				}
+			}
+
+			if (found_end)
+				break;
+
+			if (p > IO_DQS_EN_PHASE_MAX) {
+				/* fiddle with FIFO */
+				rw_mgr_incr_vfifo(grp, &v);
+				p = 0;
+			}
+		}
+
+		if (i >= VFIFO_SIZE + 1) {
+			/* cannot see edge of failing read */
+			DPRINT(2, "find_dqs_en_phase: end: failed");
+			return 0;
+		}
+
+		/* ********************************************************* */
+		/* * step 5a:  back off one from last, increment in dtaps  * */
+
+		/* Special case code for backing up a phase */
+		if (p == 0) {
+			p = IO_DQS_EN_PHASE_MAX;
+			rw_mgr_decr_vfifo(grp, &v);
+		} else {
+			p = p - 1;
+		}
+
+		work_end -= IO_DELAY_PER_OPA_TAP;
+		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+		/* * The actual increment of dtaps is done outside of
+		the if/else loop to share code */
+		d = 0;
+
+		DPRINT(2, "find_dqs_en_phase: v/p: vfifo=%lu ptap=%u",
+		       BFM_GBL_GET(vfifo_idx), p);
+	} else {
+		/* ******************************************************* */
+		/* * step 3-5b:  Find the right edge of the window using
+		delay taps   * */
+		COV(EN_PHASE_PTAP_NO_OVERLAP);
+
+		DPRINT(2, "find_dqs_en_phase:vfifo=%lu ptap=%u dtap=%u bgn=%u",
+		       BFM_GBL_GET(vfifo_idx), p, d, work_bgn);
+		BFM_GBL_SET(dqs_enable_left_edge[grp].v,
+			    BFM_GBL_GET(vfifo_idx));
+		BFM_GBL_SET(dqs_enable_left_edge[grp].p, p);
+		BFM_GBL_SET(dqs_enable_left_edge[grp].d, d);
+		BFM_GBL_SET(dqs_enable_left_edge[grp].ps, work_bgn);
+
+		work_end = work_bgn;
+
+		/* * The actual increment of dtaps is done outside of the
+		if/else loop to share code */
+
+		/* Only here to counterbalance a subtract later on which is
+		not needed if this branch of the algorithm is taken */
+		max_working_cnt++;
+	}
+
+	/* The dtap increment to find the failing edge is done here */
+	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
+		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+			DPRINT(2, "find_dqs_en_phase: end-2: dtap=%u", d);
+			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+								      PASS_ONE_BIT,
+								      &bit_chk, 0)) {
+				break;
+			}
+		}
+
+	/* Go back to working dtap */
+	if (d != 0)
+		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+
+	DPRINT(2, "find_dqs_en_phase: v/p/d: vfifo=%lu ptap=%u dtap=%u end=%u",
+	       BFM_GBL_GET(vfifo_idx), p, d-1, work_end);
+	BFM_GBL_SET(dqs_enable_right_edge[grp].v, BFM_GBL_GET(vfifo_idx));
+	BFM_GBL_SET(dqs_enable_right_edge[grp].p, p);
+	BFM_GBL_SET(dqs_enable_right_edge[grp].d, d-1);
+	BFM_GBL_SET(dqs_enable_right_edge[grp].ps, work_end);
+
+	if (work_end >= work_bgn) {
+		/* we have a working range */
+	} else {
+		/* nil range */
+		DPRINT(2, "find_dqs_en_phase: end-2: failed");
+		return 0;
+	}
+
+	DPRINT(2, "find_dqs_en_phase: found range [%u,%u]",
+	       work_bgn, work_end);
+
+#if USE_DQS_TRACKING
+	/* *************************************************************** */
+	/*
+	 * * We need to calculate the number of dtaps that equal a ptap
+	 * * To do that we'll back up a ptap and re-find the edge of the
+	 * * window using dtaps
+	 */
+
+	DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking");
+
+	/* Special case code for backing up a phase */
+	if (p == 0) {
+		p = IO_DQS_EN_PHASE_MAX;
+		rw_mgr_decr_vfifo(grp, &v);
+		DPRINT(2, "find_dqs_en_phase: backedup cycle/phase: v=%lu p=%u",
+		       BFM_GBL_GET(vfifo_idx), p);
+	} else {
+		p = p - 1;
+		DPRINT(2, "find_dqs_en_phase: backedup phase only: v=%lu p=%u",
+		       BFM_GBL_GET(vfifo_idx), p);
+	}
+
+	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+	/*
+	 * Increase dtap until we first see a passing read (in case the
+	 * window is smaller than a ptap),
+	 * and then a failing read to mark the edge of the window again
+	 */
+
+	/* Find a passing read */
+	DPRINT(2, "find_dqs_en_phase: find passing read");
+	found_passing_read = 0;
+	found_failing_read = 0;
+	initial_failing_dtap = d;
+	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
+		DPRINT(2, "find_dqs_en_phase: testing read d=%u", d);
+		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+							     PASS_ONE_BIT,
+							     &bit_chk, 0)) {
+			found_passing_read = 1;
+			break;
+		}
+	}
+
+	if (found_passing_read) {
+		/* Find a failing read */
+		DPRINT(2, "find_dqs_en_phase: find failing read");
+		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
+			DPRINT(2, "find_dqs_en_phase: testing read d=%u", d);
+			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+			if (!rw_mgr_mem_calibrate_read_test_all_ranks
+				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+				found_failing_read = 1;
+				break;
+			}
+		}
+	} else {
+		DPRINT(1, "find_dqs_en_phase: failed to calculate dtaps ");
+		DPRINT(1, "per ptap. Fall back on static value");
+	}
+
+	/*
+	 * The dynamically calculated dtaps_per_ptap is only valid if we
+	 * found a passing/failing read. If we didn't, it means d hit the max
+	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
+	 * statically calculated value.
+	 */
+	if (found_passing_read && found_failing_read)
+		dtaps_per_ptap = d - initial_failing_dtap;
+
+	ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
+	IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+	DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%u - %u = %u", d,
+	       initial_failing_dtap, dtaps_per_ptap);
+#endif
+
+	/* ******************************************** */
+	/* * step 6:  Find the centre of the window   * */
+
+	work_mid = (work_bgn + work_end) / 2;
+	tmp_delay = 0;
+
+	DPRINT(2, "work_bgn=%d work_end=%d work_mid=%d", work_bgn,
+	       work_end, work_mid);
+	/* Get the middle delay to be less than a VFIFO delay */
+	for (p = 0; p <= IO_DQS_EN_PHASE_MAX;
+		p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+		;
+	DPRINT(2, "vfifo ptap delay %d", tmp_delay);
+	while (work_mid > tmp_delay)
+		work_mid -= tmp_delay;
+	DPRINT(2, "new work_mid %d", work_mid);
+	tmp_delay = 0;
+	for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid;
+		p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+		;
+	tmp_delay -= IO_DELAY_PER_OPA_TAP;
+	DPRINT(2, "new p %d, tmp_delay=%d", p-1, tmp_delay);
+	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid; d++,
+		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
+		;
+	DPRINT(2, "new d %d, tmp_delay=%d", d, tmp_delay);
+
+	scc_mgr_set_dqs_en_phase_all_ranks(grp, p-1);
+	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+	/*
+	 * push vfifo until we can successfully calibrate. We can do this
+	 * because the largest possible margin in 1 VFIFO cycle.
+	 */
+	for (i = 0; i < VFIFO_SIZE; i++) {
+		DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu",
+		       BFM_GBL_GET(vfifo_idx));
+		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+							     PASS_ONE_BIT,
+							     &bit_chk, 0)) {
+			break;
+		}
+
+		/* fiddle with FIFO */
+		rw_mgr_incr_vfifo(grp, &v);
+	}
+
+	if (i >= VFIFO_SIZE) {
+		DPRINT(2, "find_dqs_en_phase: center: failed");
+		return 0;
+	}
+	DPRINT(2, "find_dqs_en_phase: center found: vfifo=%lu ptap=%u dtap=%u",
+	       BFM_GBL_GET(vfifo_idx), p-1, d);
+	BFM_GBL_SET(dqs_enable_mid[grp].v, BFM_GBL_GET(vfifo_idx));
+	BFM_GBL_SET(dqs_enable_mid[grp].p, p-1);
+	BFM_GBL_SET(dqs_enable_mid[grp].d, d);
+	BFM_GBL_SET(dqs_enable_mid[grp].ps, work_mid);
+	return 1;
+}
+#endif
+
+
+/* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
+dq_in_delay values */
+static inline uint32_t
+rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
+{
+#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
+	uint32_t found;
+	uint32_t i;
+	uint32_t p;
+	uint32_t d;
+	uint32_t r;
+
+	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
+		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
+		/* we start at zero, so have one less dq to devide among */
+
+	TRACE_FUNC("(%u,%u,%u)", write_group, read_group, test_bgn);
+
+	/* try different dq_in_delays since the dq path is shorter than dqs */
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+		r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+			i++, p++, d += delay_step) {
+			DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_");
+			DPRINT(1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
+			       write_group, read_group);
+			DPRINT(1, "r=%u, i=%u p=%u d=%u", r, i , p, d);
+			scc_mgr_set_dq_in_delay(write_group, p, d);
+			scc_mgr_load_dq(p);
+		}
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+
+	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+
+	DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq");
+	DPRINT(1, "_in_delay: g=%u/%u found=%u; Reseting delay chain to zero",
+	       write_group, read_group, found);
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+		r += NUM_RANKS_PER_SHADOW_REG) {
+		select_shadow_regs_for_update(r, write_group, 1);
+		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+			i++, p++) {
+			scc_mgr_set_dq_in_delay(write_group, p, 0);
+			scc_mgr_load_dq(p);
+		}
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+
+	return found;
+#else
+	return rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+#endif
+}
+
+/* per-bit deskew DQ and center */
+uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
+	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
+	uint32_t use_read_test, uint32_t update_fom)
+{
+	uint32_t i, p, d, min_index;
+	/* Store these as signed since there are comparisons with
+	signed numbers */
+	uint32_t bit_chk;
+	uint32_t sticky_bit_chk;
+	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
+	int32_t mid;
+	int32_t orig_mid_min, mid_min;
+	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
+		final_dqs_en;
+	int32_t dq_margin, dqs_margin;
+	uint32_t stop;
+
+	TRACE_FUNC("%u %u", read_group, test_bgn);
+
+	ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
+	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+		start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
+
+	select_curr_shadow_reg_using_rank(rank_bgn);
+
+	/* per-bit deskew */
+
+	/* set the left and right edge of each bit to an illegal value */
+	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
+	sticky_bit_chk = 0;
+	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
+		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+	}
+
+	/* Search for the left edge of the window for each bit */
+	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
+		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+		/*
+		 * Stop searching when the read test doesn't pass AND when
+		 * we've seen a passing read on every bit.
+		 */
+		if (use_read_test) {
+			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+				&bit_chk, 0, 0);
+		} else {
+			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+							0, PASS_ONE_BIT,
+							&bit_chk, 0);
+			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+				(read_group - (write_group *
+					RW_MGR_MEM_IF_READ_DQS_WIDTH /
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+			stop = (bit_chk == 0);
+		}
+		sticky_bit_chk = sticky_bit_chk | bit_chk;
+		stop = stop && (sticky_bit_chk == param->read_correct_mask);
+		DPRINT(2, "vfifo_center(left): dtap=%u => " BTFLD_FMT " == "
+			BTFLD_FMT " && %u", d, sticky_bit_chk,
+			param->read_correct_mask, stop);
+
+		if (stop == 1) {
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+				if (bit_chk & 1) {
+					/* Remember a passing test as the
+					left_edge */
+					left_edge[i] = d;
+				} else {
+					/* If a left edge has not been seen yet,
+					then a future passing test will mark
+					this edge as the right edge */
+					if (left_edge[i] ==
+						IO_IO_IN_DELAY_MAX + 1) {
+						right_edge[i] = -(d + 1);
+					}
+				}
+				bit_chk = bit_chk >> 1;
+			}
+		}
+	}
+
+	/* Reset DQ delay chains to 0 */
+	scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
+	sticky_bit_chk = 0;
+	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
+		DPRINT(2, "vfifo_center: left_edge[%u]: %d right_edge[%u]: %d",
+		       i, left_edge[i], i, right_edge[i]);
+
+		/*
+		 * Check for cases where we haven't found the left edge,
+		 * which makes our assignment of the the right edge invalid.
+		 * Reset it to the illegal value.
+		 */
+		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
+			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+			DPRINT(2, "vfifo_center: reset right_edge[%u]: %d",
+			       i, right_edge[i]);
+		}
+
+		/*
+		 * Reset sticky bit (except for bits where we have seen
+		 * both the left and right edge).
+		 */
+		sticky_bit_chk = sticky_bit_chk << 1;
+		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
+		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+			sticky_bit_chk = sticky_bit_chk | 1;
+		}
+
+		if (i == 0)
+			break;
+	}
+
+	/* Search for the right edge of the window for each bit */
+	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
+		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
+		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+			uint32_t delay = d + start_dqs_en;
+			if (delay > IO_DQS_EN_DELAY_MAX)
+				delay = IO_DQS_EN_DELAY_MAX;
+			scc_mgr_set_dqs_en_delay(read_group, delay);
+		}
+		scc_mgr_load_dqs(read_group);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+		/*
+		 * Stop searching when the read test doesn't pass AND when
+		 * we've seen a passing read on every bit.
+		 */
+		if (use_read_test) {
+			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+				&bit_chk, 0, 0);
+		} else {
+			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+							0, PASS_ONE_BIT,
+							&bit_chk, 0);
+			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+				(read_group - (write_group *
+					RW_MGR_MEM_IF_READ_DQS_WIDTH /
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+			stop = (bit_chk == 0);
+		}
+		sticky_bit_chk = sticky_bit_chk | bit_chk;
+		stop = stop && (sticky_bit_chk == param->read_correct_mask);
+
+		DPRINT(2, "vfifo_center(right): dtap=%u => " BTFLD_FMT " == "
+			BTFLD_FMT " && %u", d, sticky_bit_chk,
+			param->read_correct_mask, stop);
+
+		if (stop == 1) {
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+				if (bit_chk & 1) {
+					/* Remember a passing test as
+					the right_edge */
+					right_edge[i] = d;
+				} else {
+					if (d != 0) {
+						/* If a right edge has not been
+						seen yet, then a future passing
+						test will mark this edge as the
+						left edge */
+						if (right_edge[i] ==
+						IO_IO_IN_DELAY_MAX + 1) {
+							left_edge[i] = -(d + 1);
+						}
+					} else {
+						/* d = 0 failed, but it passed
+						when testing the left edge,
+						so it must be marginal,
+						set it to -1 */
+						if (right_edge[i] ==
+							IO_IO_IN_DELAY_MAX + 1 &&
+							left_edge[i] !=
+							IO_IO_IN_DELAY_MAX
+							+ 1) {
+							right_edge[i] = -1;
+						}
+						/* If a right edge has not been
+						seen yet, then a future passing
+						test will mark this edge as the
+						left edge */
+						else if (right_edge[i] ==
+							IO_IO_IN_DELAY_MAX +
+							1) {
+							left_edge[i] = -(d + 1);
+						}
+					}
+				}
+
+				DPRINT(2, "vfifo_center[r,d=%u]: ", d);
+				DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d ",
+				       (int)(bit_chk & 1), i, left_edge[i]);
+				DPRINT(2, "right_edge[%u]: %d", i,
+				       right_edge[i]);
+				bit_chk = bit_chk >> 1;
+			}
+		}
+	}
+
+	/* Check that all bits have a window */
+	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+		DPRINT(2, "vfifo_center: left_edge[%u]: %d right_edge[%u]: %d",
+		       i, left_edge[i], i, right_edge[i]);
+		BFM_GBL_SET(dq_read_left_edge[read_group][i], left_edge[i]);
+		BFM_GBL_SET(dq_read_right_edge[read_group][i], right_edge[i]);
+		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
+			== IO_IO_IN_DELAY_MAX + 1)) {
+			/*
+			 * Restore delay chain settings before letting the loop
+			 * in rw_mgr_mem_calibrate_vfifo to retry different
+			 * dqs/ck relationships.
+			 */
+			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
+			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+				scc_mgr_set_dqs_en_delay(read_group,
+							 start_dqs_en);
+			}
+			scc_mgr_load_dqs(read_group);
+			IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+			DPRINT(1, "vfifo_center: failed to find edge [%u]: %d %d",
+			       i, left_edge[i], right_edge[i]);
+			if (use_read_test) {
+				set_failing_group_stage(read_group *
+					RW_MGR_MEM_DQ_PER_READ_DQS + i,
+					CAL_STAGE_VFIFO,
+					CAL_SUBSTAGE_VFIFO_CENTER);
+			} else {
+				set_failing_group_stage(read_group *
+					RW_MGR_MEM_DQ_PER_READ_DQS + i,
+					CAL_STAGE_VFIFO_AFTER_WRITES,
+					CAL_SUBSTAGE_VFIFO_CENTER);
+			}
+			return 0;
+		}
+	}
+
+	/* Find middle of window for each DQ bit */
+	mid_min = left_edge[0] - right_edge[0];
+	min_index = 0;
+	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+		mid = left_edge[i] - right_edge[i];
+		if (mid < mid_min) {
+			mid_min = mid;
+			min_index = i;
+		}
+	}
+
+	/*
+	 * -mid_min/2 represents the amount that we need to move DQS.
+	 * If mid_min is odd and positive we'll need to add one to
+	 * make sure the rounding in further calculations is correct
+	 * (always bias to the right), so just add 1 for all positive values.
+	 */
+	if (mid_min > 0)
+		mid_min++;
+
+	mid_min = mid_min / 2;
+
+	DPRINT(1, "vfifo_center: mid_min=%d (index=%u)", mid_min, min_index);
+
+	/* Determine the amount we can change DQS (which is -mid_min) */
+	orig_mid_min = mid_min;
+#if ENABLE_DQS_IN_CENTERING
+	new_dqs = start_dqs - mid_min;
+	if (new_dqs > IO_DQS_IN_DELAY_MAX)
+		new_dqs = IO_DQS_IN_DELAY_MAX;
+	else if (new_dqs < 0)
+		new_dqs = 0;
+
+	mid_min = start_dqs - new_dqs;
+	DPRINT(1, "vfifo_center: new mid_min=%d new_dqs=%d",
+	       mid_min, new_dqs);
+
+	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
+			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
+		else if (start_dqs_en - mid_min < 0)
+			mid_min += start_dqs_en - mid_min;
+	}
+	new_dqs = start_dqs - mid_min;
+#else
+	new_dqs = start_dqs;
+	mid_min = 0;
+#endif
+
+	DPRINT(1, "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d",
+	       start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
+	       new_dqs, mid_min);
+
+	/* Initialize data for export structures */
+	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
+	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
+
+	/* add delay to bring centre of all DQ windows to the same "level" */
+	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+		/* Use values before divide by 2 to reduce round off error */
+		shift_dq = (left_edge[i] - right_edge[i] -
+			(left_edge[min_index] - right_edge[min_index]))/2  +
+			(orig_mid_min - mid_min);
+
+		DPRINT(2, "vfifo_center: before: shift_dq[%u]=%d", i,
+		       shift_dq);
+
+		if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) >
+			(int32_t)IO_IO_IN_DELAY_MAX) {
+			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX -
+				READ_SCC_DQ_IN_DELAY(i);
+		} else if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) < 0) {
+			shift_dq = -(int32_t)READ_SCC_DQ_IN_DELAY(p);
+		}
+		DPRINT(2, "vfifo_center: after: shift_dq[%u]=%d", i,
+		       shift_dq);
+		final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq;
+		scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
+		scc_mgr_load_dq(p);
+
+		DPRINT(2, "vfifo_center: margin[%u]=[%d,%d]", i,
+		       left_edge[i] - shift_dq + (-mid_min),
+		       right_edge[i] + shift_dq - (-mid_min));
+		/* To determine values for export structures */
+		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+			dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+	}
+
+#if ENABLE_DQS_IN_CENTERING
+	final_dqs = new_dqs;
+	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+		final_dqs_en = start_dqs_en - mid_min;
+#else
+	final_dqs = start_dqs;
+	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+		final_dqs_en = start_dqs_en;
+#endif
+
+	/* Move DQS-en */
+	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
+		scc_mgr_load_dqs(read_group);
+	}
+
+#if QDRII || RLDRAMX
+	/*
+	 * Move DQS. Do it gradually to minimize the chance of causing a timing
+	 * failure in core FPGA logic driven by an input-strobe-derived clock.
+	 */
+	d = READ_SCC_DQS_IN_DELAY(read_group);
+	while (d != final_dqs) {
+		if (d > final_dqs)
+			--d;
+		else
+			++d;
+
+		scc_mgr_set_dqs_bus_in_delay(read_group, d);
+		scc_mgr_load_dqs(read_group);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+#else
+	/* Move DQS */
+	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
+	scc_mgr_load_dqs(read_group);
+#endif
+	DPRINT(2, "vfifo_center: dq_margin=%d dqs_margin=%d",
+	       dq_margin, dqs_margin);
+
+	/* Do not remove this line as it makes sure all of our decisions
+	have been applied */
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	return (dq_margin >= 0) && (dqs_margin >= 0);
+}
+
+/*
+ * calibrate the read valid prediction FIFO.
+ *
+ *  - read valid prediction will consist of finding a good DQS enable phase,
+ * DQS enable delay, DQS input phase, and DQS input delay.
+ *  - we also do a per-bit deskew on the DQ lines.
+ */
+uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, uint32_t test_bgn)
+{
+	uint32_t p, d, rank_bgn, sr;
+	uint32_t dtaps_per_ptap;
+	uint32_t tmp_delay;
+	uint32_t bit_chk;
+	uint32_t grp_calibrated;
+	uint32_t write_group, write_test_bgn;
+	uint32_t failed_substage;
+
+	TRACE_FUNC("%u %u", read_group, test_bgn);
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_VFIFO);
+
+	if (DDRX) {
+		write_group = read_group;
+		write_test_bgn = test_bgn;
+	} else {
+		write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH /
+			RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+		write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS;
+	}
+
+	/* USER Determine number of delay taps for each phase tap */
+	dtaps_per_ptap = 0;
+	tmp_delay = 0;
+	if (!QDRII) {
+		while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+			dtaps_per_ptap++;
+			tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+		}
+		dtaps_per_ptap--;
+		tmp_delay = 0;
+	}
+
+	/* update info for sims */
+	reg_file_set_group(read_group);
+
+	grp_calibrated = 0;
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
+	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
+
+	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
+		if (DDRX || RLDRAMX) {
+			/*
+			 * In RLDRAMX we may be messing the delay of pins in
+			 * the same write group but outside of the current read
+			 * the group, but that's ok because we haven't
+			 * calibrated output side yet.
+			 */
+			if (d > 0) {
+				scc_mgr_apply_group_all_out_delay_add_all_ranks
+				(write_group, write_test_bgn, d);
+			}
+		}
+
+		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
+			p++) {
+			/* set a particular dqdqs phase */
+			if (DDRX) {
+				scc_mgr_set_dqdqs_output_phase_all_ranks(
+					read_group, p);
+			}
+
+			/*
+			 * Previous iteration may have failed as a result of
+			 * ck/dqs or ck/dk violation, in which case the device
+			 * may require special recovery.
+			 */
+			if (DDRX || RLDRAMX) {
+				if (d != 0 || p != 0)
+					recover_mem_device_after_ck_dqs_violation();
+			}
+
+			DPRINT(1, "calibrate_vfifo: g=%u p=%u d=%u",
+			       read_group, p, d);
+			BFM_GBL_SET(gwrite_pos[read_group].p, p);
+			BFM_GBL_SET(gwrite_pos[read_group].d, d);
+
+			/*
+			 * Load up the patterns used by read calibration
+			 * using current DQDQS phase.
+			 */
+			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+#if DDRX
+			if (!(gbl->phy_debug_mode_flags &
+				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
+				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+				    (read_group, 1, &bit_chk)) {
+					DPRINT(1, "Guaranteed read test failed:");
+					DPRINT(1, " g=%u p=%u d=%u", read_group,
+					       p, d);
+					break;
+				}
+			}
+#endif
+
+/* case:56390 */
+			grp_calibrated = 1;
+	if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+		(write_group, read_group, test_bgn)) {
+				/*
+				 * USER Read per-bit deskew can be done on a
+				 * per shadow register basis.
+				 */
+				for (rank_bgn = 0, sr = 0;
+					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
+					++sr) {
+					/*
+					 * Determine if this set of ranks
+					 * should be skipped entirely.
+					 */
+					if (!param->skip_shadow_regs[sr]) {
+						/* Select shadow register set */
+						select_shadow_regs_for_update
+						(rank_bgn, read_group, 1);
+
+						/*
+						 * If doing read after write
+						 * calibration, do not update
+						 * FOM, now - do it then.
+						 */
+#if READ_AFTER_WRITE_CALIBRATION
+					if (!rw_mgr_mem_calibrate_vfifo_center
+						(rank_bgn, write_group,
+						read_group, test_bgn, 1, 0)) {
+#else
+					if (!rw_mgr_mem_calibrate_vfifo_center
+						(rank_bgn, write_group,
+						read_group, test_bgn, 1, 1)) {
+#endif
+							grp_calibrated = 0;
+							failed_substage =
+						CAL_SUBSTAGE_VFIFO_CENTER;
+						}
+					}
+				}
+			} else {
+				grp_calibrated = 0;
+				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
+			}
+		}
+	}
+
+	if (grp_calibrated == 0) {
+		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
+					failed_substage);
+		return 0;
+	}
+
+	/*
+	 * Reset the delay chains back to zero if they have moved > 1
+	 * (check for > 1 because loop will increase d even when pass in
+	 * first case).
+	 */
+	if (DDRX || RLDRAMII) {
+		if (d > 2)
+			scc_mgr_zero_group(write_group, write_test_bgn, 1);
+	}
+
+
+	return 1;
+}
+
+#if READ_AFTER_WRITE_CALIBRATION
+/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
+uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, uint32_t test_bgn)
+{
+	uint32_t rank_bgn, sr;
+	uint32_t grp_calibrated;
+	uint32_t write_group;
+
+	TRACE_FUNC("%u %u", read_group, test_bgn);
+
+	/* update info for sims */
+
+	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+	if (DDRX) {
+		write_group = read_group;
+	} else {
+		write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH /
+			RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+	}
+
+	/* update info for sims */
+	reg_file_set_group(read_group);
+
+	grp_calibrated = 1;
+	/* Read per-bit deskew can be done on a per shadow register basis */
+	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+		/* Determine if this set of ranks should be skipped entirely */
+		if (!param->skip_shadow_regs[sr]) {
+			/* Select shadow register set */
+			select_shadow_regs_for_update(rank_bgn, read_group, 1);
+
+		/* This is the last calibration round, update FOM here */
+			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
+								write_group,
+								read_group,
+								test_bgn, 0,
+								1)) {
+				grp_calibrated = 0;
+			}
+		}
+	}
+
+
+	if (grp_calibrated == 0) {
+		set_failing_group_stage(write_group,
+					CAL_STAGE_VFIFO_AFTER_WRITES,
+					CAL_SUBSTAGE_VFIFO_CENTER);
+		return 0;
+	}
+
+	return 1;
+}
+#endif
+
+
+/* Calibrate LFIFO to find smallest read latency */
+uint32_t rw_mgr_mem_calibrate_lfifo(void)
+{
+	uint32_t found_one;
+	uint32_t bit_chk;
+
+	TRACE_FUNC();
+	BFM_STAGE("lfifo");
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_LFIFO);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
+
+	/* Load up the patterns used by read calibration for all ranks */
+	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+	found_one = 0;
+
+	do {
+		IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+		DPRINT(2, "lfifo: read_lat=%u", gbl->curr_read_lat);
+
+		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
+							      NUM_READ_TESTS,
+							      PASS_ALL_BITS,
+							      &bit_chk, 1)) {
+			break;
+		}
+
+		found_one = 1;
+		/* reduce read latency and see if things are working */
+		/* correctly */
+		gbl->curr_read_lat--;
+	} while (gbl->curr_read_lat > 0);
+
+	/* reset the fifos to get pointers to known state */
+
+	IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+	if (found_one) {
+		/* add a fudge factor to the read latency that was determined */
+		gbl->curr_read_lat += 2;
+		IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+		DPRINT(2, "lfifo: success: using read_lat=%u",
+		       gbl->curr_read_lat);
+
+		return 1;
+	} else {
+		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
+					CAL_SUBSTAGE_READ_LATENCY);
+
+		DPRINT(2, "lfifo: failed at initial read_lat=%u",
+		       gbl->curr_read_lat);
+
+		return 0;
+	}
+}
+
+/*
+ * issue write test command.
+ * two variants are provided. one that just tests a write pattern and
+ * another that tests datamask functionality.
+ */
+
+#if QDRII
+void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
+{
+	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
+		ENABLE_SUPER_QUICK_CALIBRATION);
+	/*
+	 * CNTR 1 - This is used to ensure enough time elapses for
+	 * read data to come back.
+	 */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
+
+	if (test_dm) {
+		IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+		if (quick_write_mode)
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+		else
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_LFSR_WR_RD_DM_BANK_0);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group) << 2,
+			      __RW_MGR_LFSR_WR_RD_DM_BANK_0);
+	} else {
+		IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+		if (quick_write_mode)
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+		else
+			IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_LFSR_WR_RD_BANK_0);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group) << 2,
+			      __RW_MGR_LFSR_WR_RD_BANK_0);
+	}
+}
+#else
+void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
+{
+	uint32_t mcc_instruction;
+	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
+		ENABLE_SUPER_QUICK_CALIBRATION);
+	uint32_t rw_wl_nop_cycles;
+
+	/*
+	 * Set counter and jump addresses for the right
+	 * number of NOP cycles.
+	 * The number of supported NOP cycles can range from -1 to infinity
+	 * Three different cases are handled:
+	 *
+	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
+	 *    mechanism will be used to insert the right number of NOPs
+	 *
+	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
+	 *    issuing the write command will jump straight to the
+	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
+	 *    data (for RLD), skipping
+	 *    the NOP micro-instruction all together
+	 *
+	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
+	 *    turned on in the same micro-instruction that issues the write
+	 *    command. Then we need
+	 *    to directly jump to the micro-instruction that sends out the data
+	 *
+	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
+	 *       (2 and 3). One jump-counter (0) is used to perform multiple
+	 *       write-read operations.
+	 *       one counter left to issue this command in "multiple-group" mode
+	 */
+
+#if MULTIPLE_AFI_WLAT
+	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles_per_group[group];
+#else
+	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
+#endif
+
+	if (rw_wl_nop_cycles == -1) {
+		#if DDRX
+		/*
+		 * CNTR 2 - We want to execute the special write operation that
+		 * turns on DQS right away and then skip directly to the
+		 * instruction that sends out the data. We set the counter to a
+		 * large number so that the jump is always taken.
+		 */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+		/* CNTR 3 - Not used */
+		if (test_dm) {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+				      __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+		} else {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+				      __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+		}
+
+		#endif
+	} else if (rw_wl_nop_cycles == 0) {
+		#if DDRX
+		/*
+		 * CNTR 2 - We want to skip the NOP operation and go straight
+		 * to the DQS enable instruction. We set the counter to a large
+		 * number so that the jump is always taken.
+		 */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+		/* CNTR 3 - Not used */
+		if (test_dm) {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
+		} else {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
+		}
+		#endif
+
+		#if RLDRAMX
+		/*
+		 * CNTR 2 - We want to skip the NOP operation and go straight
+		 * to the write data instruction. We set the counter to a large
+		 * number so that the jump is always taken.
+		 */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+		/* CNTR 3 - Not used */
+		if (test_dm) {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
+		} else {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+				      __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
+		}
+		#endif
+	} else {
+		/* CNTR 2 - In this case we want to execute the next instruction
+		and NOT take the jump. So we set the counter to 0. The jump
+		address doesn't count */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x0);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0);
+
+		/* CNTR 3 - Set the nop counter to the number of cycles we
+		need to loop for, minus 1 */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1);
+		if (test_dm) {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+				      __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+		} else {
+			mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+			IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+				      __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+		}
+	}
+
+	IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+	if (quick_write_mode)
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+	else
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction);
+
+	/*
+	 * CNTR 1 - This is used to ensure enough time elapses
+	 * for read data to come back.
+	 */
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
+
+	if (test_dm) {
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
+	} else {
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
+	}
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
+}
+#endif
+
+/* Test writes, can check for a single bit pass or multiple bit pass */
+uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
+	uint32_t *bit_chk, uint32_t all_ranks)
+{
+	uint32_t r;
+	uint32_t correct_mask_vg;
+	uint32_t tmp_bit_chk;
+	uint32_t vg;
+	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+	*bit_chk = param->write_correct_mask;
+	correct_mask_vg = param->write_correct_mask_vg;
+
+	for (r = rank_bgn; r < rank_end; r++) {
+		if (param->skip_ranks[r]) {
+			/* request to skip the rank */
+
+			continue;
+		}
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		tmp_bit_chk = 0;
+		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
+			/* reset the fifos to get pointers to known state */
+			IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+			tmp_bit_chk = tmp_bit_chk <<
+				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
+				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+			rw_mgr_mem_calibrate_write_test_issue(write_group *
+				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
+				use_dm);
+
+			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+				~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+			DPRINT(2, "write_test(%u,%u,%u) :[%u,%u] "
+				BTFLD_FMT " & ~%x => " BTFLD_FMT " => "
+				BTFLD_FMT, write_group, use_dm, all_correct,
+				r, vg, correct_mask_vg,
+				IORD_32DIRECT(BASE_RW_MGR, 0), correct_mask_vg
+				& ~IORD_32DIRECT(BASE_RW_MGR, 0),
+				tmp_bit_chk);
+
+			if (vg == 0)
+				break;
+		}
+		*bit_chk &= tmp_bit_chk;
+	}
+
+	if (all_correct) {
+		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+		DPRINT(2, "write_test(%u,%u,ALL) : " BTFLD_FMT " == "
+			BTFLD_FMT " => %lu", write_group, use_dm,
+			*bit_chk, param->write_correct_mask,
+			(long unsigned int)(*bit_chk ==
+			param->write_correct_mask));
+		return *bit_chk == param->write_correct_mask;
+	} else {
+		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+		DPRINT(2, "write_test(%u,%u,ONE) : " BTFLD_FMT " != ",
+		       write_group, use_dm, *bit_chk);
+		DPRINT(2, "%lu" " => %lu", (long unsigned int)0,
+			(long unsigned int)(*bit_chk != 0));
+		return *bit_chk != 0x00;
+	}
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_write_test_all_ranks
+(uint32_t write_group, uint32_t use_dm, uint32_t all_correct, uint32_t *bit_chk)
+{
+	return rw_mgr_mem_calibrate_write_test(0, write_group,
+		use_dm, all_correct, bit_chk, 1);
+}
+
+
+/* level the write operations */
+
+#if DYNAMIC_CALIBRATION_MODE || STATIC_QUICK_CALIBRATION
+
+#if QDRII
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	return 0;
+}
+
+#endif
+
+#if RLDRAMX
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t d;
+	uint32_t bit_chk;
+
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	/* update info for sims */
+
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+	reg_file_set_group(g);
+
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							      PASS_ONE_BIT,
+							      &bit_chk)) {
+			break;
+		}
+	}
+
+	if (d > IO_IO_OUT1_DELAY_MAX) {
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	return 1;
+}
+
+#else
+
+/* Write Levelling -- Super Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t d;
+	uint32_t bit_chk;
+
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	/* The first call to this function will calibrate all groups */
+	if (g != 0)
+		return 1;
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+	reg_file_set_group(g);
+
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							      PASS_ONE_BIT,
+							      &bit_chk)) {
+			break;
+		}
+	}
+
+	if (d > IO_IO_OUT1_DELAY_MAX) {
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
+
+	/* Now copy the calibration settings to all other groups */
+	for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_WRITE_DQS;
+		g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; g++,
+		test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		/* Verify that things worked as expected */
+		if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							       PASS_ONE_BIT,
+							       &bit_chk)) {
+			set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+						CAL_SUBSTAGE_WLEVEL_COPY);
+			return 0;
+		}
+	}
+
+	return 1;
+}
+
+#endif
+#endif
+
+#if DDRX
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t p;
+	uint32_t bit_chk;
+
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	/* update info for sims */
+
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+	/* maximum phases for the sweep */
+
+	/* starting phases */
+
+	/* update info for sims */
+	reg_file_set_group(g);
+
+	for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
+		scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+		if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							      PASS_ONE_BIT,
+							      &bit_chk)) {
+			break;
+		}
+	}
+
+	if (p > IO_DQDQS_OUT_PHASE_MAX) {
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	return 1;
+}
+
+#else
+
+/* Write Levelling -- Super Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t p;
+	uint32_t bit_chk;
+
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	/* The first call to this function will calibrate all groups */
+	if (g != 0)
+		return 1;
+
+	/* update info for sims */
+
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+	/* maximum phases for the sweep */
+
+	/* starting phases */
+
+	/* update info for sims */
+	reg_file_set_group(g);
+
+	for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
+		scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+		if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							      PASS_ONE_BIT,
+							      &bit_chk)) {
+			break;
+		}
+	}
+
+	if (p > IO_DQDQS_OUT_PHASE_MAX) {
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
+
+	/* Now copy the calibration settings to all other groups */
+	for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_READ_DQS;
+		(g < RW_MGR_MEM_IF_READ_DQS_WIDTH); g++,
+		test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, g);
+		scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+		/* Verify that things worked as expected */
+		if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							       PASS_ONE_BIT,
+							       &bit_chk)) {
+			set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+						CAL_SUBSTAGE_WLEVEL_COPY);
+			IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0);
+			return 0;
+		}
+	}
+
+	IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0);
+	return 1;
+}
+
+#endif
+#endif
+
+#endif
+
+#if QDRII
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+
+	return 0;
+}
+#endif
+
+#if RLDRAMX
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t d;
+	uint32_t bit_chk;
+	uint32_t work_bgn, work_end;
+	uint32_t d_bgn, d_end;
+	uint32_t found_begin;
+
+	TRACE_FUNC("%lu %lu", g, test_bgn);
+	BFM_STAGE("wlevel");
+
+	ALTERA_ASSERT(g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+	/* maximum delays for the sweep */
+
+	/* update info for sims */
+	reg_file_set_group(g);
+
+	/* starting and end range where writes work */
+	scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
+
+	work_bgn = 0;
+	work_end = 0;
+
+	/* step 1: find first working dtap, increment in dtaps */
+	found_begin = 0;
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++,
+	     work_bgn += IO_DELAY_PER_DCHAIN_TAP) {
+		DPRINT(2, "wlevel: begin: d=%lu", d);
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							      PASS_ONE_BIT,
+							      &bit_chk)) {
+			found_begin = 1;
+			d_bgn = d;
+			break;
+		} else {
+			recover_mem_device_after_ck_dqs_violation();
+		}
+	}
+
+	if (!found_begin) {
+		/* fail, cannot find first working delay */
+		DPRINT(2, "wlevel: failed to find first working delay", d);
+
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	DPRINT(2, "wlevel: found begin d=%lu work_bgn=%lu", d_bgn, work_bgn);
+	BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d_bgn);
+	BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+	/* step 2 : find first non-working dtap, increment in dtaps */
+	work_end = work_bgn;
+	d = d + 1;
+	for (; d <= IO_IO_OUT1_DELAY_MAX; d++,
+		work_end += IO_DELAY_PER_DCHAIN_TAP) {
+		DPRINT(2, "wlevel: end: d=%lu", d);
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							       PASS_ONE_BIT,
+							       &bit_chk)) {
+			recover_mem_device_after_ck_dqs_violation();
+			break;
+		}
+	}
+	d_end = d - 1;
+
+	if (d_end >= d_bgn) {
+		/* we have a working range */
+	} else {
+		/* nil range */
+		/*Note: don't think this is possible */
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+		return 0;
+	}
+
+	DPRINT(2, "wlevel: found end: d=%lu work_end=%lu", d_end, work_end);
+	BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d_end);
+	BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
+
+	/* center */
+	d = (d_end + d_bgn) / 2;
+
+	DPRINT(2, "wlevel: found middle: d=%lu work_mid=%lu", d,
+	       (work_end + work_bgn)/2);
+	BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
+	BFM_GBL_SET(dqs_wlevel_mid[g].ps, (work_end + work_bgn)/2);
+
+	scc_mgr_zero_group(g, test_bgn, 1);
+	scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
+
+	return 1;
+}
+#endif
+
+
+#if DDRX
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+	uint32_t p, d;
+
+#if CALIBRATE_BIT_SLIPS
+#if QUARTER_RATE_MODE
+	int32_t num_additional_fr_cycles = 3;
+#elif HALF_RATE_MODE
+	int32_t num_additional_fr_cycles = 1;
+#else
+	int32_t num_additional_fr_cycles = 0;
+#endif
+#if MULTIPLE_AFI_WLAT
+	num_additional_fr_cycles++;
+#endif
+#else
+	uint32_t num_additional_fr_cycles = 0;
+#endif
+	uint32_t bit_chk;
+	uint32_t work_bgn, work_end, work_mid;
+	uint32_t tmp_delay;
+	uint32_t found_begin;
+	uint32_t dtaps_per_ptap;
+
+	TRACE_FUNC("%u %u", g, test_bgn);
+	BFM_STAGE("wlevel");
+
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_WLEVEL);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+	/* maximum phases for the sweep */
+#if USE_DQS_TRACKING
+	dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0);
+#else
+	dtaps_per_ptap = 0;
+	tmp_delay = 0;
+	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+		dtaps_per_ptap++;
+		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+	}
+	dtaps_per_ptap--;
+	tmp_delay = 0;
+#endif
+
+	/* starting phases */
+
+	/* update info for sims */
+	reg_file_set_group(g);
+
+	/* starting and end range where writes work */
+	scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
+
+	work_bgn = 0;
+	work_end = 0;
+
+	/* step 1: find first working phase, increment in ptaps, and then in
+	dtaps if ptaps doesn't find a working phase */
+	found_begin = 0;
+	tmp_delay = 0;
+	for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+		IO_DELAY_PER_DCHAIN_TAP) {
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		work_bgn = tmp_delay;
+
+		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX +
+			num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH;
+			p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
+			DPRINT(2, "wlevel: begin-1: p=%u d=%u", p, d);
+			scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+			if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+								      PASS_ONE_BIT,
+								      &bit_chk)) {
+				found_begin = 1;
+				break;
+			}
+		}
+
+		if (found_begin)
+			break;
+	}
+
+	if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles *
+		IO_DLL_CHAIN_LENGTH) {
+		/* fail, cannot find first working phase */
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_WORKING_DELAY);
+
+		return 0;
+	}
+
+	DPRINT(2, "wlevel: first valid p=%u d=%u", p, d);
+
+	reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+	/*
+	 * If d is 0 then the working window covers a phase tap and we can
+	 * follow the old procedure otherwise, we've found the beginning, and
+	 * we need to increment the dtaps until we find the end.
+	 */
+	if (d == 0) {
+		COV(WLEVEL_PHASE_PTAP_OVERLAP);
+		work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
+
+		/* step 2: if we have room, back off by one and increment
+		in dtaps */
+
+		if (p > 0) {
+			scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
+
+			tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
+
+			for (d = 0; d <= IO_IO_OUT1_DELAY_MAX &&
+				tmp_delay < work_bgn; d++,
+				tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
+				DPRINT(2, "wlevel: begin-2: p=%u d=%u",
+				       (p-1), d);
+				scc_mgr_apply_group_all_out_delay_all_ranks
+				(g, test_bgn, d);
+
+				if (rw_mgr_mem_calibrate_write_test_all_ranks
+					(g, 0, PASS_ONE_BIT, &bit_chk)) {
+					work_bgn = tmp_delay;
+					break;
+				}
+			}
+
+			scc_mgr_apply_group_all_out_delay_all_ranks(g,
+								    test_bgn,
+								    0);
+		} else {
+			DPRINT(2, "wlevel: found begin-B: p=%u d=%u ps=%u",
+				p, d, work_bgn);
+
+			BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+			BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+			BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+		}
+
+		/* step 3: go forward from working phase to non working phase,
+		increment in ptaps */
+
+		for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX +
+			num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH; p++,
+			work_end += IO_DELAY_PER_OPA_TAP) {
+			DPRINT(2, "wlevel: end-0: p=%u d=0", p);
+			scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+			if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+								       PASS_ONE_BIT,
+								       &bit_chk)) {
+				break;
+			}
+		}
+
+		/*
+		 * step 4: back off one from last, increment in dtaps.
+		 * The actual increment is done outside the if/else statement
+		 * since it is shared with other code.
+		 */
+		p -= 1;
+
+		scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+		work_end -= IO_DELAY_PER_OPA_TAP;
+		d = 0;
+	} else {
+		/*
+		 * step 5: Window doesn't cover phase tap, just increment
+		 * dtaps until failure.
+		 * The actual increment is done outside the if/else statement
+		 * since it is shared with other code.
+		 */
+		COV(WLEVEL_PHASE_PTAP_NO_OVERLAP);
+		work_end = work_bgn;
+		DPRINT(2, "wlevel: found begin-C: p=%u d=%u ps=%u", p,
+		       d, work_bgn);
+		BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+		BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+		BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+	}
+
+	/* The actual increment until failure */
+	for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end +=
+	     IO_DELAY_PER_DCHAIN_TAP) {
+		DPRINT(2, "wlevel: end: p=%u d=%u", p, d);
+		scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+		if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+							       PASS_ONE_BIT,
+							       &bit_chk))
+			break;
+	}
+	scc_mgr_zero_group(g, test_bgn, 1);
+
+	work_end -= IO_DELAY_PER_DCHAIN_TAP;
+
+	if (work_end >= work_bgn) {
+		/* we have a working range */
+	} else {
+		/* nil range */
+		set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+					CAL_SUBSTAGE_LAST_WORKING_DELAY);
+		return 0;
+	}
+
+	DPRINT(2, "wlevel: found end: p=%u d=%u; range: [%u,%u]", p,
+	       d-1, work_bgn, work_end);
+	BFM_GBL_SET(dqs_wlevel_right_edge[g].p, p);
+	BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d-1);
+	BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
+
+	/* center */
+	work_mid = (work_bgn + work_end) / 2;
+
+	DPRINT(2, "wlevel: work_mid=%d", work_mid);
+
+	tmp_delay = 0;
+
+	for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX  +
+		num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH &&
+		tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+		;
+
+	if (tmp_delay > work_mid) {
+		tmp_delay -= IO_DELAY_PER_OPA_TAP;
+		p--;
+	}
+
+	while (p > IO_DQDQS_OUT_PHASE_MAX) {
+		tmp_delay -= IO_DELAY_PER_OPA_TAP;
+		p--;
+	}
+
+	scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+	DPRINT(2, "wlevel: p=%u tmp_delay=%u left=%u", p, tmp_delay,
+	       work_mid - tmp_delay);
+
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++,
+		tmp_delay += IO_DELAY_PER_DCHAIN_TAP)
+		;
+
+	if (tmp_delay > work_mid) {
+		tmp_delay -= IO_DELAY_PER_DCHAIN_TAP;
+		d--;
+	}
+
+	DPRINT(2, "wlevel: p=%u d=%u tmp_delay=%u left=%u", p, d,
+	       tmp_delay, work_mid - tmp_delay);
+
+	scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
+
+	DPRINT(2, "wlevel: found middle: p=%u d=%u", p, d);
+	BFM_GBL_SET(dqs_wlevel_mid[g].p, p);
+	BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
+	BFM_GBL_SET(dqs_wlevel_mid[g].ps, work_mid);
+
+	return 1;
+}
+#endif
+
+/*
+ * center all windows. do per-bit-deskew to possibly increase size of
+ * certain windows.
+ */
+uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
+	uint32_t write_group, uint32_t test_bgn)
+{
+	uint32_t i, p, min_index;
+	int32_t d;
+	/*
+	 * Store these as signed since there are comparisons with
+	 * signed numbers.
+	 */
+	uint32_t bit_chk;
+#if QDRII
+	uint32_t tmp_bit_chk;
+	uint32_t tmp_mask;
+	uint32_t mask;
+#endif
+	uint32_t sticky_bit_chk;
+	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+	int32_t mid;
+	int32_t mid_min, orig_mid_min;
+	int32_t new_dqs, start_dqs, shift_dq;
+	int32_t dq_margin, dqs_margin, dm_margin;
+	uint32_t stop;
+
+	TRACE_FUNC("%u %u", write_group, test_bgn);
+	BFM_STAGE("writes_center");
+
+	ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+	dm_margin = 0;
+
+	start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
+
+	select_curr_shadow_reg_using_rank(rank_bgn);
+
+	/* per-bit deskew */
+
+	/*
+	 * set the left and right edge of each bit to an illegal value
+	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+	 */
+	sticky_bit_chk = 0;
+	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
+		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+	}
+
+	/* Search for the left edge of the window for each bit */
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+		scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+		/*
+		 * Stop searching when the read test doesn't pass AND when
+		 * we've seen a passing read on every bit.
+		 */
+		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+			0, PASS_ONE_BIT, &bit_chk, 0);
+		sticky_bit_chk = sticky_bit_chk | bit_chk;
+		stop = stop && (sticky_bit_chk == param->write_correct_mask);
+		DPRINT(2, "write_center(left): dtap=%d => " BTFLD_FMT
+			" == " BTFLD_FMT " && %u [bit_chk=" BTFLD_FMT "]",
+			d, sticky_bit_chk, param->write_correct_mask,
+			stop, bit_chk);
+
+		if (stop == 1) {
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+				if (bit_chk & 1) {
+					/*
+					 * Remember a passing test as the
+					 * left_edge.
+					 */
+					left_edge[i] = d;
+				} else {
+					/*
+					 * If a left edge has not been seen
+					 * yet, then a future passing test will
+					 * mark this edge as the right edge.
+					 */
+					if (left_edge[i] ==
+						IO_IO_OUT1_DELAY_MAX + 1) {
+						right_edge[i] = -(d + 1);
+					}
+				}
+				DPRINT(2, "write_center[l,d=%d):", d);
+				DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d",
+				       (int)(bit_chk & 1), i, left_edge[i]);
+				DPRINT(2, "right_edge[%u]: %d", i,
+				       right_edge[i]);
+				bit_chk = bit_chk >> 1;
+			}
+		}
+	}
+
+	/* Reset DQ delay chains to 0 */
+	scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
+	sticky_bit_chk = 0;
+	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
+		DPRINT(2, "write_center: left_edge[%u]: %d right_edge[%u]: %d",
+		       i, left_edge[i], i, right_edge[i]);
+
+		/*
+		 * Check for cases where we haven't found the left edge,
+		 * which makes our assignment of the the right edge invalid.
+		 * Reset it to the illegal value.
+		 */
+		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
+		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+			DPRINT(2, "write_center: reset right_edge[%u]: %d",
+			       i, right_edge[i]);
+		}
+
+		/*
+		 * Reset sticky bit (except for bits where we have
+		 * seen the left edge).
+		 */
+		sticky_bit_chk = sticky_bit_chk << 1;
+		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
+			sticky_bit_chk = sticky_bit_chk | 1;
+
+		if (i == 0)
+			break;
+	}
+
+	/* Search for the right edge of the window for each bit */
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+							d + start_dqs);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		if (QDRII)
+			rw_mgr_mem_dll_lock_wait();
+
+		/*
+		 * Stop searching when the read test doesn't pass AND when
+		 * we've seen a passing read on every bit.
+		 */
+		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+			0, PASS_ONE_BIT, &bit_chk, 0);
+		if (stop)
+			recover_mem_device_after_ck_dqs_violation();
+
+		sticky_bit_chk = sticky_bit_chk | bit_chk;
+		stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+		DPRINT(2, "write_center (right): dtap=%u => " BTFLD_FMT " == "
+			BTFLD_FMT " && %u", d, sticky_bit_chk,
+			param->write_correct_mask, stop);
+
+		if (stop == 1) {
+			if (d == 0) {
+				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
+					i++) {
+					/* d = 0 failed, but it passed when
+					testing the left edge, so it must be
+					marginal, set it to -1 */
+					if (right_edge[i] ==
+						IO_IO_OUT1_DELAY_MAX + 1 &&
+						left_edge[i] !=
+						IO_IO_OUT1_DELAY_MAX + 1) {
+						right_edge[i] = -1;
+					}
+				}
+			}
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+				if (bit_chk & 1) {
+					/*
+					 * Remember a passing test as
+					 * the right_edge.
+					 */
+					right_edge[i] = d;
+				} else {
+					if (d != 0) {
+						/*
+						 * If a right edge has not
+						 * been seen yet, then a future
+						 * passing test will mark this
+						 * edge as the left edge.
+						 */
+						if (right_edge[i] ==
+						    IO_IO_OUT1_DELAY_MAX + 1)
+							left_edge[i] = -(d + 1);
+					} else {
+						/*
+						 * d = 0 failed, but it passed
+						 * when testing the left edge,
+						 * so it must be marginal, set
+						 * it to -1.
+						 */
+						if (right_edge[i] ==
+						    IO_IO_OUT1_DELAY_MAX + 1 &&
+						    left_edge[i] !=
+						    IO_IO_OUT1_DELAY_MAX + 1)
+							right_edge[i] = -1;
+						/*
+						 * If a right edge has not been
+						 * seen yet, then a future
+						 * passing test will mark this
+						 * edge as the left edge.
+						 */
+						else if (right_edge[i] ==
+							IO_IO_OUT1_DELAY_MAX +
+							1)
+							left_edge[i] = -(d + 1);
+					}
+				}
+				DPRINT(2, "write_center[r,d=%d):", d);
+				DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d",
+				       (int)(bit_chk & 1), i, left_edge[i]);
+				DPRINT(2, "right_edge[%u]: %d", i,
+				       right_edge[i]);
+				bit_chk = bit_chk >> 1;
+			}
+		}
+	}
+
+	/* Check that all bits have a window */
+	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+		DPRINT(2, "write_center: left_edge[%u]: %d right_edge[%u]: %d",
+		       i, left_edge[i], i, right_edge[i]);
+		BFM_GBL_SET(dq_write_left_edge[write_group][i], left_edge[i]);
+		BFM_GBL_SET(dq_write_right_edge[write_group][i], right_edge[i]);
+		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
+		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
+			set_failing_group_stage(test_bgn + i,
+						CAL_STAGE_WRITES,
+						CAL_SUBSTAGE_WRITES_CENTER);
+			return 0;
+		}
+	}
+
+	/* Find middle of window for each DQ bit */
+	mid_min = left_edge[0] - right_edge[0];
+	min_index = 0;
+	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+		mid = left_edge[i] - right_edge[i];
+		if (mid < mid_min) {
+			mid_min = mid;
+			min_index = i;
+		}
+	}
+
+	/*
+	 * -mid_min/2 represents the amount that we need to move DQS.
+	 * If mid_min is odd and positive we'll need to add one to
+	 * make sure the rounding in further calculations is correct
+	 * (always bias to the right), so just add 1 for all positive values.
+	 */
+	if (mid_min > 0)
+		mid_min++;
+	mid_min = mid_min / 2;
+	DPRINT(1, "write_center: mid_min=%d", mid_min);
+
+	/* Determine the amount we can change DQS (which is -mid_min) */
+	orig_mid_min = mid_min;
+	new_dqs = start_dqs;
+	mid_min = 0;
+	DPRINT(1, "write_center: start_dqs=%d new_dqs=%d mid_min=%d",
+	       start_dqs, new_dqs, mid_min);
+
+	/* Initialize data for export structures */
+	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
+	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
+
+	/* add delay to bring centre of all DQ windows to the same "level" */
+	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+		/* Use values before divide by 2 to reduce round off error */
+		shift_dq = (left_edge[i] - right_edge[i] -
+			(left_edge[min_index] - right_edge[min_index]))/2  +
+		(orig_mid_min - mid_min);
+
+		DPRINT(2, "write_center: before: shift_dq[%u]=%d", i,
+		       shift_dq);
+
+		if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) >
+			(int32_t)IO_IO_OUT1_DELAY_MAX) {
+			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX -
+			READ_SCC_DQ_OUT1_DELAY(i);
+		} else if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) < 0) {
+			shift_dq = -(int32_t)READ_SCC_DQ_OUT1_DELAY(i);
+		}
+		DPRINT(2, "write_center: after: shift_dq[%u]=%d",
+		       i, shift_dq);
+		scc_mgr_set_dq_out1_delay(write_group, i,
+					  READ_SCC_DQ_OUT1_DELAY(i) +
+					  shift_dq);
+		scc_mgr_load_dq(i);
+
+		DPRINT(2, "write_center: margin[%u]=[%d,%d]", i,
+		       left_edge[i] - shift_dq + (-mid_min),
+		       right_edge[i] + shift_dq - (-mid_min));
+		/* To determine values for export structures */
+		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+			dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+	}
+
+	/* Move DQS */
+	if (QDRII) {
+		scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group,
+							      new_dqs);
+	} else {
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+
+	/* Centre DM */
+	BFM_STAGE("dm_center");
+	DPRINT(2, "write_center: DM");
+#if RLDRAMX
+
+	/*
+	 * this is essentially the same as DDR with the exception of
+	 * the dm_ global accounting.
+	 * Determine if first group in device to initialize left and
+	 * right edges.
+	 */
+	if (!is_write_group_enabled_for_dm(write_group)) {
+		DPRINT(2, "dm_calib: skipping since not last in group");
+	} else {
+		/* last in the group, so we need to do DM */
+		DPRINT(2, "dm_calib: calibrating DM since last in group");
+
+		/*
+		 * set the left and right edge of each bit to illegal value,
+		 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+		 */
+		left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
+		right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+
+		sticky_bit_chk = 0;
+		/* Search for the left edge of the window for the DM bit */
+		for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+			scc_mgr_apply_group_dm_out1_delay(write_group, d);
+			IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+			/*
+			 * Stop searching when the write test doesn't pass AND
+			 * when we've seen a passing write before.
+			 */
+			if (rw_mgr_mem_calibrate_write_test(rank_bgn,
+							    write_group, 1,
+							    PASS_ALL_BITS,
+							    &bit_chk, 0)) {
+				DPRINT(2, "dm_calib: left=%lu passed", d);
+				left_edge[0] = d;
+			} else {
+				DPRINT(2, "dm_calib: left=%lu failed", d);
+				/*
+				 * If a left edge has not been seen yet, then
+				 * a future passing test will mark this edge as
+				 * the right edge.
+				 */
+				if (left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) {
+					right_edge[0] = -(d + 1);
+				} else {
+					/*
+					 * left edge has been seen, so this
+					 * failure marks the left edge, and
+					 * we are done.
+					 */
+					break;
+				}
+			}
+			DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld", d,
+			       left_edge[0]);
+			DPRINT(2, "right_edge: %ld", right_edge[0]);
+		}
+
+		DPRINT(2, "dm_calib left done: left_edge: %ld right_edge: %ld",
+		       left_edge[0], right_edge[0]);
+
+		/* Reset DM delay chains to 0 */
+		scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+		/*
+		 * Check for cases where we haven't found the left edge,
+		 * which makes our assignment of the the right edge invalid.
+		 * Reset it to the illegal value.
+		 */
+		if ((left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) &&
+		    (right_edge[0] != IO_IO_OUT1_DELAY_MAX + 1)) {
+			right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+			DPRINT(2, "dm_calib: reset right_edge: %ld",
+			       right_edge[0]);
+		}
+
+		/* Search for the right edge of the window for the DM bit */
+		for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
+			/*
+			 * Note: This only shifts DQS, so are we limiting
+			 * ourselve to width of DQ unnecessarily.
+			 */
+			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+								d + new_dqs);
+
+			IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+			/*
+			 * Stop searching when the test fails and we've seen
+			 * passing test already.
+			 */
+			if (rw_mgr_mem_calibrate_write_test(rank_bgn,
+							    write_group, 1,
+							    PASS_ALL_BITS,
+							    &bit_chk, 0)) {
+				DPRINT(2, "dm_calib: right=%lu passed", d);
+				right_edge[0] = d;
+			} else {
+				recover_mem_device_after_ck_dqs_violation();
+
+				DPRINT(2, "dm_calib: right=%lu failed", d);
+				if (d != 0) {
+					/*
+					 * If a right edge has not been seen
+					 * yet, then a future passing test will
+					 * mark this edge as the left edge.
+					 */
+					if (right_edge[0] ==
+					IO_IO_OUT1_DELAY_MAX + 1) {
+						left_edge[0] = -(d + 1);
+					} else {
+						break;
+					}
+				} else {
+					/*
+					 * d = 0 failed, but it passed when
+					 * testing the left edge, so it must be
+					 * marginal, set it to -1.
+					 */
+					if (right_edge[0] ==
+					IO_IO_OUT1_DELAY_MAX + 1 && left_edge[0]
+					!= IO_IO_OUT1_DELAY_MAX + 1) {
+						right_edge[0] = -1;
+						/* we're done */
+						break;
+					}
+					/*
+					 * If a right edge has not been seen
+					 * yet, then a future passing test will
+					 * mark this edge as the left edge.
+					 */
+					else if (right_edge[0] ==
+					IO_IO_OUT1_DELAY_MAX + 1) {
+						left_edge[0] = -(d + 1);
+					}
+				}
+			}
+			DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld", d,
+			       left_edge[0]);
+			DPRINT(2, "right_edge: %ld", right_edge[0]);
+		}
+
+		DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0],
+		       right_edge[0]);
+
+		/* Move DQS (back to orig) */
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+
+		/*
+		 * move DM
+		 * Find middle of window for the DM bit.
+		 */
+		mid = (left_edge[0] - right_edge[0]) / 2;
+		if (mid < 0)
+			mid = 0;
+		scc_mgr_apply_group_dm_out1_delay(write_group, mid);
+
+		dm_margin = left_edge[0];
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
+		       left_edge[0], right_edge[0], mid, dm_margin);
+	} /* end of DM calibration */
+#endif
+
+
+#if DDRX
+	/*
+	 * set the left and right edge of each bit to an illegal value,
+	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
+	 */
+	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
+	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
+	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
+	int32_t win_best = 0;
+
+	/* Search for the/part of the window with DM shift */
+	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
+		scc_mgr_apply_group_dm_out1_delay(write_group, d);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+						    PASS_ALL_BITS, &bit_chk,
+						    0)) {
+			/* USE Set current end of the window */
+			end_curr = -d;
+			/*
+			 * If a starting edge of our window has not been seen
+			 * this is our current start of the DM window.
+			 */
+			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+				bgn_curr = -d;
+
+			/*
+			 * If current window is bigger than best seen.
+			 * Set best seen to be current window.
+			 */
+			if ((end_curr-bgn_curr+1) > win_best) {
+				win_best = end_curr-bgn_curr+1;
+				bgn_best = bgn_curr;
+				end_best = end_curr;
+			}
+		} else {
+			/* We just saw a failing test. Reset temp edge */
+			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+			}
+		}
+
+
+	/* Reset DM delay chains to 0 */
+	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+	/*
+	 * Check to see if the current window nudges up aganist 0 delay.
+	 * If so we need to continue the search by shifting DQS otherwise DQS
+	 * search begins as a new search. */
+	if (end_curr != 0) {
+		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+	}
+
+	/* Search for the/part of the window with DQS shifts */
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
+		/*
+		 * Note: This only shifts DQS, so are we limiting ourselve to
+		 * width of DQ unnecessarily.
+		 */
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+							d + new_dqs);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+						    PASS_ALL_BITS, &bit_chk,
+						    0)) {
+			/* USE Set current end of the window */
+			end_curr = d;
+			/*
+			 * If a beginning edge of our window has not been seen
+			 * this is our current begin of the DM window.
+			 */
+			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+				bgn_curr = d;
+
+			/*
+			 * If current window is bigger than best seen. Set best
+			 * seen to be current window.
+			 */
+			if ((end_curr-bgn_curr+1) > win_best) {
+				win_best = end_curr-bgn_curr+1;
+				bgn_best = bgn_curr;
+				end_best = end_curr;
+			}
+		} else {
+			/* We just saw a failing test. Reset temp edge */
+			recover_mem_device_after_ck_dqs_violation();
+			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+
+			/* Early exit optimization: if ther remaining delay
+			chain space is less than already seen largest window
+			we can exit */
+			if ((win_best-1) >
+				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
+					break;
+				}
+			}
+		}
+
+	/* assign left and right edge for cal and reporting; */
+	left_edge[0] = -1*bgn_best;
+	right_edge[0] = end_best;
+
+	DPRINT(2, "dm_calib: left=%d right=%d", left_edge[0], right_edge[0]);
+	BFM_GBL_SET(dm_left_edge[write_group][0], left_edge[0]);
+	BFM_GBL_SET(dm_right_edge[write_group][0], right_edge[0]);
+
+	/* Move DQS (back to orig) */
+	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+
+	/* Move DM */
+
+	/* Find middle of window for the DM bit */
+	mid = (left_edge[0] - right_edge[0]) / 2;
+
+	/* only move right, since we are not moving DQS/DQ */
+	if (mid < 0)
+		mid = 0;
+
+	/* dm_marign should fail if we never find a window */
+	if (win_best == 0)
+		dm_margin = -1;
+	else
+		dm_margin = left_edge[0] - mid;
+
+	scc_mgr_apply_group_dm_out1_delay(write_group, mid);
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+	DPRINT(2, "dm_calib: left=%d right=%d mid=%d dm_margin=%d",
+	       left_edge[0], right_edge[0], mid, dm_margin);
+#endif
+
+#if QDRII
+	sticky_bit_chk = 0;
+
+	/*
+	 * set the left and right edge of each bit to an illegal value
+	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+	 */
+	for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+		RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+		left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+	}
+
+	mask = param->dm_correct_mask;
+	/* Search for the left edge of the window for the DM bit */
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+		scc_mgr_apply_group_dm_out1_delay(write_group, d);
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+		/*
+		 * Stop searching when the read test doesn't pass for all bits
+		 * (as they've already been calibrated).
+		 */
+		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+			1, PASS_ONE_BIT, &bit_chk, 0);
+		DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx ",
+		       d, stop, bit_chk);
+		DPRINT(2, "sticky_bit_chk=%llx mask=%llx", sticky_bit_chk,
+		       param->write_correct_mask);
+		tmp_bit_chk = bit_chk;
+		tmp_mask = mask;
+		for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+			RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+			if ((tmp_bit_chk & mask) == mask)
+				sticky_bit_chk = sticky_bit_chk | tmp_mask;
+			tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+				RW_MGR_MEM_DATA_MASK_WIDTH);
+			tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH /
+				RW_MGR_MEM_DATA_MASK_WIDTH);
+		}
+		stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+		if (stop == 1) {
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+				RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+				DPRINT(2, "dm_calib[l,i=%lu] d=%lu ",
+				       BTFLD_FMT, i, d);
+				DPRINT(2, "bit_chk&dm_mask=" BTFLD_FMT " == "
+					bit_chk & mask, mask);
+				if ((bit_chk & mask) == mask) {
+					DPRINT(2, "dm_calib: left[%lu]=%lu",
+					       i, d);
+					left_edge[i] = d;
+				} else {
+					/* If a left edge has not been seen yet,
+					then a future passing test will mark
+					this edge as the right edge */
+					if (left_edge[i] ==
+						IO_IO_OUT1_DELAY_MAX + 1) {
+						right_edge[i] = -(d + 1);
+					}
+				}
+				bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+					RW_MGR_MEM_DATA_MASK_WIDTH);
+			}
+		}
+	}
+
+	/* Reset DM delay chains to 0 */
+	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+	/*
+	 * Check for cases where we haven't found the left edge, which makes
+	 * our assignment of the the right edge invalid.  Reset it to the
+	 * illegal value.
+	 */
+	for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+		RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
+		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+			DPRINT(2, "dm_calib: reset right_edge: %d",
+			       right_edge[i]);
+		}
+	}
+
+	/* Search for the right edge of the window for the DM bit */
+	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
+		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+							d + new_dqs);
+
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+		rw_mgr_mem_dll_lock_wait();
+
+		/*
+		 * Stop searching when the read test doesn't pass for all bits
+		 * (as they've already been calibrated).
+		 */
+		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+			1, PASS_ONE_BIT, &bit_chk, 0);
+		DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx ",
+		       d, stop, bit_chk);
+		DPRINT(2, "sticky_bit_chk=%llx mask=%llx", sticky_bit_chk,
+		       param->write_correct_mask);
+		tmp_bit_chk = bit_chk;
+		tmp_mask = mask;
+		for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+			RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+			if ((tmp_bit_chk & mask) == mask)
+				sticky_bit_chk = sticky_bit_chk | tmp_mask;
+
+			tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+				RW_MGR_MEM_DATA_MASK_WIDTH);
+			tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH /
+				RW_MGR_MEM_DATA_MASK_WIDTH);
+		}
+		stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+		if (stop == 1) {
+			break;
+		} else {
+			for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+				RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+				DPRINT(2, "dm_calib[r,i=%lu] d=%lu",
+				       BTFLD_FMT, i, d);
+				DPRINT(2, "bit_chk&dm_mask=" BTFLD_FMT " == ",
+					bit_chk & mask, mask);
+				if ((bit_chk & mask) == mask) {
+					right_edge[i] = d;
+				} else {
+					/* d = 0 failed, but it passed when
+					testing the left edge, so it must be
+					marginal, set it to -1 */
+					if (right_edge[i] ==
+						IO_IO_OUT1_DELAY_MAX + 1 &&
+						left_edge[i] !=
+						IO_IO_OUT1_DELAY_MAX + 1) {
+						right_edge[i] = -1;
+						/* we're done */
+						break;
+					}
+					/* If a right edge has not been seen
+					yet, then a future passing test will
+					mark this edge as the left edge */
+					else if (right_edge[i] ==
+					IO_IO_OUT1_DELAY_MAX + 1) {
+						left_edge[i] = -(d + 1);
+					}
+				}
+				bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+					RW_MGR_MEM_DATA_MASK_WIDTH);
+			}
+		}
+	}
+
+	/* Move DQS (back to orig) */
+	scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group, new_dqs);
+
+	/* Move DM */
+	dm_margin = IO_IO_OUT1_DELAY_MAX;
+	for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+		RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+		/* Find middle of window for the DM bit */
+		mid = (left_edge[i] - right_edge[i]) / 2;
+		DPRINT(2, "dm_calib[mid,i=%lu] left=%ld right=%ld mid=%ld", i,
+		       left_edge[i], right_edge[i], mid);
+		BFM_GBL_SET(dm_left_edge[write_group][i], left_edge[i]);
+		BFM_GBL_SET(dm_right_edge[write_group][i], right_edge[i]);
+
+		if (mid < 0)
+			mid = 0;
+		scc_mgr_set_dm_out1_delay(write_group, i, mid);
+		scc_mgr_load_dm(i);
+		if ((left_edge[i] - mid) < dm_margin)
+			dm_margin = left_edge[i] - mid;
+	}
+#endif
+	/* Export values */
+	gbl->fom_out += dq_margin + dqs_margin;
+
+	DPRINT(2, "write_center: dq_margin=%d dqs_margin=%d dm_margin=%d",
+	       dq_margin, dqs_margin, dm_margin);
+
+	/*
+	 * Do not remove this line as it makes sure all of our
+	 * decisions have been applied.
+	 */
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
+}
+
+/* calibrate the write operations */
+uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
+	uint32_t test_bgn)
+{
+	/* update info for sims */
+	TRACE_FUNC("%u %u", g, test_bgn);
+
+	reg_file_set_stage(CAL_STAGE_WRITES);
+	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
+
+	reg_file_set_group(g);
+
+	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
+		set_failing_group_stage(g, CAL_STAGE_WRITES,
+					CAL_SUBSTAGE_WRITES_CENTER);
+		return 0;
+	}
+
+	return 1;
+}
+
+/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
+#if DDRX
+void mem_precharge_and_activate(void)
+{
+	uint32_t r;
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r]) {
+			/* request to skip the rank */
+
+			continue;
+		}
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+		/* precharge all banks ... */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_PRECHARGE_ALL);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0F);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x0F);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
+
+		/* activate rows */
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_ACTIVATE_0_AND_1);
+	}
+}
+#endif
+
+#if QDRII || RLDRAMX
+void mem_precharge_and_activate(void) {}
+#endif
+
+/* Configure various memory related parameters. */
+#if DDRX
+void mem_config(void)
+{
+	uint32_t rlat, wlat;
+	uint32_t rw_wl_nop_cycles;
+	uint32_t max_latency;
+#if CALIBRATE_BIT_SLIPS
+	uint32_t i;
+#endif
+
+	TRACE_FUNC();
+
+	/* read in write and read latency */
+	wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
+#if HARD_PHY
+	wlat += IORD_32DIRECT(DATA_MGR_MEM_T_ADD, 0);
+	/* WL for hard phy does not include additive latency */
+
+#if DDR3 || DDR2
+	/*
+	 * add addtional write latency to offset the address/command extra
+	 * clock cycle. We change the AC mux setting causing AC to be delayed
+	 * by one mem clock cycle. Only do this for DDR3
+	 */
+	wlat = wlat + 1;
+#endif
+
+#endif
+
+	rlat = IORD_32DIRECT(MEM_T_RL_ADD, 0);
+
+	if (QUARTER_RATE_MODE) {
+		/*
+		 * In Quarter-Rate the WL-to-nop-cycles works like this:
+		 * 0,1     -> 0
+		 * 2,3,4,5 -> 1
+		 * 6,7,8,9 -> 2
+		 * etc...
+		 */
+		rw_wl_nop_cycles = (wlat + 6) / 4 - 1;
+	} else if (HALF_RATE_MODE)	{
+		/*
+		 * In Half-Rate the WL-to-nop-cycles works like this:
+		 * 0,1 -> -1
+		 * 2,3 -> 0
+		 * 4,5 -> 1
+		 * etc...
+		 */
+		if (wlat % 2)
+			rw_wl_nop_cycles = ((wlat - 1) / 2) - 1;
+		else
+			rw_wl_nop_cycles = (wlat / 2) - 1;
+	} else {
+		rw_wl_nop_cycles = wlat - 2;
+#if LPDDR2
+		rw_wl_nop_cycles = rw_wl_nop_cycles + 1;
+#endif
+	}
+#if MULTIPLE_AFI_WLAT
+	for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++)
+		gbl->rw_wl_nop_cycles_per_group[i] = rw_wl_nop_cycles;
+#endif
+	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
+
+#if ARRIAV || CYCLONEV
+	/*
+	 * For AV/CV, lfifo is hardened and always runs at full rate so
+	 * max latency in AFI clocks, used here, is correspondingly smaller.
+	 */
+	if (QUARTER_RATE_MODE)
+		max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/4 - 1;
+	else if (HALF_RATE_MODE)
+		max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/2 - 1;
+	else
+		max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
+#else
+	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
+#endif
+	/* configure for a burst length of 8 */
+
+	if (QUARTER_RATE_MODE) {
+		/* write latency */
+		wlat = (wlat + 5) / 4 + 1;
+
+		/* set a pretty high read latency initially */
+		gbl->curr_read_lat = (rlat + 1) / 4 + 8;
+	} else if (HALF_RATE_MODE) {
+		/* write latency */
+		wlat = (wlat - 1) / 2 + 1;
+
+		/* set a pretty high read latency initially */
+		gbl->curr_read_lat = (rlat + 1) / 2 + 8;
+	} else {
+		/* write latency */
+#if HARD_PHY
+		/* Adjust Write Latency for Hard PHY */
+		wlat = wlat + 1;
+#if LPDDR2
+		/*
+		 * Add another one in hard for LPDDR2 since this value is raw
+		 * from controller assume tdqss is one.
+		 */
+		wlat = wlat + 1;
+#endif
+#endif
+		/* set a pretty high read latency initially */
+		gbl->curr_read_lat = rlat + 16;
+	}
+
+	if (gbl->curr_read_lat > max_latency)
+		gbl->curr_read_lat = max_latency;
+
+	IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+
+	/* advertise write latency */
+	gbl->curr_write_lat = wlat;
+#if MULTIPLE_AFI_WLAT
+	for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+#if HARD_PHY
+		IOWR_32DIRECT(PHY_MGR_AFI_WLAT, i*4, wlat - 2);
+#else
+		IOWR_32DIRECT(PHY_MGR_AFI_WLAT, i*4, wlat - 1);
+#endif
+	}
+#else
+#if HARD_PHY
+	IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 2);
+#else
+	IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 1);
+#endif
+#endif
+	/* initialize bit slips */
+#if CALIBRATE_BIT_SLIPS
+	for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++)
+		IOWR_32DIRECT(PHY_MGR_FR_SHIFT, i*4, 0);
+#endif
+	mem_precharge_and_activate();
+}
+#endif
+
+#if QDRII || RLDRAMX
+void mem_config(void)
+{
+	uint32_t wlat, nop_cycles, max_latency;
+
+	TRACE_FUNC();
+
+	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
+
+	if (QUARTER_RATE_MODE)
+		/* TODO_JCHOI: verify confirm */
+		gbl->curr_read_lat =
+			(IORD_32DIRECT(MEM_T_RL_ADD, 0) + 1) / 4 + 8;
+	else if (HALF_RATE_MODE)
+		gbl->curr_read_lat =
+			(IORD_32DIRECT(MEM_T_RL_ADD, 0) + 1) / 2 + 8;
+	else
+		gbl->curr_read_lat =
+			IORD_32DIRECT(MEM_T_RL_ADD, 0) + 16;
+
+	if (gbl->curr_read_lat > max_latency)
+		gbl->curr_read_lat = max_latency;
+
+	IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+
+	if (RLDRAMX) {
+		/* read in write and read latency */
+		wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
+
+		if (QUARTER_RATE_MODE) {
+			/* TODO_JCHOI Verify */
+			nop_cycles = ((wlat - 1) / 4) - 1;
+		} else if (HALF_RATE_MODE) {
+#if HR_DDIO_OUT_HAS_THREE_REGS
+			nop_cycles = (wlat / 2) - 2;
+#else
+	#if RLDRAM3
+			/* RLDRAM3 uses all AFI phases to issue commands */
+			nop_cycles = (wlat / 2) - 2;
+	#else
+			nop_cycles = ((wlat + 1) / 2) - 2;
+	#endif
+#endif
+		} else	{
+			nop_cycles = wlat - 1;
+		}
+		gbl->rw_wl_nop_cycles = nop_cycles;
+	}
+}
+#endif
+
+/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
+void mem_skip_calibrate(void)
+{
+	uint32_t vfifo_offset;
+	uint32_t i, j, r;
+#if HCX_COMPAT_MODE && DDR3
+	uint32_t v;
+#if (RDIMM || LRDIMM)
+	uint32_t increment = 2;
+#else
+	uint32_t wlat = IORD_32DIRECT(PHY_MGR_MEM_T_WL, 0);
+	uint32_t rlat = IORD_32DIRECT(PHY_MGR_MEM_T_RL, 0);
+	uint32_t increment = rlat - wlat*2 + 1;
+#endif
+#endif
+
+	TRACE_FUNC();
+
+	/* Need to update every shadow register set used by the interface */
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+		r += NUM_RANKS_PER_SHADOW_REG) {
+		/*
+		 * Strictly speaking this should be called once per group to
+		 * make sure each group's delay chains are refreshed from the
+		 * SCC register file, but since we're resetting all delay chains
+		 * anyway, we can save some runtime by calling
+		 * select_shadow_regs_for_update just once to switch rank.
+		 */
+		 select_shadow_regs_for_update(r, 0, 1);
+
+		/*
+		 * Set output phase alignment settings appropriate for
+		 * skip calibration.
+		 */
+		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
+			scc_mgr_set_dqs_en_phase(i, 0);
+#else
+#if IO_DLL_CHAIN_LENGTH == 6
+			scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1)
+						 - 1);
+#else
+			scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1));
+#endif
+#endif
+#if HCX_COMPAT_MODE && DDR3
+			v = 0;
+			for (j = 0; j < increment; j++)
+				rw_mgr_incr_vfifo(i, &v);
+#if IO_DLL_CHAIN_LENGTH == 6
+			scc_mgr_set_dqdqs_output_phase(i, 6);
+#else
+			scc_mgr_set_dqdqs_output_phase(i, 7);
+#endif
+#else
+	#if HCX_COMPAT_MODE
+			/*
+			 * in this mode, write_clk doesn't always lead mem_ck
+			 * by 90 deg, and so the enhancement in case:33398 can't
+			 * be applied.
+			 */
+			scc_mgr_set_dqdqs_output_phase(i, (IO_DLL_CHAIN_LENGTH
+				- IO_DLL_CHAIN_LENGTH / 3));
+	#else
+			/*
+			 * Case:33398
+			 *
+			 * Write data arrives to the I/O two cycles before write
+			 * latency is reached (720 deg).
+			 *   -> due to bit-slip in a/c bus
+			 *   -> to allow board skew where dqs is longer than ck
+			 *      -> how often can this happen!?
+			 *      -> can claim back some ptaps for high freq
+			 *       support if we can relax this, but i digress...
+			 *
+			 * The write_clk leads mem_ck by 90 deg
+			 * The minimum ptap of the OPA is 180 deg
+			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
+			 * The write_clk is always delayed by 2 ptaps
+			 *
+			 * Hence, to make DQS aligned to CK, we need to delay
+			 * DQS by:
+			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
+			 *
+			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
+			 * gives us the number of ptaps, which simplies to:
+			 *
+			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
+			 */
+			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
+				IO_DLL_CHAIN_LENGTH - 2));
+	#endif
+#endif
+		}
+		IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
+		IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0xff);
+
+		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+			IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+			IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+			IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+		}
+#if USE_SHADOW_REGS
+		/*
+		 * in shadow-register mode, SCC_UPDATE is done on a per-group
+		 * basis unless we explicitly ask for a multicast via the
+		 * group counter.
+		 */
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+		IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	}
+
+#if ARRIAV || CYCLONEV
+	/* Compensate for simulation model behaviour */
+	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+		scc_mgr_set_dqs_bus_in_delay(i, 10);
+		scc_mgr_load_dqs(i);
+	}
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+#endif
+
+#if ARRIAV || CYCLONEV
+	/*
+	 * ArriaV has hard FIFOs that can only be initialized by incrementing
+	 * in sequencer.
+	 */
+	vfifo_offset = CALIB_VFIFO_OFFSET;
+	for (j = 0; j < vfifo_offset; j++) {
+		if (HARD_PHY)
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff);
+		else
+			IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
+	}
+#else
+/*
+ * Note, this is not currently supported; changing this might significantly
+ * increase the size of the ROM.
+ */
+#if SUPPORT_DYNAMIC_SKIP_CALIBRATE_ACTIONS
+	if ((DYNAMIC_CALIB_STEPS) & CALIB_IN_RTL_SIM) {
+		/* VFIFO is reset to the correct settings in RTL simulation */
+	} else {
+		vfifo_offset = IORD_32DIRECT(PHY_MGR_CALIB_VFIFO_OFFSET, 0);
+
+		if (QUARTER_RATE_MODE) {
+			while (vfifo_offset > 3) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0,
+					      0xff);
+				vfifo_offset -= 4;
+			}
+
+			if (vfifo_offset == 3) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR,
+					      0, 0xff);
+			} else if (vfifo_offset == 2) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0,
+					      0xff);
+			} else if (vfifo_offset == 1) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0,
+					      0xff);
+			}
+		} else {
+			while (vfifo_offset > 1) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0,
+					      0xff);
+				vfifo_offset -= 2;
+			}
+
+			if (vfifo_offset == 1) {
+				IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0,
+					      0xff);
+			}
+		}
+	}
+#endif
+#endif
+	IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+#if ARRIAV || CYCLONEV
+	/*
+	 * For ACV with hard lfifo, we get the skip-cal setting from
+	 * generation-time constant.
+	 */
+	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
+#else
+	gbl->curr_read_lat = IORD_32DIRECT(PHY_MGR_CALIB_LFIFO_OFFSET, 0);
+#endif
+	IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+}
+
+/* Memory calibration entry point */
+uint32_t mem_calibrate(void)
+{
+	uint32_t i;
+	uint32_t rank_bgn, sr;
+	uint32_t write_group, write_test_bgn;
+	uint32_t read_group, read_test_bgn;
+	uint32_t run_groups, current_run;
+	uint32_t failing_groups = 0;
+	uint32_t group_failed = 0;
+	uint32_t sr_failed = 0;
+
+	TRACE_FUNC();
+
+	/* Initialize the data settings */
+	DPRINT(1, "Preparing to init data");
+	DPRINT(1, "Init complete");
+
+	gbl->error_substage = CAL_SUBSTAGE_NIL;
+	gbl->error_stage = CAL_STAGE_NIL;
+	gbl->error_group = 0xff;
+	gbl->fom_in = 0;
+	gbl->fom_out = 0;
+
+	mem_config();
+
+	if (ARRIAV || CYCLONEV) {
+		uint32_t bypass_mode = (HARD_PHY) ? 0x1 : 0x0;
+		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+			IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+			scc_set_bypass_mode(i, bypass_mode);
+		}
+	}
+
+	if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
+		/*
+		 * Set VFIFO and LFIFO to instant-on settings in skip
+		 * calibration mode.
+		 */
+		mem_skip_calibrate();
+	} else {
+		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
+			/*
+			 * Zero all delay chain/phase settings for all
+			 * groups and all shadow register sets.
+			 */
+			scc_mgr_zero_all();
+
+#if ENABLE_SUPER_QUICK_CALIBRATION
+			for (write_group = 0, write_test_bgn = 0; write_group
+				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
+				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+				IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0,
+					      write_group);
+				scc_mgr_zero_group(write_group, write_test_bgn,
+						   0);
+			}
+#endif
+
+			run_groups = ~param->skip_groups;
+
+			for (write_group = 0, write_test_bgn = 0; write_group
+				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
+				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+				/* Initialized the group failure */
+				group_failed = 0;
+
+#if RLDRAMX || QDRII
+				/*
+				 *  It seems that with rldram and qdr vfifo
+				 *  starts at max (not sure for ddr)
+				 *  also not sure if max is really vfifo_size-1
+				 *  or vfifo_size
+				 */
+				BFM_GBL_SET(vfifo_idx, VFIFO_SIZE-1);
+#else
+				BFM_GBL_SET(vfifo_idx, 0);
+#endif
+				current_run = run_groups & ((1 <<
+					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
+				run_groups = run_groups >>
+					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
+
+				if (current_run == 0)
+					continue;
+
+				IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0,
+					      write_group);
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+				scc_mgr_zero_group(write_group, write_test_bgn,
+						   0);
+#endif
+
+				for (read_group = write_group *
+					RW_MGR_MEM_IF_READ_DQS_WIDTH /
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+					read_test_bgn = 0;
+					read_group < (write_group + 1) *
+					RW_MGR_MEM_IF_READ_DQS_WIDTH /
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+					group_failed == 0;
+					read_group++, read_test_bgn +=
+					RW_MGR_MEM_DQ_PER_READ_DQS) {
+					/* Calibrate the VFIFO */
+					if (!((STATIC_CALIB_STEPS) &
+						CALIB_SKIP_VFIFO)) {
+						if (!rw_mgr_mem_calibrate_vfifo
+							(read_group,
+							read_test_bgn)) {
+							group_failed = 1;
+
+							if (!(gbl->
+							phy_debug_mode_flags &
+						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+								return 0;
+							}
+						}
+					}
+				}
+
+				/*
+				 * level writes (or align DK with CK
+				 * for RLDRAMX).
+				 */
+				if (group_failed == 0) {
+					if ((DDRX || RLDRAMII) && !(ARRIAV ||
+					     CYCLONEV)) {
+						if (!((STATIC_CALIB_STEPS) &
+							CALIB_SKIP_WLEVEL)) {
+						if (!rw_mgr_mem_calibrate_wlevel
+						(write_group, write_test_bgn)) {
+							group_failed = 1;
+
+						if (!(gbl->phy_debug_mode_flags
+						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+								return 0;
+								}
+							}
+						}
+					}
+				}
+
+				/* Calibrate the output side */
+				if (group_failed == 0)	{
+					for (rank_bgn = 0, sr = 0; rank_bgn
+						< RW_MGR_MEM_NUMBER_OF_RANKS;
+						rank_bgn +=
+						NUM_RANKS_PER_SHADOW_REG,
+						++sr) {
+						sr_failed = 0;
+						if (!((STATIC_CALIB_STEPS) &
+						CALIB_SKIP_WRITES)) {
+							if ((STATIC_CALIB_STEPS)
+						& CALIB_SKIP_DELAY_SWEEPS) {
+						/* not needed in quick mode! */
+							} else {
+						/*
+						 * Determine if this set of
+						 * ranks should be skipped
+						 * entirely.
+						 */
+					if (!param->skip_shadow_regs[sr]) {
+						/* Select shadow register set */
+						select_shadow_regs_for_update
+						(rank_bgn, write_group, 1);
+
+						if (!rw_mgr_mem_calibrate_writes
+						(rank_bgn, write_group,
+						write_test_bgn)) {
+							sr_failed = 1;
+							if (!(gbl->
+							phy_debug_mode_flags &
+						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+								return 0;
+									}
+									}
+								}
+							}
+						}
+						if (sr_failed != 0)
+							group_failed = 1;
+					}
+				}
+
+#if READ_AFTER_WRITE_CALIBRATION
+				if (group_failed == 0) {
+					for (read_group = write_group *
+					RW_MGR_MEM_IF_READ_DQS_WIDTH /
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+					read_test_bgn = 0;
+						read_group < (write_group + 1)
+						* RW_MGR_MEM_IF_READ_DQS_WIDTH
+						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+						group_failed == 0;
+						read_group++, read_test_bgn +=
+						RW_MGR_MEM_DQ_PER_READ_DQS) {
+						if (!((STATIC_CALIB_STEPS) &
+							CALIB_SKIP_WRITES)) {
+					if (!rw_mgr_mem_calibrate_vfifo_end
+						(read_group, read_test_bgn)) {
+							group_failed = 1;
+
+						if (!(gbl->phy_debug_mode_flags
+						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+								return 0;
+								}
+							}
+						}
+					}
+				}
+#endif
+
+				if (group_failed != 0)
+					failing_groups++;
+			}
+
+			/*
+			 * USER If there are any failing groups then report
+			 * the failure.
+			 */
+			if (failing_groups != 0)
+				return 0;
+
+			/* Calibrate the LFIFO */
+			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
+				/*
+				 * If we're skipping groups as part of debug,
+				 * don't calibrate LFIFO.
+				 */
+				if (param->skip_groups == 0) {
+					if (!rw_mgr_mem_calibrate_lfifo())
+						return 0;
+				}
+			}
+		}
+	}
+
+	/*
+	 * Do not remove this line as it makes sure all of our decisions
+	 * have been applied.
+	 */
+	IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+	return 1;
+}
+
+uint32_t run_mem_calibrate(void)
+{
+	uint32_t pass;
+	uint32_t debug_info;
+
+	/* Reset pass/fail status shown on afi_cal_success/fail */
+	IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET);
+
+	TRACE_FUNC();
+
+	BFM_STAGE("calibrate");
+
+#if USE_DQS_TRACKING
+	/* stop tracking manger */
+	uint32_t ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG, 0);
+
+	IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF);
+#endif
+
+	initialize();
+	rw_mgr_mem_initialize();
+
+#if ENABLE_BRINGUP_DEBUGGING
+	do_bringup_test();
+#endif
+	pass = mem_calibrate();
+
+	mem_precharge_and_activate();
+	IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+	if (pass) {
+		BFM_STAGE("handoff");
+
+#ifdef TEST_SIZE
+		if (!check_test_mem(0)) {
+			gbl->error_stage = 0x92;
+			gbl->error_group = 0x92;
+		}
+#endif
+	}
+
+	/*
+	 * Handoff:
+	 * Don't return control of the PHY back to AFI when in debug mode.
+	 */
+	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
+		rw_mgr_mem_handoff();
+#if HARD_PHY
+		/*
+		 * In Hard PHY this is a 2-bit control:
+		 * 0: AFI Mux Select
+		 * 1: DDIO Mux Select
+		 */
+		IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x2);
+#else
+		IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0);
+#endif
+	}
+
+#if USE_DQS_TRACKING
+	IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg);
+#endif
+
+	if (pass) {
+		IPRINT("CALIBRATION PASSED");
+
+		gbl->fom_in /= 2;
+		gbl->fom_out /= 2;
+
+		if (gbl->fom_in > 0xff)
+			gbl->fom_in = 0xff;
+
+		if (gbl->fom_out > 0xff)
+			gbl->fom_out = 0xff;
+
+		/* Update the FOM in the register file */
+		debug_info = gbl->fom_in;
+		debug_info |= gbl->fom_out << 8;
+		IOWR_32DIRECT(REG_FILE_FOM, 0, debug_info);
+
+		IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
+		IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
+	} else {
+		IPRINT("CALIBRATION FAILED");
+
+		debug_info = gbl->error_stage;
+		debug_info |= gbl->error_substage << 8;
+		debug_info |= gbl->error_group << 16;
+
+		IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
+		IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
+		IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+
+		/* Update the failing group/stage in the register file */
+		debug_info = gbl->error_stage;
+		debug_info |= gbl->error_substage << 8;
+		debug_info |= gbl->error_group << 16;
+		IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
+	}
+
+	return pass;
+}
+
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+void hc_initialize_rom_data(void)
+{
+	uint32_t i;
+
+	for (i = 0; i < inst_rom_init_size; i++) {
+		uint32_t data = inst_rom_init[i];
+		IOWR_32DIRECT(RW_MGR_INST_ROM_WRITE, (i << 2), data);
+	}
+
+	for (i = 0; i < ac_rom_init_size; i++) {
+		uint32_t data = ac_rom_init[i];
+		IOWR_32DIRECT(RW_MGR_AC_ROM_WRITE, (i << 2), data);
+	}
+}
+#endif
+
+void initialize_reg_file(void)
+{
+	/* Initialize the register file with the correct data */
+	IOWR_32DIRECT(REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE);
+	IOWR_32DIRECT(REG_FILE_DEBUG_DATA_ADDR, 0, 0);
+	IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, 0);
+	IOWR_32DIRECT(REG_FILE_FOM, 0, 0);
+	IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, 0);
+	IOWR_32DIRECT(REG_FILE_DEBUG1, 0, 0);
+	IOWR_32DIRECT(REG_FILE_DEBUG2, 0, 0);
+}
+
+void initialize_hps_phy(void)
+{
+	/* These may need to be included also: */
+	/* wrap_back_en (false) */
+	/* atpg_en (false) */
+	/* pipelineglobalenable (true) */
+
+	uint32_t reg;
+	/*
+	 * Tracking also gets configured here because it's in the
+	 * same register.
+	 */
+	uint32_t trk_sample_count = 7500;
+	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
+	/*
+	 * Format is number of outer loops in the 16 MSB, sample
+	 * count in 16 LSB.
+	*/
+
+	reg = 0;
+#if DDR3 || DDR2
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
+#else
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(1);
+#endif
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
+#if LPDDR2
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(0);
+#else
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
+#endif
+	/*
+	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
+	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
+	 */
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
+		trk_sample_count);
+	IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg);
+
+	reg = 0;
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
+		trk_sample_count >>
+		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
+		trk_long_idle_sample_count);
+	IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg);
+
+	reg = 0;
+	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
+		trk_long_idle_sample_count >>
+		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
+	IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg);
+}
+
+#if USE_DQS_TRACKING
+void initialize_tracking(void)
+{
+	uint32_t concatenated_longidle = 0x0;
+	uint32_t concatenated_delays = 0x0;
+	uint32_t concatenated_rw_addr = 0x0;
+	uint32_t concatenated_refresh = 0x0;
+	uint32_t dtaps_per_ptap;
+	uint32_t tmp_delay;
+
+	/*
+	 * compute usable version of value in case we skip full
+	 * computation later
+	 */
+	dtaps_per_ptap = 0;
+	tmp_delay = 0;
+	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+		dtaps_per_ptap++;
+		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+	}
+	dtaps_per_ptap--;
+
+	concatenated_longidle = concatenated_longidle ^ 10;
+		/*longidle outer loop */
+	concatenated_longidle = concatenated_longidle << 16;
+	concatenated_longidle = concatenated_longidle ^ 100;
+		/*longidle sample count */
+	concatenated_delays = concatenated_delays ^ 243;
+		/* trfc, worst case of 933Mhz 4Gb */
+	concatenated_delays = concatenated_delays << 8;
+	concatenated_delays = concatenated_delays ^ 14;
+		/* trcd, worst case */
+	concatenated_delays = concatenated_delays << 8;
+	concatenated_delays = concatenated_delays ^ 10;
+		/* vfifo wait */
+	concatenated_delays = concatenated_delays << 8;
+	concatenated_delays = concatenated_delays ^ 4;
+		/* mux delay */
+
+#if DDR3 || LPDDR2
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
+#endif
+
+#if DDR3 || LPDDR2
+	concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
+#else
+	concatenated_refresh = concatenated_refresh ^ 0;
+#endif
+	concatenated_refresh = concatenated_refresh << 24;
+	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
+
+	/* Initialize the register file with the correct data */
+	IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+	IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_COUNT, 0, 7500);
+	IOWR_32DIRECT(REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle);
+	IOWR_32DIRECT(REG_FILE_DELAYS, 0, concatenated_delays);
+	IOWR_32DIRECT(REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
+	IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0,
+		      RW_MGR_MEM_IF_READ_DQS_WIDTH);
+	IOWR_32DIRECT(REG_FILE_TRK_RFSH, 0, concatenated_refresh);
+}
+
+#else
+
+void initialize_tracking(void)
+{
+	uint32_t concatenated_longidle = 0x0;
+	uint32_t concatenated_delays = 0x0;
+	uint32_t concatenated_rw_addr = 0x0;
+	uint32_t concatenated_refresh = 0x0;
+	uint32_t dtaps_per_ptap;
+	uint32_t tmp_delay;
+
+	/* compute usable version of value in case we skip full
+	computation later */
+	dtaps_per_ptap = 0;
+	tmp_delay = 0;
+	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+		dtaps_per_ptap++;
+		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+	}
+	dtaps_per_ptap--;
+
+	concatenated_longidle = concatenated_longidle ^ 10;
+		/*longidle outer loop */
+	concatenated_longidle = concatenated_longidle << 16;
+	concatenated_longidle = concatenated_longidle ^ 100;
+		/*longidle sample count */
+#if FULL_RATE
+	concatenated_delays = concatenated_delays ^ 60; /* trfc */
+#endif
+#if HALF_RATE
+	concatenated_delays = concatenated_delays ^ 30; /* trfc */
+#endif
+#if QUARTER_RATE
+	concatenated_delays = concatenated_delays ^ 15; /* trfc */
+#endif
+	concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+	concatenated_delays = concatenated_delays ^ 4; /* trcd */
+#endif
+#if HALF_RATE
+	concatenated_delays = concatenated_delays ^ 2; /* trcd */
+#endif
+#if QUARTER_RATE
+	concatenated_delays = concatenated_delays ^ 0; /* trcd */
+#endif
+	concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+	concatenated_delays = concatenated_delays ^ 5; /* vfifo wait */
+#endif
+#if HALF_RATE
+	concatenated_delays = concatenated_delays ^ 3; /* vfifo wait */
+#endif
+#if QUARTER_RATE
+	concatenated_delays = concatenated_delays ^ 1; /* vfifo wait */
+#endif
+	concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+	concatenated_delays = concatenated_delays ^ 4; /* mux delay */
+#endif
+#if HALF_RATE
+	concatenated_delays = concatenated_delays ^ 2; /* mux delay */
+#endif
+#if QUARTER_RATE
+	concatenated_delays = concatenated_delays ^ 0; /* mux delay */
+#endif
+
+#if DDR3 || LPDDR2
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
+	concatenated_rw_addr = concatenated_rw_addr << 8;
+	concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
+#endif
+
+#if DDR3 || LPDDR2
+	concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
+#else
+	concatenated_refresh = concatenated_refresh ^ 0;
+#endif
+	concatenated_refresh = concatenated_refresh << 24;
+	concatenated_refresh = concatenated_refresh ^ 546; /* trefi */
+
+	IOWR_32DIRECT(TRK_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+	IOWR_32DIRECT(TRK_SAMPLE_COUNT, 0, 7500);
+	IOWR_32DIRECT(TRK_LONGIDLE, 0, concatenated_longidle);
+	IOWR_32DIRECT(TRK_DELAYS, 0, concatenated_delays);
+	IOWR_32DIRECT(TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
+	IOWR_32DIRECT(TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
+	IOWR_32DIRECT(TRK_RFSH, 0, concatenated_refresh);
+}
+#endif	/* USE_DQS_TRACKING */
+
+void user_init_cal_req(void)
+{
+	uint32_t scc_afi_reg;
+
+	scc_afi_reg = IORD_32DIRECT(SCC_MGR_AFI_CAL_INIT, 0);
+
+	if (scc_afi_reg == 1) {	/* 1 is initialization request */
+		initialize();
+		rw_mgr_mem_initialize();
+		rw_mgr_mem_handoff();
+		IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0);
+		IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
+	} else if (scc_afi_reg == 2) {
+		run_mem_calibrate();
+	}
+}
+
+int sdram_calibration(void)
+{
+	struct param_type my_param;
+	struct gbl_type my_gbl;
+	uint32_t pass;
+	uint32_t i;
+
+	param = &my_param;
+	gbl = &my_gbl;
+
+	/* Initialize the debug mode flags */
+	gbl->phy_debug_mode_flags = 0;
+	/* Set the calibration enabled by default */
+	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
+	/* Only enable margining by default if requested */
+#if ENABLE_MARGIN_REPORT_GEN
+	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_MARGIN_RPT;
+#endif
+	/* Only sweep all groups (regardless of fail state) by default
+	if requested */
+#if ENABLE_SWEEP_ALL_GROUPS
+	gbl->phy_debug_mode_flags |= PHY_DEBUG_SWEEP_ALL_GROUPS;
+#endif
+	/*Set enabled read test by default */
+#if DISABLE_GUARANTEED_READ
+	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
+#endif
+	/* Initialize the register file */
+	initialize_reg_file();
+
+	/* Initialize any PHY CSR */
+	initialize_hps_phy();
+
+	scc_mgr_initialize();
+
+#if USE_DQS_TRACKING
+	initialize_tracking();
+#endif
+
+	/* USER Enable all ranks, groups */
+	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
+		param->skip_ranks[i] = 0;
+	for (i = 0; i < NUM_SHADOW_REGS; ++i)
+		param->skip_shadow_regs[i] = 0;
+	param->skip_groups = 0;
+
+	IPRINT("Preparing to start memory calibration");
+
+	TRACE_FUNC();
+	DPRINT(1, "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu",
+	       RDIMM ? "r" : (LRDIMM ? "l" : ""),
+	       DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ?
+	       "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
+	       FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ?
+	       "QR" : "??RATE??")),
+	       (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
+	       (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
+	       (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
+	       (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
+	       (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
+	       (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+	DPRINT(1, "dqs=%lu,%lu dq=%lu dm=%lu ptap_delay=%lu dtap_delay=%lu",
+	       (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
+	       (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+	       (long unsigned int)RW_MGR_MEM_DATA_WIDTH,
+	       (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
+	       (long unsigned int)IO_DELAY_PER_OPA_TAP,
+	       (long unsigned int)IO_DELAY_PER_DCHAIN_TAP);
+	DPRINT(1, "dtap_dqsen_delay=%lu, dll=%lu",
+	       (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
+	       (long unsigned int)IO_DLL_CHAIN_LENGTH);
+	DPRINT(1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu",
+	       (long unsigned int)IO_DQS_EN_PHASE_MAX,
+	       (long unsigned int)IO_DQDQS_OUT_PHASE_MAX,
+	       (long unsigned int)IO_DQS_EN_DELAY_MAX,
+	       (long unsigned int)IO_DQS_IN_DELAY_MAX);
+	DPRINT(1, "io_in_d=%lu io_out1_d=%lu io_out2_d=%lu",
+	       (long unsigned int)IO_IO_IN_DELAY_MAX,
+	       (long unsigned int)IO_IO_OUT1_DELAY_MAX,
+	       (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+	DPRINT(1, "dqs_in_reserve=%lu dqs_out_reserve=%lu",
+	       (long unsigned int)IO_DQS_IN_RESERVE,
+	       (long unsigned int)IO_DQS_OUT_RESERVE);
+
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+	hc_initialize_rom_data();
+#endif
+
+#if !HARD_PHY
+	/* Hard PHY does not support soft reset */
+	IOWR_32DIRECT(RW_MGR_SOFT_RESET, 0, 0);
+#endif
+
+	/* update info for sims */
+	reg_file_set_stage(CAL_STAGE_NIL);
+	reg_file_set_group(0);
+
+	/*
+	 * Load global needed for those actions that require
+	 * some dynamic calibration support.
+	 */
+#if HARD_PHY
+	dyn_calib_steps = STATIC_CALIB_STEPS;
+#else
+	dyn_calib_steps = IORD_32DIRECT(PHY_MGR_CALIB_SKIP_STEPS, 0);
+#endif
+	/*
+	 * Load global to allow dynamic selection of delay loop settings
+	 * based on calibration mode.
+	 */
+	if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS))
+		skip_delay_mask = 0xff;
+	else
+		skip_delay_mask = 0x0;
+
+#ifdef TEST_SIZE
+	if (!check_test_mem(1)) {
+		IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090);
+		IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+	}
+	write_test_mem();
+	if (!check_test_mem(0)) {
+		IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191);
+		IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+	}
+#endif
+	pass = run_mem_calibrate();
+
+	IPRINT("Calibration complete");
+	/* Send the end of transmission character */
+	IPRINT("%c", 0x4);
+	return pass;
+}
+
+
+#if ENABLE_BRINGUP_DEBUGGING
+/* Bring-Up test Support */
+void do_bringup_test_guaranteed_write(void)
+{
+	uint32_t r;
+
+	TRACE_FUNC();
+
+	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+		if (param->skip_ranks[r]) {
+			/* request to skip the rank */
+			continue;
+		}
+
+		/* set rank */
+		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+		/* Load up a constant bursts */
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+			      __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT0);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+			      __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT1);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+			      __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT2);
+
+		IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x20);
+		IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+			      __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT3);
+
+		IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+			      __RW_MGR_GUARANTEED_WRITE_0_1_A_5);
+	}
+
+	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+
+void do_bringup_test_clear_di_buf(uint32_t group)
+{
+	IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+	IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 128);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_CLEAR_DI_BUF);
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, group << 2,
+		      __RW_MGR_DO_CLEAR_DI_BUF);
+}
+
+void do_bringup_test_guaranteed_read(uint32_t group)
+{
+	IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+	IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 16);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_TEST_READ);
+	IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 16);
+	IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+		      __RW_MGR_DO_TEST_READ_POST_WAIT);
+
+	IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, group << 2,
+		      __RW_MGR_DO_TEST_READ);
+}
+
+void do_bringup_test(void)
+{
+	int i;
+	uint32_t group;
+	uint32_t v = 0;
+
+	group = 0;
+
+	mem_config();
+
+	/* 15 is the maximum latency (should make dependent on actual design */
+	IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, 15); /* lfifo setting */
+
+#if ARRIAV || CYCLONEV
+	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+		IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+		scc_set_bypass_mode(i, 0);
+	}
+#endif
+
+	/* initialize global buffer to something known */
+	for (i = 0; i < sizeof(di_buf_gbl); i++)
+		di_buf_gbl[i] = 0xee;
+
+	/* pre-increment vfifo to ensure not at max value */
+	rw_mgr_incr_vfifo(group, &v);
+	rw_mgr_incr_vfifo(group, &v);
+
+	do_bringup_test_clear_di_buf(group);
+
+	while (1) {
+		do_bringup_test_guaranteed_write();
+		do_bringup_test_guaranteed_read(group);
+		load_di_buf_gbl();
+		rw_mgr_incr_vfifo(group, &v);
+	}
+}
+
+
+#endif /* ENABLE_BRINGUP_DEBUGGING */
+
+#if ENABLE_ASSERT
+void err_report_internal_error(
+	const char *description,
+	const char *module,
+	const char *file,
+	int line
+)
+{
+	void *array[10];
+	size_t size;
+	char **strings;
+	size_t i;
+
+	fprintf(stderr, ERR_IE_TEXT, module, file, line, description, "\n");
+
+	size = backtrace(array, 10);
+	strings = backtrace_symbols(array, size);
+
+	fprintf(stderr, "Obtained %zd stack frames.\n", size);
+
+	for (i = 0; i < size; i++)
+		fprintf(stderr, "%s\n", strings[i]);
+
+	free(strings);
+}
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer.h b/board/altera/socfpga/sdram/sequencer.h
new file mode 100644
index 0000000..ce4c7bf
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer.h
@@ -0,0 +1,504 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#ifndef _SEQUENCER_H_
+#define _SEQUENCER_H_
+
+extern int32_t inst_rom_init_size;
+extern uint32_t inst_rom_init[];
+extern uint32_t ac_rom_init_size;
+extern uint32_t ac_rom_init[];
+
+#if ENABLE_ASSERT
+#define ERR_IE_TEXT "Internal Error: Sub-system: %s, File: %s, Line: %d\n%s%s"
+
+extern void err_report_internal_error(const char *description,
+	const char *module, const char *file, int line);
+
+#define ALTERA_INTERNAL_ERROR(string) \
+	{err_report_internal_error(string, "SEQ", __FILE__, __LINE__); \
+	exit(-1); }
+
+#define ALTERA_ASSERT(condition) \
+	if (!(condition)) {\
+		ALTERA_INTERNAL_ERROR(#condition); }
+#define ALTERA_INFO_ASSERT(condition, text) \
+	if (!(condition)) {\
+		ALTERA_INTERNAL_ERROR(text); }
+#else
+
+#define ALTERA_ASSERT(condition)
+#define ALTERA_INFO_ASSERT(condition, text)
+
+#endif
+
+#if RLDRAMII
+#define RW_MGR_NUM_DM_PER_WRITE_GROUP (1)
+#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (1)
+#else
+#define RW_MGR_NUM_DM_PER_WRITE_GROUP (RW_MGR_MEM_DATA_MASK_WIDTH \
+	/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (RW_MGR_TRUE_MEM_DATA_MASK_WIDTH \
+	/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#endif
+
+#define RW_MGR_NUM_DQS_PER_WRITE_GROUP (RW_MGR_MEM_IF_READ_DQS_WIDTH \
+	/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#define NUM_RANKS_PER_SHADOW_REG (RW_MGR_MEM_NUMBER_OF_RANKS / NUM_SHADOW_REGS)
+
+#define RW_MGR_RUN_SINGLE_GROUP	(BASE_RW_MGR)
+#define RW_MGR_RUN_ALL_GROUPS	(BASE_RW_MGR + 0x0400)
+
+#define RW_MGR_DI_BASE		(BASE_RW_MGR + 0x0020)
+
+#if DDR3
+#define DDR3_MR1_ODT_MASK	0xFFFFFD99
+#define DDR3_MR2_ODT_MASK	0xFFFFF9FF
+#define DDR3_AC_MIRR_MASK	0x020A8
+
+#if LRDIMM
+/* USER RTT_NOM: bits {4,3,2} of the SPD = bits {9,6,2} of the MR */
+#define LRDIMM_SPD_MR_RTT_NOM(spd_byte)                              \
+	((((spd_byte) & (1 << 4)) << (9-4))                       \
+	| (((spd_byte) & (1 << 3)) << (6-3))                         \
+	| (((spd_byte) & (1 << 2)) << (2-2)))
+
+/* USER RTT_DRV: bits {1,0} of the SPD = bits {5,1} of the MR */
+#define LRDIMM_SPD_MR_RTT_DRV(spd_byte)                                   \
+	((((spd_byte) & (1 << 1)) << (5-1))                         \
+	| (((spd_byte) & (1 << 0)) << (1-0)))
+
+/* USER RTT_WR: bits {7,6} of the SPD = bits {10,9} of the MR */
+#define LRDIMM_SPD_MR_RTT_WR(spd_byte)                                    \
+	(((spd_byte) & (3 << 6)) << (9-6))
+
+#endif /* LRDIMM */
+#endif /* DDR3 */
+
+#define RW_MGR_MEM_NUMBER_OF_RANKS	1
+#define NUM_SHADOW_REGS			1
+
+#define RW_MGR_LOAD_CNTR_0		(BASE_RW_MGR + 0x0800)
+#define RW_MGR_LOAD_CNTR_1		(BASE_RW_MGR + 0x0804)
+#define RW_MGR_LOAD_CNTR_2		(BASE_RW_MGR + 0x0808)
+#define RW_MGR_LOAD_CNTR_3		(BASE_RW_MGR + 0x080C)
+
+#define RW_MGR_LOAD_JUMP_ADD_0		(BASE_RW_MGR + 0x0C00)
+#define RW_MGR_LOAD_JUMP_ADD_1		(BASE_RW_MGR + 0x0C04)
+#define RW_MGR_LOAD_JUMP_ADD_2		(BASE_RW_MGR + 0x0C08)
+#define RW_MGR_LOAD_JUMP_ADD_3		(BASE_RW_MGR + 0x0C0C)
+
+#define RW_MGR_RESET_READ_DATAPATH	(BASE_RW_MGR + 0x1000)
+#define RW_MGR_SOFT_RESET		(BASE_RW_MGR + 0x2000)
+
+#define RW_MGR_SET_CS_AND_ODT_MASK	(BASE_RW_MGR + 0x1400)
+#define RW_MGR_SET_ACTIVE_RANK		(BASE_RW_MGR + 0x2400)
+
+#define RW_MGR_LOOPBACK_MODE		(BASE_RW_MGR + 0x0200)
+
+#define RW_MGR_RANK_NONE		0xFF
+#define RW_MGR_RANK_ALL			0x00
+
+#define RW_MGR_ODT_MODE_OFF		0
+#define RW_MGR_ODT_MODE_READ_WRITE	1
+
+#define NUM_CALIB_REPEAT		1
+
+#define NUM_READ_TESTS			7
+#define NUM_READ_PB_TESTS		7
+#define NUM_WRITE_TESTS			15
+#define NUM_WRITE_PB_TESTS		31
+
+#define PASS_ALL_BITS			1
+#define PASS_ONE_BIT			0
+
+/* calibration stages */
+
+#define CAL_STAGE_NIL			0
+#define CAL_STAGE_VFIFO			1
+#define CAL_STAGE_WLEVEL		2
+#define CAL_STAGE_LFIFO			3
+#define CAL_STAGE_WRITES		4
+#define CAL_STAGE_FULLTEST		5
+#define CAL_STAGE_REFRESH		6
+#define CAL_STAGE_CAL_SKIPPED		7
+#define CAL_STAGE_CAL_ABORTED		8
+#define CAL_STAGE_VFIFO_AFTER_WRITES	9
+
+/* calibration substages */
+
+#define CAL_SUBSTAGE_NIL		0
+#define CAL_SUBSTAGE_GUARANTEED_READ	1
+#define CAL_SUBSTAGE_DQS_EN_PHASE	2
+#define CAL_SUBSTAGE_VFIFO_CENTER	3
+#define CAL_SUBSTAGE_WORKING_DELAY	1
+#define CAL_SUBSTAGE_LAST_WORKING_DELAY	2
+#define CAL_SUBSTAGE_WLEVEL_COPY	3
+#define CAL_SUBSTAGE_WRITES_CENTER	1
+#define CAL_SUBSTAGE_READ_LATENCY	1
+#define CAL_SUBSTAGE_REFRESH		1
+
+#define MAX_RANKS			(RW_MGR_MEM_NUMBER_OF_RANKS)
+#define MAX_DQS				(RW_MGR_MEM_IF_WRITE_DQS_WIDTH > \
+					RW_MGR_MEM_IF_READ_DQS_WIDTH ? \
+					RW_MGR_MEM_IF_WRITE_DQS_WIDTH : \
+					RW_MGR_MEM_IF_READ_DQS_WIDTH)
+#define MAX_DQ				(RW_MGR_MEM_DATA_WIDTH)
+#define MAX_DM				(RW_MGR_MEM_DATA_MASK_WIDTH)
+
+/* length of VFIFO, from SW_MACROS */
+#define VFIFO_SIZE			(READ_VALID_FIFO_SIZE)
+
+/* Memory for data transfer between TCL scripts and NIOS.
+ *
+ * - First word is a command request.
+ * - The remaining words are part of the transfer.
+ */
+
+/* Define the base address of each manager. */
+
+/* MarkW: how should these base addresses be done for A-V? */
+#define BASE_PTR_MGR			SEQUENCER_PTR_MGR_INST_BASE
+#define BASE_PHY_MGR			(0x00088000)
+#define BASE_RW_MGR			(0x00090000)
+#define BASE_DATA_MGR			(0x00098000)
+#define BASE_SCC_MGR			SEQUENCER_SCC_MGR_INST_BASE
+#define BASE_REG_FILE			SEQUENCER_REG_FILE_INST_BASE
+#define BASE_TIMER			SEQUENCER_TIMER_INST_BASE
+#define BASE_MMR                        (0x000C0000)
+#define BASE_TRK_MGR			(0x000D0000)
+
+/* Register file addresses. */
+#define REG_FILE_SIGNATURE		(BASE_REG_FILE + 0x0000)
+#define REG_FILE_DEBUG_DATA_ADDR	(BASE_REG_FILE + 0x0004)
+#define REG_FILE_CUR_STAGE              (BASE_REG_FILE + 0x0008)
+#define REG_FILE_FOM                    (BASE_REG_FILE + 0x000C)
+#define REG_FILE_FAILING_STAGE          (BASE_REG_FILE + 0x0010)
+#define REG_FILE_DEBUG1                 (BASE_REG_FILE + 0x0014)
+#define REG_FILE_DEBUG2                 (BASE_REG_FILE + 0x0018)
+
+#define REG_FILE_DTAPS_PER_PTAP         (BASE_REG_FILE + 0x001C)
+#define REG_FILE_TRK_SAMPLE_COUNT       (BASE_REG_FILE + 0x0020)
+#define REG_FILE_TRK_LONGIDLE           (BASE_REG_FILE + 0x0024)
+#define REG_FILE_DELAYS                 (BASE_REG_FILE + 0x0028)
+#define REG_FILE_TRK_RW_MGR_ADDR        (BASE_REG_FILE + 0x002C)
+#define REG_FILE_TRK_READ_DQS_WIDTH     (BASE_REG_FILE + 0x0030)
+#define REG_FILE_TRK_RFSH               (BASE_REG_FILE + 0x0034)
+#define CTRL_CONFIG_REG			(BASE_MMR      + 0x0000)
+
+/* PHY manager configuration registers. */
+
+#define PHY_MGR_PHY_RLAT		(BASE_PHY_MGR + 0x4000)
+#define PHY_MGR_RESET_MEM_STBL		(BASE_PHY_MGR + 0x4004)
+#define PHY_MGR_MUX_SEL			(BASE_PHY_MGR + 0x4008)
+#define PHY_MGR_CAL_STATUS		(BASE_PHY_MGR + 0x400c)
+#define PHY_MGR_CAL_DEBUG_INFO		(BASE_PHY_MGR + 0x4010)
+#define PHY_MGR_VFIFO_RD_EN_OVRD	(BASE_PHY_MGR + 0x4014)
+#if CALIBRATE_BIT_SLIPS
+#define PHY_MGR_FR_SHIFT		(BASE_PHY_MGR + 0x4020)
+#if MULTIPLE_AFI_WLAT
+#define PHY_MGR_AFI_WLAT		(BASE_PHY_MGR + 0x4020 + 4 * \
+					 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#else
+#define PHY_MGR_AFI_WLAT		(BASE_PHY_MGR + 0x4018)
+#endif
+#else
+#define PHY_MGR_AFI_WLAT		(BASE_PHY_MGR + 0x4018)
+#endif
+#define PHY_MGR_AFI_RLAT		(BASE_PHY_MGR + 0x401c)
+
+#define PHY_MGR_CAL_RESET		(0)
+#define PHY_MGR_CAL_SUCCESS		(1)
+#define PHY_MGR_CAL_FAIL		(2)
+
+/* PHY manager command addresses. */
+
+#define PHY_MGR_CMD_INC_VFIFO_FR	(BASE_PHY_MGR + 0x0000)
+#define PHY_MGR_CMD_INC_VFIFO_HR	(BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_CMD_INC_VFIFO_HARD_PHY	(BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_CMD_FIFO_RESET		(BASE_PHY_MGR + 0x0008)
+#define PHY_MGR_CMD_INC_VFIFO_FR_HR	(BASE_PHY_MGR + 0x000C)
+#define PHY_MGR_CMD_INC_VFIFO_QR	(BASE_PHY_MGR + 0x0010)
+
+/* PHY manager parameters. */
+
+#define PHY_MGR_MAX_RLAT_WIDTH		(BASE_PHY_MGR + 0x0000)
+#define PHY_MGR_MAX_AFI_WLAT_WIDTH	(BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_MAX_AFI_RLAT_WIDTH	(BASE_PHY_MGR + 0x0008)
+#define PHY_MGR_CALIB_SKIP_STEPS	(BASE_PHY_MGR + 0x000c)
+#define PHY_MGR_CALIB_VFIFO_OFFSET	(BASE_PHY_MGR + 0x0010)
+#define PHY_MGR_CALIB_LFIFO_OFFSET	(BASE_PHY_MGR + 0x0014)
+#define PHY_MGR_RDIMM			(BASE_PHY_MGR + 0x0018)
+#define PHY_MGR_MEM_T_WL		(BASE_PHY_MGR + 0x001c)
+#define PHY_MGR_MEM_T_RL		(BASE_PHY_MGR + 0x0020)
+
+/* Data Manager */
+#define DATA_MGR_DRAM_CFG		(BASE_DATA_MGR + 0x0000)
+#define DATA_MGR_MEM_T_WL		(BASE_DATA_MGR + 0x0004)
+#define DATA_MGR_MEM_T_ADD		(BASE_DATA_MGR + 0x0008)
+#define DATA_MGR_MEM_T_RL		(BASE_DATA_MGR + 0x000C)
+#define DATA_MGR_MEM_T_RFC		(BASE_DATA_MGR + 0x0010)
+#define DATA_MGR_MEM_T_REFI		(BASE_DATA_MGR + 0x0014)
+#define DATA_MGR_MEM_T_WR		(BASE_DATA_MGR + 0x0018)
+#define DATA_MGR_MEM_T_MRD		(BASE_DATA_MGR + 0x001C)
+#define DATA_MGR_COL_WIDTH		(BASE_DATA_MGR + 0x0020)
+#define DATA_MGR_ROW_WIDTH		(BASE_DATA_MGR + 0x0024)
+#define DATA_MGR_BANK_WIDTH		(BASE_DATA_MGR + 0x0028)
+#define DATA_MGR_CS_WIDTH		(BASE_DATA_MGR + 0x002C)
+#define DATA_MGR_ITF_WIDTH		(BASE_DATA_MGR + 0x0030)
+#define DATA_MGR_DVC_WIDTH		(BASE_DATA_MGR + 0x0034)
+
+#define MEM_T_WL_ADD			DATA_MGR_MEM_T_WL
+#define MEM_T_RL_ADD			DATA_MGR_MEM_T_RL
+
+#define CALIB_SKIP_DELAY_LOOPS		(1 << 0)
+#define CALIB_SKIP_ALL_BITS_CHK		(1 << 1)
+#define CALIB_SKIP_DELAY_SWEEPS		(1 << 2)
+#define CALIB_SKIP_VFIFO		(1 << 3)
+#define CALIB_SKIP_LFIFO		(1 << 4)
+#define CALIB_SKIP_WLEVEL		(1 << 5)
+#define CALIB_SKIP_WRITES		(1 << 6)
+#define CALIB_SKIP_FULL_TEST		(1 << 7)
+#define CALIB_SKIP_ALL			(CALIB_SKIP_VFIFO | \
+				CALIB_SKIP_LFIFO | CALIB_SKIP_WLEVEL | \
+				CALIB_SKIP_WRITES | CALIB_SKIP_FULL_TEST)
+#define CALIB_IN_RTL_SIM			(1 << 8)
+
+/* Scan chain manager command addresses */
+
+#define WRITE_SCC_DQS_IN_DELAY(group, delay)	\
+	IOWR_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2, delay)
+#define WRITE_SCC_DQS_EN_DELAY(group, delay)	\
+	IOWR_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2, (delay) \
+	+ IO_DQS_EN_DELAY_OFFSET)
+#define WRITE_SCC_DQS_EN_PHASE(group, phase)	\
+	IOWR_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2, phase)
+#define WRITE_SCC_DQDQS_OUT_PHASE(group, phase)	\
+	IOWR_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2, phase)
+#define WRITE_SCC_OCT_OUT1_DELAY(group, delay)	\
+	IOWR_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, (group) << 2, delay)
+#define WRITE_SCC_OCT_OUT2_DELAY(group, delay)
+#define WRITE_SCC_DQS_BYPASS(group, bypass)
+
+#define WRITE_SCC_DQ_OUT1_DELAY(pin, delay)		\
+	IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2, delay)
+
+#define WRITE_SCC_DQ_OUT2_DELAY(pin, delay)
+
+#define WRITE_SCC_DQ_IN_DELAY(pin, delay)		\
+	IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2, delay)
+
+#define WRITE_SCC_DQ_BYPASS(pin, bypass)
+
+#define WRITE_SCC_RFIFO_MODE(pin, mode)
+
+#define WRITE_SCC_HHP_EXTRAS(value)	\
+	IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_EXTRAS_OFFSET, value)
+#define WRITE_SCC_HHP_DQSE_MAP(value)	\
+	IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_DQSE_MAP_OFFSET, value)
+
+#define WRITE_SCC_DQS_IO_OUT1_DELAY(delay)	\
+	IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+
+#define WRITE_SCC_DQS_IO_OUT2_DELAY(delay)
+
+#define WRITE_SCC_DQS_IO_IN_DELAY(delay)	\
+	IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+
+#define WRITE_SCC_DM_IO_OUT1_DELAY(pin, delay)	\
+	IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+
+#define WRITE_SCC_DM_IO_OUT2_DELAY(pin, delay)
+
+#define WRITE_SCC_DM_IO_IN_DELAY(pin, delay)	\
+	IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+
+#define WRITE_SCC_DM_BYPASS(pin, bypass)
+
+#define READ_SCC_DQS_IN_DELAY(group)	\
+	IORD_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2)
+#define READ_SCC_DQS_EN_DELAY(group)	\
+	(IORD_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2) \
+	- IO_DQS_EN_DELAY_OFFSET)
+#define READ_SCC_DQS_EN_PHASE(group)	\
+	IORD_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2)
+#define READ_SCC_DQDQS_OUT_PHASE(group)	\
+	IORD_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2)
+#define READ_SCC_OCT_OUT1_DELAY(group)	\
+	IORD_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, \
+	(group * RW_MGR_MEM_IF_READ_DQS_WIDTH / \
+	RW_MGR_MEM_IF_WRITE_DQS_WIDTH) << 2)
+#define READ_SCC_OCT_OUT2_DELAY(group)	0
+#define READ_SCC_DQS_BYPASS(group)		0
+#define READ_SCC_DQS_BYPASS(group)		0
+
+#define READ_SCC_DQ_OUT1_DELAY(pin)		\
+	IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2)
+#define READ_SCC_DQ_OUT2_DELAY(pin)		0
+#define READ_SCC_DQ_IN_DELAY(pin)		\
+	IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2)
+#define READ_SCC_DQ_BYPASS(pin)			0
+#define READ_SCC_RFIFO_MODE(pin)		0
+
+#define READ_SCC_DQS_IO_OUT1_DELAY()	\
+	IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+#define READ_SCC_DQS_IO_OUT2_DELAY()	0
+#define READ_SCC_DQS_IO_IN_DELAY()	\
+	IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+
+#define READ_SCC_DM_IO_OUT1_DELAY(pin)	\
+	IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_IO_OUT2_DELAY(pin)	0
+#define READ_SCC_DM_IO_IN_DELAY(pin)	\
+	IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+	(RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_BYPASS(pin)		0
+
+#define SCC_MGR_GROUP_COUNTER			(BASE_SCC_MGR + 0x0000)
+#define SCC_MGR_DQS_IN_DELAY			(BASE_SCC_MGR + 0x0100)
+#define SCC_MGR_DQS_EN_PHASE			(BASE_SCC_MGR + 0x0200)
+#define SCC_MGR_DQS_EN_DELAY			(BASE_SCC_MGR + 0x0300)
+#define SCC_MGR_DQDQS_OUT_PHASE			(BASE_SCC_MGR + 0x0400)
+#define SCC_MGR_OCT_OUT1_DELAY			(BASE_SCC_MGR + 0x0500)
+#define SCC_MGR_IO_OUT1_DELAY			(BASE_SCC_MGR + 0x0700)
+#define SCC_MGR_IO_IN_DELAY			(BASE_SCC_MGR + 0x0900)
+
+/* HHP-HPS-specific versions of some commands */
+#define SCC_MGR_DQS_EN_DELAY_GATE		(BASE_SCC_MGR + 0x0600)
+#define SCC_MGR_IO_OE_DELAY			(BASE_SCC_MGR + 0x0800)
+#define SCC_MGR_HHP_GLOBALS			(BASE_SCC_MGR + 0x0A00)
+#define SCC_MGR_HHP_RFILE			(BASE_SCC_MGR + 0x0B00)
+
+/* HHP-HPS-specific values */
+#define SCC_MGR_HHP_EXTRAS_OFFSET			0
+#define SCC_MGR_HHP_DQSE_MAP_OFFSET			1
+
+#define SCC_MGR_DQS_ENA				(BASE_SCC_MGR + 0x0E00)
+#define SCC_MGR_DQS_IO_ENA			(BASE_SCC_MGR + 0x0E04)
+#define SCC_MGR_DQ_ENA				(BASE_SCC_MGR + 0x0E08)
+#define SCC_MGR_DM_ENA				(BASE_SCC_MGR + 0x0E0C)
+#define SCC_MGR_UPD				(BASE_SCC_MGR + 0x0E20)
+#define SCC_MGR_ACTIVE_RANK			(BASE_SCC_MGR + 0x0E40)
+#define SCC_MGR_AFI_CAL_INIT			(BASE_SCC_MGR + 0x0D00)
+
+/* PHY Debug mode flag constants */
+#define PHY_DEBUG_IN_DEBUG_MODE 0x00000001
+#define PHY_DEBUG_ENABLE_CAL_RPT 0x00000002
+#define PHY_DEBUG_ENABLE_MARGIN_RPT 0x00000004
+#define PHY_DEBUG_SWEEP_ALL_GROUPS 0x00000008
+#define PHY_DEBUG_DISABLE_GUARANTEED_READ 0x00000010
+#define PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION 0x00000020
+
+/* Init and Reset delay constants - Only use if defined by sequencer_defines.h,
+ * otherwise, revert to defaults
+ * Default for Tinit = (0+1) * ((202+1) * (2 * 131 + 1) + 1) = 53532 =
+ * 200.75us @ 266MHz
+ */
+#ifdef TINIT_CNTR0_VAL
+#define SEQ_TINIT_CNTR0_VAL TINIT_CNTR0_VAL
+#else
+#define SEQ_TINIT_CNTR0_VAL 0
+#endif
+
+#ifdef TINIT_CNTR1_VAL
+#define SEQ_TINIT_CNTR1_VAL TINIT_CNTR1_VAL
+#else
+#define SEQ_TINIT_CNTR1_VAL 202
+#endif
+
+#ifdef TINIT_CNTR2_VAL
+#define SEQ_TINIT_CNTR2_VAL TINIT_CNTR2_VAL
+#else
+#define SEQ_TINIT_CNTR2_VAL 131
+#endif
+
+
+/* Default for Treset = (2+1) * ((252+1) * (2 * 131 + 1) + 1) = 133563 =
+ * 500.86us @ 266MHz
+ */
+#ifdef TRESET_CNTR0_VAL
+#define SEQ_TRESET_CNTR0_VAL TRESET_CNTR0_VAL
+#else
+#define SEQ_TRESET_CNTR0_VAL 2
+#endif
+
+#ifdef TRESET_CNTR1_VAL
+#define SEQ_TRESET_CNTR1_VAL TRESET_CNTR1_VAL
+#else
+#define SEQ_TRESET_CNTR1_VAL 252
+#endif
+
+#ifdef TRESET_CNTR2_VAL
+#define SEQ_TRESET_CNTR2_VAL TRESET_CNTR2_VAL
+#else
+#define SEQ_TRESET_CNTR2_VAL 131
+#endif
+
+#define RW_MGR_INST_ROM_WRITE BASE_RW_MGR + 0x1800
+#define RW_MGR_AC_ROM_WRITE BASE_RW_MGR + 0x1C00
+
+/* parameter variable holder */
+struct param_type {
+	uint32_t dm_correct_mask;
+	uint32_t read_correct_mask;
+	uint32_t read_correct_mask_vg;
+	uint32_t write_correct_mask;
+	uint32_t write_correct_mask_vg;
+
+	/* set a particular entry to 1 if we need to skip a particular rank */
+
+	uint32_t skip_ranks[MAX_RANKS];
+
+	/* set a particular entry to 1 if we need to skip a particular group */
+
+	uint32_t skip_groups;
+
+	/* set a particular entry to 1 if the shadow register
+	(which represents a set of ranks) needs to be skipped */
+
+	uint32_t skip_shadow_regs[NUM_SHADOW_REGS];
+
+};
+
+
+/* global variable holder */
+struct gbl_type {
+	uint32_t phy_debug_mode_flags;
+
+	/* current read latency */
+
+	uint32_t curr_read_lat;
+
+	/* current write latency */
+
+	uint32_t curr_write_lat;
+
+	/* error code */
+
+	uint32_t error_substage;
+	uint32_t error_stage;
+	uint32_t error_group;
+
+	/* figure-of-merit in, figure-of-merit out */
+
+	uint32_t fom_in;
+	uint32_t fom_out;
+
+	/*USER Number of RW Mgr NOP cycles between
+	write command and write data */
+#if MULTIPLE_AFI_WLAT
+	uint32_t rw_wl_nop_cycles_per_group[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
+#endif
+	uint32_t rw_wl_nop_cycles;
+};
+#endif /* _SEQUENCER_H_ */
diff --git a/board/altera/socfpga/sdram/sequencer_auto.h b/board/altera/socfpga/sdram/sequencer_auto.h
new file mode 100644
index 0000000..de26b6b
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto.h
@@ -0,0 +1,216 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#define __RW_MGR_ac_mrs1 0x04
+#define __RW_MGR_ac_mrs3 0x06
+#define __RW_MGR_ac_write_bank_0_col_0_nodata_wl_1 0x1C
+#define __RW_MGR_ac_act_1 0x11
+#define __RW_MGR_ac_write_postdata 0x1A
+#define __RW_MGR_ac_act_0 0x10
+#define __RW_MGR_ac_des 0x0D
+#define __RW_MGR_ac_init_reset_1_cke_0 0x01
+#define __RW_MGR_ac_write_data 0x19
+#define __RW_MGR_ac_init_reset_0_cke_0 0x00
+#define __RW_MGR_ac_read_bank_0_1_norden 0x22
+#define __RW_MGR_ac_pre_all 0x12
+#define __RW_MGR_ac_mrs0_user 0x02
+#define __RW_MGR_ac_mrs0_dll_reset 0x03
+#define __RW_MGR_ac_read_bank_0_0 0x1D
+#define __RW_MGR_ac_write_bank_0_col_1 0x16
+#define __RW_MGR_ac_read_bank_0_1 0x1F
+#define __RW_MGR_ac_write_bank_1_col_0 0x15
+#define __RW_MGR_ac_write_bank_1_col_1 0x17
+#define __RW_MGR_ac_write_bank_0_col_0 0x14
+#define __RW_MGR_ac_read_bank_1_0 0x1E
+#define __RW_MGR_ac_mrs1_mirr 0x0A
+#define __RW_MGR_ac_read_bank_1_1 0x20
+#define __RW_MGR_ac_des_odt_1 0x0E
+#define __RW_MGR_ac_mrs0_dll_reset_mirr 0x09
+#define __RW_MGR_ac_zqcl 0x07
+#define __RW_MGR_ac_write_predata 0x18
+#define __RW_MGR_ac_mrs0_user_mirr 0x08
+#define __RW_MGR_ac_ref 0x13
+#define __RW_MGR_ac_nop 0x0F
+#define __RW_MGR_ac_rdimm 0x23
+#define __RW_MGR_ac_mrs2_mirr 0x0B
+#define __RW_MGR_ac_write_bank_0_col_0_nodata 0x1B
+#define __RW_MGR_ac_read_en 0x21
+#define __RW_MGR_ac_mrs3_mirr 0x0C
+#define __RW_MGR_ac_mrs2 0x05
+#define __RW_MGR_CONTENT_ac_mrs1 0x10090004
+#define __RW_MGR_CONTENT_ac_mrs3 0x100B0000
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0_nodata_wl_1 0x18980000
+#define __RW_MGR_CONTENT_ac_act_1 0x106B0000
+#define __RW_MGR_CONTENT_ac_write_postdata 0x38780000
+#define __RW_MGR_CONTENT_ac_act_0 0x10680000
+#define __RW_MGR_CONTENT_ac_des 0x30780000
+#define __RW_MGR_CONTENT_ac_init_reset_1_cke_0 0x20780000
+#define __RW_MGR_CONTENT_ac_write_data 0x3CF80000
+#define __RW_MGR_CONTENT_ac_init_reset_0_cke_0 0x20700000
+#define __RW_MGR_CONTENT_ac_read_bank_0_1_norden 0x10580008
+#define __RW_MGR_CONTENT_ac_pre_all 0x10280400
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_user 0x10080831
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset 0x10080930
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_user 0x10080431
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset 0x10080530
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_read_bank_0_0 0x13580000
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_1 0x1C980008
+#define __RW_MGR_CONTENT_ac_read_bank_0_1 0x13580008
+#define __RW_MGR_CONTENT_ac_write_bank_1_col_0 0x1C9B0000
+#define __RW_MGR_CONTENT_ac_write_bank_1_col_1 0x1C9B0008
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0 0x1C980000
+#define __RW_MGR_CONTENT_ac_read_bank_1_0 0x135B0000
+#define __RW_MGR_CONTENT_ac_mrs1_mirr 0x100A0004
+#define __RW_MGR_CONTENT_ac_read_bank_1_1 0x135B0008
+#define __RW_MGR_CONTENT_ac_des_odt_1 0x38780000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset_mirr 0x100808C8
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset_mirr 0x100804C8
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_zqcl 0x10380400
+#define __RW_MGR_CONTENT_ac_write_predata 0x38F80000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_user_mirr 0x10080849
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_user_mirr 0x10080449
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_ref 0x10480000
+#define __RW_MGR_CONTENT_ac_nop 0x30780000
+#define __RW_MGR_CONTENT_ac_rdimm 0x10780000
+#define __RW_MGR_CONTENT_ac_mrs2_mirr 0x10090010
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0_nodata 0x18180000
+#define __RW_MGR_CONTENT_ac_read_en 0x33780000
+#define __RW_MGR_CONTENT_ac_mrs3_mirr 0x100B0000
+#define __RW_MGR_CONTENT_ac_mrs2 0x100A0008
+
+#define __RW_MGR_READ_B2B_WAIT2 0x6A
+#define __RW_MGR_LFSR_WR_RD_BANK_0_WAIT 0x31
+#define __RW_MGR_REFRESH_ALL 0x14
+#define __RW_MGR_ZQCL 0x06
+#define __RW_MGR_LFSR_WR_RD_BANK_0_NOP 0x22
+#define __RW_MGR_LFSR_WR_RD_BANK_0_DQS 0x23
+#define __RW_MGR_ACTIVATE_0_AND_1 0x0D
+#define __RW_MGR_MRS2_MIRR 0x0A
+#define __RW_MGR_INIT_RESET_0_CKE_0 0x6E
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT 0x45
+#define __RW_MGR_ACTIVATE_1 0x0F
+#define __RW_MGR_MRS2 0x04
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1 0x34
+#define __RW_MGR_MRS1 0x03
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_IDLE_LOOP1 0x7A
+#else
+#define __RW_MGR_IDLE_LOOP1 0x7C
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_GUARANTEED_WRITE_WAIT2 0x18
+#define __RW_MGR_MRS3 0x05
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_IDLE_LOOP2 0x79
+#else
+#define __RW_MGR_IDLE_LOOP2 0x7B
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_GUARANTEED_WRITE_WAIT1 0x1E
+#define __RW_MGR_LFSR_WR_RD_BANK_0_DATA 0x24
+#define __RW_MGR_GUARANTEED_WRITE_WAIT3 0x1C
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_RDIMM_CMD 0x78
+#else
+#define __RW_MGR_RDIMM_CMD 0x7A
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP 0x36
+#define __RW_MGR_GUARANTEED_WRITE_WAIT0 0x1A
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA 0x38
+#define __RW_MGR_GUARANTEED_READ_CONT 0x53
+#define __RW_MGR_MRS3_MIRR 0x0B
+#define __RW_MGR_IDLE 0x00
+#define __RW_MGR_READ_B2B 0x58
+#define __RW_MGR_INIT_RESET_0_CKE_0_inloop 0x6F
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS 0x37
+#define __RW_MGR_GUARANTEED_WRITE 0x17
+#define __RW_MGR_PRECHARGE_ALL 0x12
+#define __RW_MGR_INIT_RESET_1_CKE_0_inloop_1 0x74
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_SGLE_READ 0x7C
+#else
+#define __RW_MGR_SGLE_READ 0x7E
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_MRS0_USER_MIRR 0x0C
+#define __RW_MGR_RETURN 0x01
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0 0x35
+#define __RW_MGR_MRS0_USER 0x07
+#define __RW_MGR_GUARANTEED_READ 0x4B
+#define __RW_MGR_MRS0_DLL_RESET_MIRR 0x08
+#define __RW_MGR_INIT_RESET_1_CKE_0 0x73
+#define __RW_MGR_ACTIVATE_0_AND_1_WAIT2 0x10
+#define __RW_MGR_LFSR_WR_RD_BANK_0_WL_1 0x20
+#define __RW_MGR_MRS0_DLL_RESET 0x02
+#define __RW_MGR_ACTIVATE_0_AND_1_WAIT1 0x0E
+#define __RW_MGR_LFSR_WR_RD_BANK_0 0x21
+#define __RW_MGR_CLEAR_DQS_ENABLE 0x48
+#define __RW_MGR_MRS1_MIRR 0x09
+#define __RW_MGR_READ_B2B_WAIT1 0x60
+#define __RW_MGR_CONTENT_READ_B2B_WAIT2 0x00C680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_WAIT 0x00A680
+#define __RW_MGR_CONTENT_REFRESH_ALL 0x000980
+#define __RW_MGR_CONTENT_ZQCL 0x008380
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_NOP 0x00E700
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_DQS 0x000C00
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1 0x000800
+#define __RW_MGR_CONTENT_MRS2_MIRR 0x008580
+#define __RW_MGR_CONTENT_INIT_RESET_0_CKE_0 0x000000
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_WAIT 0x00A680
+#define __RW_MGR_CONTENT_ACTIVATE_1 0x000880
+#define __RW_MGR_CONTENT_MRS2 0x008280
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_WL_1 0x00CE00
+#define __RW_MGR_CONTENT_MRS1 0x008200
+#define __RW_MGR_CONTENT_IDLE_LOOP1 0x00A680
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT2 0x00CCE8
+#define __RW_MGR_CONTENT_MRS3 0x008300
+#define __RW_MGR_CONTENT_IDLE_LOOP2 0x008680
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT1 0x00AC88
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_DATA 0x020CE0
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT3 0x00EC88
+#define __RW_MGR_CONTENT_RDIMM_CMD 0x009180
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_NOP 0x00E700
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT0 0x008CE8
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_DATA 0x030CE0
+#define __RW_MGR_CONTENT_GUARANTEED_READ_CONT 0x001168
+#define __RW_MGR_CONTENT_MRS3_MIRR 0x008600
+#define __RW_MGR_CONTENT_IDLE 0x080000
+#define __RW_MGR_CONTENT_READ_B2B 0x040E88
+#define __RW_MGR_CONTENT_INIT_RESET_0_CKE_0_inloop 0x000000
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_DQS 0x000C00
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE 0x000B68
+#define __RW_MGR_CONTENT_PRECHARGE_ALL 0x000900
+#define __RW_MGR_CONTENT_INIT_RESET_1_CKE_0_inloop_1 0x000080
+#define __RW_MGR_CONTENT_SGLE_READ 0x040F08
+#define __RW_MGR_CONTENT_MRS0_USER_MIRR 0x008400
+#define __RW_MGR_CONTENT_RETURN 0x080680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0 0x00CD80
+#define __RW_MGR_CONTENT_MRS0_USER 0x008100
+#define __RW_MGR_CONTENT_GUARANTEED_READ 0x001168
+#define __RW_MGR_CONTENT_MRS0_DLL_RESET_MIRR 0x008480
+#define __RW_MGR_CONTENT_INIT_RESET_1_CKE_0 0x000080
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1_WAIT2 0x00A680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_WL_1 0x00CE00
+#define __RW_MGR_CONTENT_MRS0_DLL_RESET 0x008180
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1_WAIT1 0x008680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0 0x00CD80
+#define __RW_MGR_CONTENT_CLEAR_DQS_ENABLE 0x001158
+#define __RW_MGR_CONTENT_MRS1_MIRR 0x008500
+#define __RW_MGR_CONTENT_READ_B2B_WAIT1 0x00A680
+
diff --git a/board/altera/socfpga/sdram/sequencer_auto_ac_init.c b/board/altera/socfpga/sdram/sequencer_auto_ac_init.c
new file mode 100644
index 0000000..b618218
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto_ac_init.c
@@ -0,0 +1,88 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#include "sequencer_defines.h"
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+const unsigned long ac_rom_init_size = 36;
+const unsigned long ac_rom_init[36] = {
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+	0x20700000,
+	0x20780000,
+	0x10080831,
+	0x10080930,
+	0x10090004,
+	0x100a0008,
+	0x100b0000,
+	0x10380400,
+	0x10080849,
+	0x100808c8,
+	0x100a0004,
+	0x10090010,
+	0x100b0000,
+	0x30780000,
+	0x38780000,
+	0x30780000,
+	0x10680000,
+	0x106b0000,
+	0x10280400,
+	0x10480000,
+	0x1c980000,
+	0x1c9b0000,
+	0x1c980008,
+	0x1c9b0008,
+	0x38f80000,
+	0x3cf80000,
+	0x38780000,
+	0x18180000,
+	0x18980000,
+	0x13580000,
+	0x135b0000,
+	0x13580008,
+	0x135b0008,
+	0x33780000,
+	0x10580008,
+	0x10780000
+#else
+	0x20700000,
+	0x20780000,
+	0x10080431,
+	0x10080530,
+	0x10090004,
+	0x100a0008,
+	0x100b0000,
+	0x10380400,
+	0x10080449,
+	0x100804c8,
+	0x100a0004,
+	0x10090010,
+	0x100b0000,
+	0x30780000,
+	0x38780000,
+	0x30780000,
+	0x10680000,
+	0x106b0000,
+	0x10280400,
+	0x10480000,
+	0x1c980000,
+	0x1c9b0000,
+	0x1c980008,
+	0x1c9b0008,
+	0x38f80000,
+	0x3cf80000,
+	0x38780000,
+	0x18180000,
+	0x18980000,
+	0x13580000,
+	0x135b0000,
+	0x13580008,
+	0x135b0008,
+	0x33780000,
+	0x10580008,
+	0x10780000
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+};
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer_auto_inst_init.c b/board/altera/socfpga/sdram/sequencer_auto_inst_init.c
new file mode 100644
index 0000000..a200a3a
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto_inst_init.c
@@ -0,0 +1,273 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#include "sequencer_defines.h"
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+const alt_u32 inst_rom_init_size = 126;
+const alt_u32 inst_rom_init[126] = {
+	0x80000,
+	0x80680,
+	0x8180,
+	0x8200,
+	0x8280,
+	0x8300,
+	0x8380,
+	0x8100,
+	0x8480,
+	0x8500,
+	0x8580,
+	0x8600,
+	0x8400,
+	0x800,
+	0x8680,
+	0x880,
+	0xa680,
+	0x80680,
+	0x900,
+	0x80680,
+	0x980,
+	0x8680,
+	0x80680,
+	0xb68,
+	0xcce8,
+	0xae8,
+	0x8ce8,
+	0xb88,
+	0xec88,
+	0xa08,
+	0xac88,
+	0x80680,
+	0xce00,
+	0xcd80,
+	0xe700,
+	0xc00,
+	0x20ce0,
+	0x20ce0,
+	0x20ce0,
+	0x20ce0,
+	0xd00,
+	0x680,
+	0x680,
+	0x680,
+	0x680,
+	0x60e80,
+	0x61080,
+	0x61080,
+	0x61080,
+	0xa680,
+	0x8680,
+	0x80680,
+	0xce00,
+	0xcd80,
+	0xe700,
+	0xc00,
+	0x30ce0,
+	0x30ce0,
+	0x30ce0,
+	0x30ce0,
+	0xd00,
+	0x680,
+	0x680,
+	0x680,
+	0x680,
+	0x70e80,
+	0x71080,
+	0x71080,
+	0x71080,
+	0xa680,
+	0x8680,
+	0x80680,
+	0x1158,
+	0x6d8,
+	0x80680,
+	0x1168,
+	0x7e8,
+	0x7e8,
+	0x87e8,
+	0x40fe8,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0x1168,
+	0x7e8,
+	0x7e8,
+	0xa7e8,
+	0x80680,
+	0x40e88,
+	0x41088,
+	0x41088,
+	0x41088,
+	0x40f68,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0xa680,
+	0x40fe8,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0x41008,
+	0x41088,
+	0x41088,
+	0x41088,
+	0x1100,
+	0xc680,
+	0x8680,
+	0xe680,
+	0x80680,
+	0x0,
+	0x8000,
+	0xa000,
+	0xc000,
+	0x80000,
+	0x80,
+	0x8080,
+	0xa080,
+	0xc080,
+	0x80080,
+	0x9180,
+	0x8680,
+	0xa680,
+	0x80680,
+	0x40f08,
+	0x80680
+};
+#else
+const unsigned long inst_rom_init_size = 128;
+const unsigned long inst_rom_init[128] = {
+	0x80000,
+	0x80680,
+	0x8180,
+	0x8200,
+	0x8280,
+	0x8300,
+	0x8380,
+	0x8100,
+	0x8480,
+	0x8500,
+	0x8580,
+	0x8600,
+	0x8400,
+	0x800,
+	0x8680,
+	0x880,
+	0xa680,
+	0x80680,
+	0x900,
+	0x80680,
+	0x980,
+	0x8680,
+	0x80680,
+	0xb68,
+	0xcce8,
+	0xae8,
+	0x8ce8,
+	0xb88,
+	0xec88,
+	0xa08,
+	0xac88,
+	0x80680,
+	0xce00,
+	0xcd80,
+	0xe700,
+	0xc00,
+	0x20ce0,
+	0x20ce0,
+	0x20ce0,
+	0x20ce0,
+	0xd00,
+	0x680,
+	0x680,
+	0x680,
+	0x680,
+	0x60e80,
+	0x61080,
+	0x61080,
+	0x61080,
+	0xa680,
+	0x8680,
+	0x80680,
+	0xce00,
+	0xcd80,
+	0xe700,
+	0xc00,
+	0x30ce0,
+	0x30ce0,
+	0x30ce0,
+	0x30ce0,
+	0xd00,
+	0x680,
+	0x680,
+	0x680,
+	0x680,
+	0x70e80,
+	0x71080,
+	0x71080,
+	0x71080,
+	0xa680,
+	0x8680,
+	0x80680,
+	0x1158,
+	0x6d8,
+	0x80680,
+	0x1168,
+	0x7e8,
+	0x7e8,
+	0x87e8,
+	0x40fe8,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0x1168,
+	0x7e8,
+	0x7e8,
+	0xa7e8,
+	0x80680,
+	0x40e88,
+	0x41088,
+	0x41088,
+	0x41088,
+	0x40f68,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0xa680,
+	0x40fe8,
+	0x410e8,
+	0x410e8,
+	0x410e8,
+	0x41008,
+	0x41088,
+	0x41088,
+	0x41088,
+	0x1100,
+	0xc680,
+	0x8680,
+	0xe680,
+	0x80680,
+	0x0,
+	0x0,
+	0xa000,
+	0x8000,
+	0x80000,
+	0x80,
+	0x80,
+	0x80,
+	0x80,
+	0xa080,
+	0x8080,
+	0x80080,
+	0x9180,
+	0x8680,
+	0xa680,
+	0x80680,
+	0x40f08,
+	0x80680
+};
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer_defines.h b/board/altera/socfpga/sdram/sequencer_defines.h
new file mode 100644
index 0000000..a021257
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_defines.h
@@ -0,0 +1,154 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#ifndef _SEQUENCER_DEFINES_H_
+#define _SEQUENCER_DEFINES_H_
+
+#define AC_ROM_MR1_MIRR 0000000000100
+#define AC_ROM_MR1_OCD_ENABLE
+#define AC_ROM_MR2_MIRR 0000000010000
+#define AC_ROM_MR3_MIRR 0000000000000
+#define AC_ROM_MR0_CALIB
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define AC_ROM_MR0_DLL_RESET_MIRR 0100011001000
+#define AC_ROM_MR0_DLL_RESET 0100100110000
+#define AC_ROM_MR0_MIRR 0100001001001
+#define AC_ROM_MR0 0100000110001
+#else
+#define AC_ROM_MR0_DLL_RESET_MIRR 0010011001000
+#define AC_ROM_MR0_DLL_RESET 0010100110000
+#define AC_ROM_MR0_MIRR 0010001001001
+#define AC_ROM_MR0 0010000110001
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define AC_ROM_MR1 0000000000100
+#define AC_ROM_MR2 0000000001000
+#define AC_ROM_MR3 0000000000000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define AFI_CLK_FREQ 534
+#else
+#define AFI_CLK_FREQ 401
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define AFI_RATE_RATIO 1
+#define ARRIAVGZ 0
+#define ARRIAV 1
+#define AVL_CLK_FREQ 67
+#define BFM_MODE 0
+#define BURST2 0
+#define CALIBRATE_BIT_SLIPS 0
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define CALIB_LFIFO_OFFSET 8
+#define CALIB_VFIFO_OFFSET 6
+#else
+#define CALIB_LFIFO_OFFSET 7
+#define CALIB_VFIFO_OFFSET 5
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define CYCLONEV 0
+#define DDR2 0
+#define DDR3 1
+#define DDRX 1
+#define DM_PINS_ENABLED 1
+#define ENABLE_ASSERT 0
+#define ENABLE_BRINGUP_DEBUGGING 0
+#define ENABLE_DQS_IN_CENTERING 1
+#define ENABLE_EXPORT_SEQ_DEBUG_BRIDGE 0
+#define ENABLE_INST_ROM_WRITE 1
+#define ENABLE_MARGIN_REPORT_GEN 0
+#define ENABLE_SUPER_QUICK_CALIBRATION 0
+#define FULL_RATE 1
+#define GUARANTEED_READ_BRINGUP_TEST 0
+#define HALF_RATE 0
+#define HARD_PHY 1
+#define HARD_VFIFO 1
+#define HCX_COMPAT_MODE 0
+#define HPS_HW 1
+#define HR_DDIO_OUT_HAS_THREE_REGS 0
+#define IO_DELAY_PER_DCHAIN_TAP 25
+#define IO_DELAY_PER_DQS_EN_DCHAIN_TAP 25
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define IO_DELAY_PER_OPA_TAP 234
+#else
+#define IO_DELAY_PER_OPA_TAP 312
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define IO_DLL_CHAIN_LENGTH 8
+#define IO_DM_OUT_RESERVE 0
+#define IO_DQDQS_OUT_PHASE_MAX 0
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define IO_DQS_EN_DELAY_MAX 15
+#define IO_DQS_EN_DELAY_OFFSET 16
+#else
+#define IO_DQS_EN_DELAY_MAX 31
+#define IO_DQS_EN_DELAY_OFFSET 0
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define IO_DQS_EN_PHASE_MAX 7
+#define IO_DQS_IN_DELAY_MAX 31
+#define IO_DQS_IN_RESERVE 4
+#define IO_DQS_OUT_RESERVE 6
+#define IO_DQ_OUT_RESERVE 0
+#define IO_IO_IN_DELAY_MAX 31
+#define IO_IO_OUT1_DELAY_MAX 31
+#define IO_IO_OUT2_DELAY_MAX 0
+#define IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS 0
+#define LPDDR1 0
+#define LPDDR2 0
+#define LRDIMM 0
+#define MARGIN_VARIATION_TEST 0
+#define MAX_LATENCY_COUNT_WIDTH 5
+#define MEM_ADDR_WIDTH 13
+#define MRS_MIRROR_PING_PONG_ATSO 0
+#define MULTIPLE_AFI_WLAT 0
+#define QDRII 0
+#define QUARTER_RATE 0
+#define RDIMM 0
+#define READ_AFTER_WRITE_CALIBRATION 1
+#define READ_VALID_FIFO_SIZE 16
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define REG_FILE_INIT_SEQ_SIGNATURE 0x5555048c
+#else
+#define REG_FILE_INIT_SEQ_SIGNATURE 0x55550483
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define RLDRAM3 0
+#define RLDRAMII 0
+#define RLDRAMX 0
+#define RW_MGR_MEM_ADDRESS_MIRRORING 0
+#define RW_MGR_MEM_ADDRESS_WIDTH 15
+#define RW_MGR_MEM_BANK_WIDTH 3
+#define RW_MGR_MEM_CHIP_SELECT_WIDTH 1
+#define RW_MGR_MEM_CLK_EN_WIDTH 1
+#define RW_MGR_MEM_CONTROL_WIDTH 1
+#define RW_MGR_MEM_DATA_MASK_WIDTH 5
+#define RW_MGR_MEM_DATA_WIDTH 40
+#define RW_MGR_MEM_DQ_PER_READ_DQS 8
+#define RW_MGR_MEM_DQ_PER_WRITE_DQS 8
+#define RW_MGR_MEM_IF_READ_DQS_WIDTH 5
+#define RW_MGR_MEM_IF_WRITE_DQS_WIDTH 5
+#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 1
+#define RW_MGR_MEM_ODT_WIDTH 1
+#define RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS 1
+#define RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS 1
+#define RW_MGR_MR0_BL 1
+#define RW_MGR_MR0_CAS_LATENCY 3
+#define RW_MGR_TRUE_MEM_DATA_MASK_WIDTH 5
+#define RW_MGR_WRITE_TO_DEBUG_READ 1.0
+#define SKEW_CALIBRATION 0
+#define STATIC_SIM_FILESET 0
+#define STATIC_SKIP_MEM_INIT 0
+#define STRATIXV 0
+#define TINIT_CNTR1_VAL 32
+#define TINIT_CNTR2_VAL 32
+#define TINIT_CNTR0_VAL 132
+#define TRESET_CNTR1_VAL 99
+#define TRESET_CNTR2_VAL 10
+#define TRESET_CNTR0_VAL 132
+#define USE_DQS_TRACKING 1
+#define USE_SHADOW_REGS 0
+
+#endif /* _SEQUENCER_DEFINES_H_ */
diff --git a/board/altera/socfpga/sdram/system.h b/board/altera/socfpga/sdram/system.h
new file mode 100644
index 0000000..6ba5915
--- /dev/null
+++ b/board/altera/socfpga/sdram/system.h
@@ -0,0 +1,15 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier:    BSD-3-Clause
+ */
+
+#define SEQUENCER_DATA_MGR_INST_BASE 0x60000
+#define SEQUENCER_PHY_MGR_INST_BASE 0x48000
+#define SEQUENCER_PTR_MGR_INST_BASE 0x40000
+#define SEQUENCER_RAM_BASE 0x20000
+#define SEQUENCER_ROM_BASE 0x10000
+#define SEQUENCER_RW_MGR_INST_BASE 0x50000
+#define SEQUENCER_SCC_MGR_INST_BASE 0x58000
+#define SEQUENCER_REG_FILE_INST_BASE 0x70000
+#define SEQUENCER_TIMER_INST_BASE 0x78000
-- 
2.2.1



More information about the U-Boot mailing list