[U-Boot] [PATCHv1 01/22] arm: socfpga: spl: Add main sdram code
dinguyen at opensource.altera.com
dinguyen at opensource.altera.com
Wed Jan 14 17:40:41 CET 2015
From: Dinh Nguyen <dinguyen at opensource.altera.com>
This adds the code to configure the SDRAM controller that is found in the
SoCFGPA Cyclone5 and Arria5 platforms.
Signed-off-by: Dinh Nguyen <dinguyen at opensource.altera.com>
---
arch/arm/cpu/armv7/socfpga/config.mk | 3 +-
board/altera/socfpga/Makefile | 1 +
board/altera/socfpga/sdram/Makefile | 12 +
board/altera/socfpga/sdram/sdram_config.h | 100 +
board/altera/socfpga/sdram/sdram_io.h | 44 +
board/altera/socfpga/sdram/sequencer.c | 7993 ++++++++++++++++++++
board/altera/socfpga/sdram/sequencer.h | 504 ++
board/altera/socfpga/sdram/sequencer_auto.h | 216 +
.../altera/socfpga/sdram/sequencer_auto_ac_init.c | 88 +
.../socfpga/sdram/sequencer_auto_inst_init.c | 273 +
board/altera/socfpga/sdram/sequencer_defines.h | 154 +
board/altera/socfpga/sdram/system.h | 15 +
12 files changed, 9402 insertions(+), 1 deletion(-)
create mode 100644 board/altera/socfpga/sdram/Makefile
create mode 100644 board/altera/socfpga/sdram/sdram_config.h
create mode 100644 board/altera/socfpga/sdram/sdram_io.h
create mode 100644 board/altera/socfpga/sdram/sequencer.c
create mode 100644 board/altera/socfpga/sdram/sequencer.h
create mode 100644 board/altera/socfpga/sdram/sequencer_auto.h
create mode 100644 board/altera/socfpga/sdram/sequencer_auto_ac_init.c
create mode 100644 board/altera/socfpga/sdram/sequencer_auto_inst_init.c
create mode 100644 board/altera/socfpga/sdram/sequencer_defines.h
create mode 100644 board/altera/socfpga/sdram/system.h
diff --git a/arch/arm/cpu/armv7/socfpga/config.mk b/arch/arm/cpu/armv7/socfpga/config.mk
index 2a99c72..8113dc2 100644
--- a/arch/arm/cpu/armv7/socfpga/config.mk
+++ b/arch/arm/cpu/armv7/socfpga/config.mk
@@ -8,4 +8,5 @@ ALL-y += u-boot.img
endif
# Added for handoff support
-PLATFORM_RELFLAGS += -Iboard/$(VENDOR)/$(BOARD)
+PLATFORM_RELFLAGS += -Iboard/$(VENDOR)/$(BOARD) \
+-Iboard/$(VENDOR)/$(BOARD)/sdram
diff --git a/board/altera/socfpga/Makefile b/board/altera/socfpga/Makefile
index 44baa00..72f5d70 100644
--- a/board/altera/socfpga/Makefile
+++ b/board/altera/socfpga/Makefile
@@ -8,3 +8,4 @@
obj-y := socfpga_cyclone5.o
obj-$(CONFIG_SPL_BUILD) += pinmux_config.o iocsr_config.o
+obj-$(CONFIG_SPL_BUILD) += sdram/
diff --git a/board/altera/socfpga/sdram/Makefile b/board/altera/socfpga/sdram/Makefile
new file mode 100644
index 0000000..bcab43f
--- /dev/null
+++ b/board/altera/socfpga/sdram/Makefile
@@ -0,0 +1,12 @@
+#
+# (C) Copyright 2000-2003
+# Wolfgang Denk, DENX Software Engineering, wd at denx.de.
+#
+# (C) Copyright 2010, Thomas Chou <thomas at wytron.com.tw>
+# Copyright (C) 2014 Altera Corporation <www.altera.com>
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+obj-$(CONFIG_SPL_BUILD):= sequencer.o sequencer_auto_ac_init.o \
+ sequencer_auto_inst_init.o
diff --git a/board/altera/socfpga/sdram/sdram_config.h b/board/altera/socfpga/sdram/sdram_config.h
new file mode 100644
index 0000000..5c3ba86
--- /dev/null
+++ b/board/altera/socfpga/sdram/sdram_config.h
@@ -0,0 +1,100 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef __SDRAM_CONFIG_H
+#define __SDRAM_CONFIG_H
+
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_MEMTYPE (2)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_MEMBL (8)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ADDRORDER (0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ECCEN (1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_ECCCORREN (1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_REORDEREN (1)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_STARVELIMIT (10)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_DQSTRKEN (0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLCFG_NODMPINS (0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TCWL (6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_AL (0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TCL (7)
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRRD (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TFAW (19)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRFC (139)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TREFI (4160)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRCD (8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRP (8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWR (8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWTR (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRTP (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRAS (19)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRC (26)
+#else
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRRD (3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TFAW (14)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING1_TRFC (104)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TREFI (3120)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRCD (6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TRP (6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWR (6)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING2_IF_TWTR (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRTP (3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRAS (14)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TRC (20)
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TMRD (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING3_TCCD (4)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING4_SELFRFSHEXIT (512)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMTIMING4_PWRDOWNEXIT (3)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWRTIMING_AUTOPDCYCLES (0)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWRTIMING_CLKDISABLECYCLES (8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_COLBITS (10)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_ROWBITS (15)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_BANKBITS (3)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMADDRW_CSBITS (1)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMIFWIDTH_IFWIDTH (40)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMDEVWIDTH_DEVWIDTH (8)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMINTR_INTREN (0)
+#define CONFIG_HPS_SDR_CTRLCFG_LOWPWREQ_SELFRFSHMASK (3)
+#define CONFIG_HPS_SDR_CTRLCFG_STATICCFG_MEMBL (2)
+#define CONFIG_HPS_SDR_CTRLCFG_STATICCFG_USEECCASDATA (0)
+#define CONFIG_HPS_SDR_CTRLCFG_CTRLWIDTH_CTRLWIDTH (2)
+#define CONFIG_HPS_SDR_CTRLCFG_PORTCFG_AUTOPCHEN (0)
+#define CONFIG_HPS_SDR_CTRLCFG_FIFOCFG_SYNCMODE (0)
+#define CONFIG_HPS_SDR_CTRLCFG_FIFOCFG_INCSYNC (0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPRIORITY_USERPRIORITY (0x3FFD1088)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_0_STATICWEIGHT_31_0 (0x21084210)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_1_STATICWEIGHT_49_32 (0x1EF84)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_1_SUMOFWEIGHT_13_0 (0x2020)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_2_SUMOFWEIGHT_45_14 (0x0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPWIEIGHT_3_SUMOFWEIGHT_63_46 (0xF800)
+#define CONFIG_HPS_SDR_CTRLCFG_PHYCTRL_PHYCTRL_0 (0x200)
+
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTWIDTH_CPORTWIDTH (0x44555)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTWMAP_CPORTWMAP (0x2C011000)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTRMAP_CPORTRMAP (0xB00088)
+#define CONFIG_HPS_SDR_CTRLCFG_RFIFOCMAP_RFIFOCMAP (0x760210)
+#define CONFIG_HPS_SDR_CTRLCFG_WFIFOCMAP_WFIFOCMAP (0x980543)
+#define CONFIG_HPS_SDR_CTRLCFG_CPORTRDWR_CPORTRDWR (0x5A56A)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_0_THRESHOLD1_31_0 (0x20820820)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_1_THRESHOLD1_59_32 (0x8208208)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_1_THRESHOLD2_3_0 (0)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_2_THRESHOLD2_35_4 (0x41041041)
+#define CONFIG_HPS_SDR_CTRLCFG_MPPACING_3_THRESHOLD2_59_36 (0x410410)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_0_THRESHOLDRSTCYCLES_31_0 \
+(0x01010101)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_1_THRESHOLDRSTCYCLES_63_32 \
+(0x01010101)
+#define CONFIG_HPS_SDR_CTRLCFG_MPTHRESHOLDRST_2_THRESHOLDRSTCYCLES_79_64 \
+(0x0101)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMODT_READ (0)
+#define CONFIG_HPS_SDR_CTRLCFG_DRAMODT_WRITE (1)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_READ_PORT_USED (0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_WRITE_PORT_USED (0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST_COMMAND_PORT_USED (0)
+#define CONFIG_HPS_SDR_CTRLCFG_FPGAPORTRST (0)
+
+#endif /*#ifndef__SDRAM_CONFIG_H*/
diff --git a/board/altera/socfpga/sdram/sdram_io.h b/board/altera/socfpga/sdram/sdram_io.h
new file mode 100644
index 0000000..f24308d
--- /dev/null
+++ b/board/altera/socfpga/sdram/sdram_io.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <asm/io.h>
+
+#ifdef CONFIG_SPL_SERIAL_SUPPORT
+#define HPS_HW_SERIAL_SUPPORT
+#endif
+
+#define HPS_SDR_BASE SOCFPGA_SDR_ADDRESS
+#define MGR_SELECT_MASK 0xf8000
+
+#define APB_BASE_SCC_MGR SDR_PHYGRP_SCCGRP_ADDRESS
+#define APB_BASE_PHY_MGR SDR_PHYGRP_PHYMGRGRP_ADDRESS
+#define APB_BASE_RW_MGR SDR_PHYGRP_RWMGRGRP_ADDRESS
+#define APB_BASE_DATA_MGR SDR_PHYGRP_DATAMGRGRP_ADDRESS
+#define APB_BASE_REG_FILE SDR_PHYGRP_REGFILEGRP_ADDRESS
+#define APB_BASE_MMR SDR_CTRLGRP_ADDRESS
+
+#define __AVL_TO_APB(ADDR) \
+ ((((ADDR) & MGR_SELECT_MASK) == (BASE_PHY_MGR)) ? \
+ (APB_BASE_PHY_MGR) | (((ADDR) >> (14-6)) & (0x1<<6)) | \
+ ((ADDR) & 0x3f) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_RW_MGR)) ? \
+ (APB_BASE_RW_MGR) | ((ADDR) & 0x1fff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_DATA_MGR)) ? \
+ (APB_BASE_DATA_MGR) | ((ADDR) & 0x7ff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_SCC_MGR)) ? \
+ (APB_BASE_SCC_MGR) | ((ADDR) & 0xfff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_REG_FILE)) ? \
+ (APB_BASE_REG_FILE) | ((ADDR) & 0x7ff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_MMR)) ? \
+ (APB_BASE_MMR) | ((ADDR) & 0xfff) : -1)
+
+#define IOWR_32DIRECT(BASE, OFFSET, DATA) \
+ writel(DATA, HPS_SDR_BASE + __AVL_TO_APB((uint32_t)((BASE) + \
+ (OFFSET))))
+
+#define IORD_32DIRECT(BASE, OFFSET) \
+ readl(HPS_SDR_BASE + __AVL_TO_APB((uint32_t)((BASE) + (OFFSET))))
+
diff --git a/board/altera/socfpga/sdram/sequencer.c b/board/altera/socfpga/sdram/sequencer.c
new file mode 100644
index 0000000..c0ba0e5
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer.c
@@ -0,0 +1,7993 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/sdram.h>
+#include "sdram_io.h"
+#include "sequencer.h"
+#include "sequencer_auto.h"
+#include "sequencer_defines.h"
+#include "system.h"
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
+static void rw_mgr_mem_dll_lock_wait(void);
+
+/******************************************************************************
+ ******************************************************************************
+ ** NOTE: Special Rules for Globale Variables **
+ ** **
+ ** All global variables that are explicitly initialized (including **
+ ** explicitly initialized to zero), are only initialized once, during **
+ ** configuration time, and not again on reset. This means that they **
+ ** preserve their current contents across resets, which is needed for some **
+ ** special cases involving communication with external modules. In **
+ ** addition, this avoids paying the price to have the memory initialized, **
+ ** even for zeroed data, provided it is explicitly set to zero in the code, **
+ ** and doesn't rely on implicit initialization. **
+ ******************************************************************************
+ ******************************************************************************/
+
+#if ARRIAV
+/*
+ * Temporary workaround to place the initial stack pointer at a safe
+ * offset from end
+ */
+#define STRINGIFY(s) STRINGIFY_STR(s)
+#define STRINGIFY_STR(s) #s
+asm(".global __alt_stack_pointer");
+asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
+#endif
+
+#if CYCLONEV
+/*
+ * Temporary workaround to place the initial stack pointer at a safe
+ * offset from end
+ */
+#define STRINGIFY(s) STRINGIFY_STR(s)
+#define STRINGIFY_STR(s) #s
+asm(".global __alt_stack_pointer");
+asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
+#endif
+
+/* Just to make the debugging code more uniform */
+#ifndef RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM
+#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 0
+#endif
+
+#if HALF_RATE
+#define HALF_RATE_MODE 1
+#else
+#define HALF_RATE_MODE 0
+#endif
+
+#if QUARTER_RATE
+#define QUARTER_RATE_MODE 1
+#else
+#define QUARTER_RATE_MODE 0
+#endif
+#define DELTA_D 1
+
+/*
+ * case:56390
+ * VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated
+ * per DQS. This is always one except:
+ * AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2
+ * RLDRAMII x36 and x36w2 where it is 2.
+ * In 12.0sp1 we set this to 4 for all of the special cases above to
+ * keep it simple.
+ * In 12.0sp2 or 12.1 this should get moved to generation and unified with
+ * the same constant used in the phy mgr
+ */
+
+#define VFIFO_CONTROL_WIDTH_PER_DQS 1
+
+#if ARRIAV
+
+#if QDRII
+ #if RW_MGR_MEM_DQ_PER_READ_DQS > 9
+ #undef VFIFO_CONTROL_WIDTH_PER_DQS
+ #define VFIFO_CONTROL_WIDTH_PER_DQS 4
+ #endif
+#endif /* protocol check */
+
+#if RLDRAMII
+ #if RW_MGR_MEM_DQ_PER_READ_DQS > 9
+ #undef VFIFO_CONTROL_WIDTH_PER_DQS
+ #define VFIFO_CONTROL_WIDTH_PER_DQS 2
+ #endif
+#endif /* protocol check */
+
+#endif /* family check */
+
+/*
+ * In order to reduce ROM size, most of the selectable calibration steps are
+ * decided at compile time based on the user's calibration mode selection,
+ * as captured by the STATIC_CALIB_STEPS selection below.
+ *
+ * However, to support simulation-time selection of fast simulation mode, where
+ * we skip everything except the bare minimum, we need a few of the steps to
+ * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
+ * check, which is based on the rtl-supplied value, or we dynamically compute
+ * the value to use based on the dynamically-chosen calibration mode
+ */
+
+#if QDRII
+#define BTFLD_FMT "%llx"
+#else
+#define BTFLD_FMT "%u"
+#endif
+
+/* For HPS running on actual hardware */
+
+#define DLEVEL 0
+#ifdef HPS_HW_SERIAL_SUPPORT
+/*
+ * space around comma is required for varargs macro to remove comma if args
+ * is empty
+ */
+#define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) \
+ printf("SEQ.C: " fmt "\n" , ## args)
+#define IPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args)
+#else
+#define DPRINT(level, fmt, args...)
+#define IPRINT(fmt, args...)
+#endif
+#define BFM_GBL_SET(field, value)
+#define BFM_GBL_GET(field) ((long unsigned int)0)
+#define BFM_STAGE(stage)
+#define BFM_INC_VFIFO
+#define COV(label)
+
+#define TRACE_FUNC(fmt, args...) \
+ DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args)
+
+#define DYNAMIC_CALIB_STEPS (dyn_calib_steps)
+
+#if STATIC_SIM_FILESET
+#define STATIC_IN_RTL_SIM CALIB_IN_RTL_SIM
+#else
+#define STATIC_IN_RTL_SIM 0
+#endif
+
+#if STATIC_SKIP_MEM_INIT
+#define STATIC_SKIP_DELAY_LOOPS CALIB_SKIP_DELAY_LOOPS
+#else
+#define STATIC_SKIP_DELAY_LOOPS 0
+#endif
+
+#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
+ STATIC_SKIP_DELAY_LOOPS)
+
+/* calibration steps requested by the rtl */
+uint16_t dyn_calib_steps;
+
+/*
+ * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
+ * instead of static, we use boolean logic to select between
+ * non-skip and skip values
+ *
+ * The mask is set to include all bits when not-skipping, but is
+ * zero when skipping
+ */
+
+uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
+
+#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
+ ((non_skip_value) & skip_delay_mask)
+
+struct gbl_type *gbl;
+struct param_type *param;
+uint32_t curr_shadow_reg;
+
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t use_dm,
+ uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
+
+#if ENABLE_BRINGUP_DEBUGGING
+#define DI_BUFFER_DEBUG_SIZE 64
+
+uint8_t di_buf_gbl[DI_BUFFER_DEBUG_SIZE*4] = {0};
+
+void load_di_buf_gbl(void)
+{
+ int i;
+ int j;
+
+ for (i = 0; i < DI_BUFFER_DEBUG_SIZE; i++) {
+ uint32_t val = IORD_32DIRECT(RW_MGR_DI_BASE + i*4, 0);
+ for (j = 0; j < 4; j++) {
+ uint8_t byte = (val >> (8*j)) & 0xff;
+ di_buf_gbl[i*4 + j] = byte;
+ }
+ }
+}
+#endif /* ENABLE_BRINGUP_DEBUGGING */
+
+
+#if ENABLE_DQSEN_SWEEP
+void init_di_buffer(void)
+{
+ uint32_t i;
+
+ debug_data->di_report.flags = 0;
+ debug_data->di_report.cur_samples = 0;
+
+ for (i = 0; i < NUM_DI_SAMPLE; i++) {
+ debug_data->di_report.di_buffer[i].bit_chk = 0;
+ debug_data->di_report.di_buffer[i].delay = 0;
+ debug_data->di_report.di_buffer[i].d = 0;
+ debug_data->di_report.di_buffer[i].v = 0;
+ debug_data->di_report.di_buffer[i].p = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_0a = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_0b = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_1a = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_1b = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_2a = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_2b = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_3a = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_3b = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_4a = 0;
+ debug_data->di_report.di_buffer[i].di_buffer_4b = 0;
+ }
+}
+
+void wait_di_buffer(void)
+{
+ if (debug_data->di_report.cur_samples == NUM_DI_SAMPLE) {
+ debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
+ while (debug_data->di_report.cur_samples != 0)
+ ;
+ debug_data->di_report.flags = 0;
+ }
+}
+
+void sample_di_data(uint32_t bit_chk, uint32_t delay, uint32_t d,
+ uint32_t v, uint32_t p)
+{
+ uint32_t k;
+ uint32_t di_status_word;
+ uint32_t di_word_avail;
+ uint32_t di_write_to_read_ratio;
+ uint32_t di_write_to_read_ratio_2_exp;
+
+ wait_di_buffer();
+
+ k = debug_data->di_report.cur_samples;
+
+ debug_data->di_report.di_buffer[k].bit_chk = bit_chk;
+ debug_data->di_report.di_buffer[k].delay = delay;
+ debug_data->di_report.di_buffer[k].d = d;
+ debug_data->di_report.di_buffer[k].v = v;
+ debug_data->di_report.di_buffer[k].p = p;
+
+ di_status_word = IORD_32DIRECT(BASE_RW_MGR + 8, 0);
+ di_word_avail = di_status_word & 0x0000FFFF;
+ di_write_to_read_ratio = (di_status_word & 0x00FF0000) >> 16;
+ di_write_to_read_ratio_2_exp = (di_status_word & 0xFF000000) >> 24;
+
+ debug_data->di_report.di_buffer[k].di_buffer_0a =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 0*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_0b =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 1*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_1a =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 2*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_1b =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 3*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_2a =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 4*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_2b =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 5*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_3a =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 6*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_3b =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 7*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_4a =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 8*4, 0);
+ debug_data->di_report.di_buffer[k].di_buffer_4b =
+ IORD_32DIRECT(BASE_RW_MGR + 16 + 9*4, 0);
+
+ debug_data->di_report.cur_samples =
+ debug_data->di_report.cur_samples + 1;
+}
+#endif
+
+/*
+ * This (TEST_SIZE) is used to test handling of large roms, to make
+ * sure we are sizing things correctly
+ * Note, the initialized data takes up twice the space in rom, since
+ *there needs to be a copy with the initial value and a copy that is
+ * written too, since on soft-reset, it needs to have the initial values
+ * without reloading the memory from external sources
+ */
+
+
+#ifdef TEST_SIZE
+
+#define PRE_POST_TEST_SIZE 3
+
+unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3};
+unsigned int test_size_mem[TEST_SIZE/sizeof(unsigned int)] = { 100, 200, 300 };
+unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = {10, 20, 30};
+void write_test_mem(void)
+{
+ int i;
+
+ for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+ pre_test_size_mem[i] = (i+1)*10;
+ post_test_size_mem[i] = (i+1);
+ }
+
+ for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++)
+ test_size_mem[i] = i;
+}
+
+int check_test_mem(int start)
+{
+ int i;
+
+ for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+ if (start) {
+ if (pre_test_size_mem[i] != (i+1))
+ return 0;
+ if (post_test_size_mem[i] != (i+1)*10)
+ return 0;
+ } else {
+ if (pre_test_size_mem[i] != (i+1)*10)
+ return 0;
+ if (post_test_size_mem[i] != (i+1))
+ return 0;
+ }
+ }
+
+ for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++) {
+ if (start) {
+ if (i < 3) {
+ if (test_size_mem[i] != (i+1)*100)
+ return 0;
+ } else {
+ if (test_size_mem[i] != 0)
+ return 0;
+ }
+ } else {
+ if (test_size_mem[i] != i)
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+#endif /* TEST_SIZE */
+
+static void set_failing_group_stage(uint32_t group, uint32_t stage,
+ uint32_t substage)
+{
+ ALTERA_ASSERT(group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /*
+ * Only set the global stage if there was not been any other
+ * failing group
+ */
+ if (gbl->error_stage == CAL_STAGE_NIL) {
+ gbl->error_substage = substage;
+ gbl->error_stage = stage;
+ gbl->error_group = group;
+ }
+}
+
+static inline void reg_file_set_group(uint32_t set_group)
+{
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+ /* Clear the group */
+ cur_stage_group &= 0x0000FFFF;
+
+ /* Set the group */
+ cur_stage_group |= (set_group << 16);
+
+ /* Write the data back */
+ IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline void reg_file_set_stage(uint32_t set_stage)
+{
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+ /* Clear the stage and substage */
+ cur_stage_group &= 0xFFFF0000;
+
+ /* Set the stage */
+ cur_stage_group |= (set_stage & 0x000000FF);
+
+ /* Write the data back */
+ IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline void reg_file_set_sub_stage(uint32_t set_sub_stage)
+{
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
+
+ /* Clear the substage */
+ cur_stage_group &= 0xFFFF00FF;
+
+ /* Set the sub stage */
+ cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
+
+ /* Write the data back */
+ IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
+}
+
+static inline uint32_t is_write_group_enabled_for_dm(uint32_t write_group)
+{
+#if DM_PINS_ENABLED
+ #if RLDRAMII
+ int32_t decrement_counter = write_group + 1;
+
+ while (decrement_counter > 0)
+ decrement_counter -= RW_MGR_MEM_IF_WRITE_DQS_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH;
+
+ if (decrement_counter == 0)
+ return 1;
+ return 0;
+ #else
+ return 1;
+ #endif
+#else
+ return 0;
+#endif
+}
+
+static inline void select_curr_shadow_reg_using_rank(uint32_t rank)
+{
+#if USE_SHADOW_REGS
+ /* USER Map the rank to its shadow reg and set the global variable */
+ curr_shadow_reg = (rank >> (NUM_RANKS_PER_SHADOW_REG - 1));
+#endif
+}
+
+void initialize(void)
+{
+ TRACE_FUNC();
+
+ /* USER calibration has control over path to memory */
+#if HARD_PHY
+ /*
+ * In Hard PHY this is a 2-bit control:
+ * 0: AFI Mux Select
+ * 1: DDIO Mux Select
+ */
+ IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x3);
+#else
+ IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 1);
+#endif
+
+ /* USER memory clock is not stable we begin initialization */
+
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 0);
+
+ /* USER calibration status all set to zero */
+
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, 0);
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0);
+
+ if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
+ param->read_correct_mask_vg = ((uint32_t)1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->write_correct_mask_vg = ((uint32_t)1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->read_correct_mask = ((uint32_t)1 <<
+ RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
+ param->write_correct_mask = ((uint32_t)1 <<
+ RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
+ param->dm_correct_mask = ((uint32_t)1 <<
+ (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
+ - 1;
+ }
+}
+
+
+#if MRS_MIRROR_PING_PONG_ATSO
+/*
+ * This code is specific to the ATSO setup. There are two ways to set
+ * the cs/odt mask:
+ * 1. the normal way (set_rank_and_odt_mask)
+ * This method will be used in general. The behavior will be to unmask
+ * BOTH CS (i.e. broadcast to both sides as if calibrating one large interface).
+ * 2. this function
+ * This method will be used for MRS settings only. This allows us to do
+ * settings on a per-side basis. This is needed because Slot 1 Rank 1 needs
+ * a mirrored MRS. This function is specific to our setup ONLY.
+ */
+void set_rank_and_odt_mask_for_ping_pong_atso(uint32_t side, uint32_t odt_mode)
+{
+ uint32_t odt_mask_0 = 0;
+ uint32_t odt_mask_1 = 0;
+ uint32_t cs_and_odt_mask;
+
+ if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+ /*
+ * USER 1 Rank
+ * USER Read: ODT = 0
+ * USER Write: ODT = 1
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else {
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x0;
+ }
+
+ cs_and_odt_mask =
+ (0xFF & ~(1 << side)) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#endif
+
+#if DDR3
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+ uint32_t odt_mask_0 = 0;
+ uint32_t odt_mask_1 = 0;
+ uint32_t cs_and_odt_mask;
+
+ if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+#if USE_SHADOW_REGS
+ uint32_t rank_one_hot = (0xFF & (1 << rank));
+ select_curr_shadow_reg_using_rank(rank);
+
+ /*
+ * Assert afi_rrank and afi_wrank. These signals ultimately
+ * drive the read/write rank select signals which select the
+ * shadow register.
+ */
+ IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
+#endif
+
+ if (LRDIMM) {
+ /*
+ * LRDIMMs have two cases to consider: single-slot and
+ * dual-slot. In single-slot, assert ODT for write only.
+ * In dual-slot, assert ODT for both slots for write,
+ * and on the opposite slot only for reads.
+ *
+ * Further complicating this is that both DIMMs have
+ * either 1 or 2 ODT inputs, which do the same thing
+ * (only one is actually required).
+ */
+ if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) {
+ /* USER Single-slot case */
+ if (RW_MGR_MEM_ODT_WIDTH == 1) {
+ /* USER Read = 0, Write = 1*/
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else if (RW_MGR_MEM_ODT_WIDTH == 2) {
+ /* USER Read = 00, Write = 11*/
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x3;
+ }
+ } else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
+ /* USER Dual-slot case*/
+ if (RW_MGR_MEM_ODT_WIDTH == 2) {
+ /*
+ * USER Read: asserted for opposite
+ * slot, Write: asserted for both
+ */
+ odt_mask_0 = (rank < 2) ? 0x2 : 0x1;
+ odt_mask_1 = 0x3;
+ } else if (RW_MGR_MEM_ODT_WIDTH == 4) {
+ /*
+ * USER Read: asserted for opposite
+ * slot, Write: asserted for both
+ */
+ odt_mask_0 = (rank < 2) ? 0xC : 0x3;
+ odt_mask_1 = 0xF;
+ }
+ }
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+ /*
+ * 1 Rank
+ * Read: ODT = 0
+ * Write: ODT = 1
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ /* 2 Ranks */
+ if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
+ (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+ RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
+ /* - Dual-Slot , Single-Rank
+ * (1 chip-select per DIMM)
+ * OR
+ * - RDIMM, 4 total CS (2 CS per DIMM)
+ * means 2 DIMM
+ * Since MEM_NUMBER_OF_RANKS is 2 they are
+ * both single rank
+ * with 2 CS each (special for RDIMM)
+ * Read: Turn on ODT on the opposite rank
+ * Write: Turn on ODT on all ranks
+ */
+ odt_mask_0 = 0x3 & ~(1 << rank);
+ odt_mask_1 = 0x3;
+ } else {
+ /*
+ * USER - Single-Slot , Dual-rank DIMMs
+ * (2 chip-selects per DIMM)
+ * USER Read: Turn on ODT off on all ranks
+ * USER Write: Turn on ODT on active rank
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x3 & (1 << rank);
+ }
+ } else {
+ /* 4 Ranks
+ * Read:
+ * ----------+-----------------------+
+ * | |
+ * | ODT |
+ * Read From +-----------------------+
+ * Rank | 3 | 2 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ * 0 | 0 | 1 | 0 | 0 |
+ * 1 | 1 | 0 | 0 | 0 |
+ * 2 | 0 | 0 | 0 | 1 |
+ * 3 | 0 | 0 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ *
+ * Write:
+ * ----------+-----------------------+
+ * | |
+ * | ODT |
+ * Write To +-----------------------+
+ * Rank | 3 | 2 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ * 0 | 0 | 1 | 0 | 1 |
+ * 1 | 1 | 0 | 1 | 0 |
+ * 2 | 0 | 1 | 0 | 1 |
+ * 3 | 1 | 0 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ */
+ switch (rank) {
+ case 0:
+ odt_mask_0 = 0x4;
+ odt_mask_1 = 0x5;
+ break;
+ case 1:
+ odt_mask_0 = 0x8;
+ odt_mask_1 = 0xA;
+ break;
+ case 2:
+ odt_mask_0 = 0x1;
+ odt_mask_1 = 0x5;
+ break;
+ case 3:
+ odt_mask_0 = 0x2;
+ odt_mask_1 = 0xA;
+ break;
+ }
+ }
+ } else {
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x0;
+ }
+
+#if MRS_MIRROR_PING_PONG_ATSO
+ /* See set_cs_and_odt_mask_for_ping_pong_atso*/
+ cs_and_odt_mask =
+ (0xFC) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+#else
+ if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+ RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 &&
+ RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ /* See RDIMM special case above */
+ cs_and_odt_mask =
+ (0xFF & ~(1 << (2*rank))) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+ } else if (LRDIMM) {
+#if LRDIMM
+ /*
+ * USER LRDIMM special cases - When RM=2, CS[2] is remapped
+ * to A[16] so skip it, and when RM=4, CS[3:2] are remapped
+ * to A[17:16] so skip them both.
+ */
+ uint32_t lrdimm_rank = 0;
+ uint32_t lrdimm_rank_mask = 0;
+
+ /*
+ * USER When rank multiplication is active, the remapped CS
+ * pins must be forced low instead of high for proper
+ * targetted RTT_NOM programming.
+ */
+ if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 2)
+ /* USER Mask = CS[5:0] = 011011 */
+ lrdimm_rank_mask = (0x3 | (0x3 << 3));
+ else if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 4)
+ /* USER Mask = CS[7:0] = 00110011 */
+ lrdimm_rank_mask = (0x3 | (0x3 << 4));
+
+ /*
+ * USER Handle LRDIMM cases where Rank multiplication
+ * may be active
+ */
+ if (((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1)) {
+ /* USER Single-DIMM case */
+ lrdimm_rank = ~(1 << rank);
+ } else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH /
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
+ if (rank < (RW_MGR_MEM_NUMBER_OF_RANKS >> 1)) {
+ /* USER Dual-DIMM case, accessing first slot */
+ lrdimm_rank = ~(1 << rank);
+ } else {
+ /* USER Dual-DIMM case, accessing second slot */
+ lrdimm_rank = ~(1 << (rank +
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM -
+ (RW_MGR_MEM_NUMBER_OF_RANKS>>1)));
+ }
+ }
+ cs_and_odt_mask =
+ (lrdimm_rank_mask & lrdimm_rank) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+#endif /* LRDIMM */
+ } else {
+ cs_and_odt_mask =
+ (0xFF & ~(1 << rank)) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+ }
+#endif
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#else
+#if DDR2
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+ uint32_t odt_mask_0 = 0;
+ uint32_t odt_mask_1 = 0;
+ uint32_t cs_and_odt_mask;
+
+ if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+ if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+ /*
+ * 1 Rank
+ * Read: ODT = 0
+ * Write: ODT = 1
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ /* 2 Ranks */
+ if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
+ (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+ RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
+ /*
+ * USER - Dual-Slot ,
+ * Single-Rank (1 chip-select per DIMM)
+ * OR
+ * - RDIMM, 4 total CS (2 CS per DIMM) means
+ * 2 DIMM
+ * Since MEM_NUMBER_OF_RANKS is 2 they are both
+ * single rank with 2 CS each (special for
+ * RDIMM)
+ * Read/Write: Turn on ODT on the opposite rank
+ */
+ odt_mask_0 = 0x3 & ~(1 << rank);
+ odt_mask_1 = 0x3 & ~(1 << rank);
+ } else {
+ /*
+ * USER - Single-Slot , Dual-rank DIMMs
+ * (2 chip-selects per DIMM)
+ * Read: Turn on ODT off on all ranks
+ * Write: Turn on ODT on active rank
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x3 & (1 << rank);
+ }
+ } else {
+ /*
+ * 4 Ranks
+ * Read/Write:
+ * -----------+-----------------------+
+ * | |
+ * | ODT |
+ * Read/Write | |
+ * From +-----------------------+
+ * Rank | 3 | 2 | 1 | 0 |
+ * -----------+-----+-----+-----+-----+
+ * 0 | 0 | 1 | 0 | 0 |
+ * 1 | 1 | 0 | 0 | 0 |
+ * 2 | 0 | 0 | 0 | 1 |
+ * 3 | 0 | 0 | 1 | 0 |
+ * -----------+-----+-----+-----+-----+
+ */
+ switch (rank) {
+ case 0:
+ odt_mask_0 = 0x4;
+ odt_mask_1 = 0x4;
+ break;
+ case 1:
+ odt_mask_0 = 0x8;
+ odt_mask_1 = 0x8;
+ break;
+ case 2:
+ odt_mask_0 = 0x1;
+ odt_mask_1 = 0x1;
+ break;
+ case 3:
+ odt_mask_0 = 0x2;
+ odt_mask_1 = 0x2;
+ break;
+ }
+ }
+ } else {
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x0;
+ }
+
+ if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 &&
+ RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 &&
+ RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ /* See RDIMM/LRDIMM special case above */
+ cs_and_odt_mask =
+ (0xFF & ~(1 << (2*rank))) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+ } else {
+ cs_and_odt_mask =
+ (0xFF & ~(1 << rank)) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+ }
+
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#else /* QDRII and RLDRAMx */
+void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+ uint32_t cs_and_odt_mask =
+ (0xFF & ~(1 << rank));
+
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+}
+#endif
+#endif
+
+/*
+ * Given a rank, select the set of shadow registers that is responsible
+ * for the delays of such rank, so that subsequent SCC updates will
+ * go to those shadow registers.
+ */
+void select_shadow_regs_for_update(uint32_t rank, uint32_t group,
+ uint32_t update_scan_chains)
+{
+#if USE_SHADOW_REGS
+ uint32_t rank_one_hot = (0xFF & (1 << rank));
+
+ /*
+ * USER Assert afi_rrank and afi_wrank. These signals ultimately drive
+ * the read/write rank select signals which select the shadow register.
+ */
+ IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
+
+ /*
+ * USER Cause the SCC manager to switch its register file, which is used
+ * as local cache of the various dtap/ptap settings. There's one
+ * register file per shadow register set.
+ */
+ IOWR_32DIRECT(SCC_MGR_ACTIVE_RANK, 0, rank_one_hot);
+
+ if (update_scan_chains) {
+ uint32_t i;
+
+ /*
+ * USER On the read side, a memory read is required because the
+ * read rank select signal (as well as the postamble delay
+ * chain settings) is clocked into the periphery by the
+ * postamble signal. Simply asserting afi_rrank is not enough.
+ * If update_scc_regfile is not set, we assume there'll be a
+ * subsequent read that'll handle this.
+ */
+ for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; ++i) {
+ /*
+ * USER The dummy read can go to any non-skipped rank.
+ * Skipped ranks are uninitialized and their banks are
+ * un-activated. Accessing skipped ranks can lead to
+ * bad behavior.
+ */
+ if (!param->skip_ranks[i]) {
+ set_rank_and_odt_mask(i,
+ RW_MGR_ODT_MODE_READ_WRITE);
+ /*
+ * must re-assert afi_wrank/afi_rrank prior to
+ * issuing read because set_rank_and_odt_mask
+ * may have changed the signals.
+ */
+ IOWR_32DIRECT(RW_MGR_SET_ACTIVE_RANK, 0,
+ rank_one_hot);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_READ_B2B_WAIT1);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_READ_B2B_WAIT2);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_READ_B2B);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_READ_B2B);
+
+ IOWR_32DIRECT(RW_MGR_RUN_ALL_GROUPS, 0,
+ __RW_MGR_READ_B2B);
+
+ /*
+ * USER The dummy read above may cause the DQS
+ * enable signal to be stuck high. The
+ * following corrects this.
+ */
+ IOWR_32DIRECT(RW_MGR_RUN_ALL_GROUPS, 0,
+ __RW_MGR_CLEAR_DQS_ENABLE);
+
+ set_rank_and_odt_mask(i, RW_MGR_ODT_MODE_OFF);
+
+ break;
+ }
+ }
+
+ /* Reset the fifos to get pointers to known state */
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ /*
+ * USER On the write side the afi_wrank signal eventually
+ * propagates to the I/O
+ * through the write datapath. We need to make sure we wait
+ * long enough for this to happen. The operations above should
+ * be enough, hence no extra delay
+ * inserted here.
+ */
+
+ /*
+ * USER Make sure the data in the I/O scan chains are in-sync
+ * with the register file inside the SCC manager. If we don't
+ * do this, a subsequent SCC_UPDATE may cause stale data for
+ * the other shadow register to be loaded. This must
+ * be done for every scan chain of the current group.
+ * that in shadow register mode, the SCC_UPDATE signal is
+ * per-group.
+ */
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, group);
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, group);
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, i);
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, i);
+ }
+
+ /* Map the rank to its shadow reg */
+ select_curr_shadow_reg_using_rank(rank);
+#endif
+}
+
+void scc_mgr_initialize(void)
+{
+ /*
+ * Clear register file for HPS
+ * 16 (2^4) is the size of the full register file in the scc mgr:
+ * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
+ * MEM_IF_READ_DQS_WIDTH - 1) + 1;
+ */
+ uint32_t i;
+ for (i = 0; i < 16; i++) {
+ DPRINT(1, "Clearing SCC RFILE index %u", i);
+ IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0);
+ }
+}
+
+inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
+{
+ ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_IN_DELAY(read_group, delay);
+}
+
+static inline void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
+ uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_IO_IN_DELAY(delay);
+}
+
+static inline void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
+{
+ ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_EN_PHASE(read_group, phase);
+}
+
+void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, uint32_t phase)
+{
+ uint32_t r;
+ uint32_t update_scan_chains;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * USER although the h/w doesn't support different phases per
+ * shadow register, for simplicity our scc manager modeling
+ * keeps different phase settings per shadow reg, and it's
+ * important for us to keep them in sync to match h/w.
+ * for efficiency, the scan chain update should occur only
+ * once to sr0.
+ */
+ update_scan_chains = (r == 0) ? 1 : 0;
+
+ select_shadow_regs_for_update(r, read_group,
+ update_scan_chains);
+ scc_mgr_set_dqs_en_phase(read_group, phase);
+
+ if (update_scan_chains) {
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+ }
+}
+
+static inline void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
+ uint32_t phase)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ #if CALIBRATE_BIT_SLIPS
+ uint32_t num_fr_slips = 0;
+ while (phase > IO_DQDQS_OUT_PHASE_MAX) {
+ phase -= IO_DLL_CHAIN_LENGTH;
+ num_fr_slips++;
+ }
+ IOWR_32DIRECT(PHY_MGR_FR_SHIFT, write_group*4, num_fr_slips);
+#endif
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase);
+}
+
+static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
+ uint32_t phase)
+{
+ uint32_t r;
+ uint32_t update_scan_chains;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * USER although the h/w doesn't support different phases per
+ * shadow register, for simplicity our scc manager modeling
+ * keeps different phase settings per shadow reg, and it's
+ * important for us to keep them in sync to match h/w.
+ * for efficiency, the scan chain update should occur only
+ * once to sr0.
+ */
+ update_scan_chains = (r == 0) ? 1 : 0;
+
+ select_shadow_regs_for_update(r, write_group,
+ update_scan_chains);
+ scc_mgr_set_dqdqs_output_phase(write_group, phase);
+
+ if (update_scan_chains) {
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+ }
+}
+
+static inline void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
+{
+ ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_EN_DELAY(read_group, delay);
+}
+
+static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
+ uint32_t delay)
+{
+ uint32_t r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, read_group, 0);
+
+ scc_mgr_set_dqs_en_delay(read_group, delay);
+
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+
+#if !USE_SHADOW_REGS
+ /*
+ * In shadow register mode, the T11 settings are stored in
+ * registers in the core, which are updated by the DQS_ENA
+ * signals. Not issuing the SCC_MGR_UPD command allows us to
+ * save lots of rank switching overhead, by calling
+ * select_shadow_regs_for_update with update_scan_chains
+ * set to 0.
+ */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+#endif
+ }
+}
+
+static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
+{
+ uint32_t read_group;
+
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /*
+ * Load the setting in the SCC manager
+ * Although OCT affects only write data, the OCT delay is controlled
+ * by the DQS logic block which is instantiated once per read group.
+ * For protocols where a write group consists of multiple read groups,
+ * the setting must be set multiple times.
+ */
+ for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+ WRITE_SCC_OCT_OUT1_DELAY(read_group, delay);
+}
+
+static void scc_mgr_set_oct_out2_delay(uint32_t write_group, uint32_t delay)
+{
+ uint32_t read_group;
+
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /*
+ * Load the setting in the SCC manager
+ * Although OCT affects only write data, the OCT delay is controlled
+ * by the DQS logic block which is instantiated once per read group.
+ * For protocols where a write group consists
+ * of multiple read groups, the setting must be set multiple times.
+ */
+ for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+ WRITE_SCC_OCT_OUT2_DELAY(read_group, delay);
+}
+
+static inline void scc_mgr_set_dqs_bypass(uint32_t write_group, uint32_t bypass)
+{
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_BYPASS(write_group, bypass);
+}
+
+inline void scc_mgr_set_dq_out1_delay(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay);
+}
+
+inline void scc_mgr_set_dq_out2_delay(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay);
+}
+
+inline void scc_mgr_set_dq_in_delay(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay);
+}
+
+static inline void scc_mgr_set_dq_bypass(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t bypass)
+{
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQ_BYPASS(dq_in_group, bypass);
+}
+
+static inline void scc_mgr_set_rfifo_mode(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t mode)
+{
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_RFIFO_MODE(dq_in_group, mode);
+}
+
+static inline void scc_mgr_set_hhp_extras(void)
+{
+ /*
+ * Load the fixed setting in the SCC manager
+ * bits: 0:0 = 1'b1 - dqs bypass
+ * bits: 1:1 = 1'b1 - dq bypass
+ * bits: 4:2 = 3'b001 - rfifo_mode
+ * bits: 6:5 = 2'b01 - rfifo clock_select
+ * bits: 7:7 = 1'b0 - separate gating from ungating setting
+ * bits: 8:8 = 1'b0 - separate OE from Output delay setting
+ */
+ uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
+ WRITE_SCC_HHP_EXTRAS(value);
+}
+
+static inline void scc_mgr_set_hhp_dqse_map(void)
+{
+ /* Load the fixed setting in the SCC manager */
+ WRITE_SCC_HHP_DQSE_MAP(0);
+}
+
+static inline void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
+ uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
+}
+
+static inline void scc_mgr_set_dqs_out2_delay(uint32_t write_group,
+ uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DQS_IO_OUT2_DELAY(delay);
+}
+
+inline void scc_mgr_set_dm_out1_delay(uint32_t write_group,
+ uint32_t dm, uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
+}
+
+inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm,
+ uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay);
+}
+
+static inline void scc_mgr_set_dm_in_delay(uint32_t write_group,
+ uint32_t dm, uint32_t delay)
+{
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
+
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DM_IO_IN_DELAY(dm, delay);
+}
+
+static inline void scc_mgr_set_dm_bypass(uint32_t write_group, uint32_t dm,
+ uint32_t bypass)
+{
+ /* Load the setting in the SCC manager */
+ WRITE_SCC_DM_BYPASS(dm, bypass);
+}
+
+/*
+ * USER Zero all DQS config
+ * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
+ */
+void scc_mgr_zero_all(void)
+{
+ uint32_t i, r;
+
+ /*
+ * USER Zero all DQS config settings, across all groups and all
+ * shadow registers
+ */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+ NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * Strictly speaking this should be called once per group to
+ * make sure each group's delay chain is refreshed from the
+ * SCC register file, but since we're resetting all delay
+ * chains anyway, we can save some runtime by calling
+ * select_shadow_regs_for_update just once to switch rank.
+ */
+ select_shadow_regs_for_update(r, 0, 1);
+
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ /*
+ * The phases actually don't exist on a per-rank basis,
+ * but there's no harm updating them several times, so
+ * let's keep the code simple.
+ */
+ scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
+ scc_mgr_set_dqs_en_phase(i, 0);
+ scc_mgr_set_dqs_en_delay(i, 0);
+ }
+
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ scc_mgr_set_dqdqs_output_phase(i, 0);
+#if ARRIAV || CYCLONEV
+ /* av/cv don't have out2 */
+ scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
+#else
+ scc_mgr_set_oct_out1_delay(i, 0);
+ scc_mgr_set_oct_out2_delay(i, IO_DQS_OUT_RESERVE);
+#endif
+ }
+
+ /* multicast to all DQS group enables */
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
+#if USE_SHADOW_REGS
+ /*
+ * USER in shadow-register mode, SCC_UPDATE is done on a
+ * per-group basis unless we explicitly ask for a multicast
+ * via the group counter
+ */
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+}
+
+void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
+{
+ /* mode = 0 : Do NOT bypass - Half Rate Mode */
+ /* mode = 1 : Bypass - Full Rate Mode */
+
+ /* only need to set once for all groups, pins, dq, dqs, dm */
+ if (write_group == 0) {
+ DPRINT(1, "Setting HHP Extras");
+ scc_mgr_set_hhp_extras();
+ DPRINT(1, "Done Setting HHP Extras");
+ }
+ /* multicast to all DQ enables */
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+
+ /* update current DQS IO enable */
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+
+ /* update the DQS logic */
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
+
+ /* hit update */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+}
+
+void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
+ int32_t out_only)
+{
+ uint32_t i, r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+ NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+
+ /* Zero all DQ config settings */
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ scc_mgr_set_dq_out1_delay(write_group, i, 0);
+ scc_mgr_set_dq_out2_delay(write_group, i,
+ IO_DQ_OUT_RESERVE);
+ if (!out_only)
+ scc_mgr_set_dq_in_delay(write_group, i, 0);
+ }
+
+ /* multicast to all DQ enables */
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+
+ /* Zero all DM config settings */
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ scc_mgr_set_dm_out1_delay(write_group, i, 0);
+ scc_mgr_set_dm_out2_delay(write_group, i,
+ IO_DM_OUT_RESERVE);
+ }
+
+ /* multicast to all DM enables */
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+
+ /* zero all DQS io settings */
+ if (!out_only)
+ scc_mgr_set_dqs_io_in_delay(write_group, 0);
+#if ARRIAV || CYCLONEV
+ /* av/cv don't have out2 */
+ scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_load_dqs_for_write_group(write_group);
+#else
+ scc_mgr_set_dqs_out1_delay(write_group, 0);
+ scc_mgr_set_dqs_out2_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_set_oct_out1_delay(write_group, 0);
+ scc_mgr_set_oct_out2_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_load_dqs_for_write_group(write_group);
+#endif
+ /* multicast to all DQS IO enables (only 1) */
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+#if USE_SHADOW_REGS
+ /*
+ * in shadow-register mode, SCC_UPDATE is done on a per-group
+ * basis unless we explicitly ask for a multicast via the group
+ * counter
+ */
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+ /* hit update to zero everything */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+}
+
+/* load up dqs config settings */
+static void scc_mgr_load_dqs(uint32_t dqs)
+{
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, dqs);
+}
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
+{
+ uint32_t read_group;
+
+ /*
+ * Although OCT affects only write data, the OCT delay is controlled
+ * by the DQS logic block which is instantiated once per read group.
+ * For protocols where a write group consists of multiple read groups,
+ * the setting must be scanned multiple times.
+ */
+ for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+}
+
+/* load up dqs io config settings */
+static void scc_mgr_load_dqs_io(void)
+{
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
+}
+
+/* load up dq config settings */
+static void scc_mgr_load_dq(uint32_t dq_in_group)
+{
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, dq_in_group);
+}
+
+/* load up dm config settings */
+static void scc_mgr_load_dm(uint32_t dm)
+{
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, dm);
+}
+
+/*
+ * apply and load a particular input delay for the DQ pins in a group
+ * group_bgn is the index of the first dq pin (in the write group)
+ */
+static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t i, p;
+
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, p, delay);
+ scc_mgr_load_dq(p);
+ }
+}
+
+/* apply and load a particular output delay for the DQ pins in a group */
+static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay1)
+{
+ uint32_t i, p;
+
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ scc_mgr_set_dq_out1_delay(write_group, i, delay1);
+ scc_mgr_load_dq(i);
+ }
+}
+
+/* apply and load a particular output delay for the DM pins in a group */
+static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
+ uint32_t delay1)
+{
+ uint32_t i;
+
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ scc_mgr_set_dm_out1_delay(write_group, i, delay1);
+ scc_mgr_load_dm(i);
+ }
+}
+
+
+/* apply and load delay on both DQS and OCT out1 */
+static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
+ uint32_t delay)
+{
+ scc_mgr_set_dqs_out1_delay(write_group, delay);
+ scc_mgr_load_dqs_io();
+
+ scc_mgr_set_oct_out1_delay(write_group, delay);
+ scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/*
+ * set delay on both DQS and OCT out1 by incrementally changing
+ * the settings one dtap at a time towards the target value, to avoid
+ * breaking the lock of the DLL/PLL on the memory device.
+ */
+static void scc_mgr_set_group_dqs_io_and_oct_out1_gradual(uint32_t write_group,
+ uint32_t delay)
+{
+ uint32_t d = READ_SCC_DQS_IO_OUT1_DELAY();
+
+ while (d > delay) {
+ --d;
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (QDRII)
+ rw_mgr_mem_dll_lock_wait();
+ }
+ while (d < delay) {
+ ++d;
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (QDRII)
+ rw_mgr_mem_dll_lock_wait();
+ }
+}
+
+/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+static void scc_mgr_apply_group_all_out_delay(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
+{
+ /* dq shift */
+ scc_mgr_apply_group_dq_out1_delay(write_group, group_bgn, delay);
+
+ /* dm shift */
+ scc_mgr_apply_group_dm_out1_delay(write_group, delay);
+
+ /* dqs and oct shift */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, delay);
+}
+
+/*
+ * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
+ * and to all ranks
+ */
+static void scc_mgr_apply_group_all_out_delay_all_ranks(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ scc_mgr_apply_group_all_out_delay(write_group, group_bgn,
+ delay);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+}
+
+/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t i, p, new_delay;
+
+ /* dq shift */
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ new_delay = READ_SCC_DQ_OUT2_DELAY(i);
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ DPRINT(1, "%s(%u, %u, %u) DQ[%u,%u]: %u > %lu => %lu",
+ __func__, write_group, group_bgn, delay, i, p,
+ new_delay,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_set_dq_out2_delay(write_group, i, new_delay);
+ scc_mgr_load_dq(i);
+ }
+
+ /* dm shift */
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ new_delay = READ_SCC_DM_IO_OUT2_DELAY(i);
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ DPRINT(1, "%s(%u, %u, %u) DM[%u]: %u > %lu => %lu",
+ __func__, write_group, group_bgn, delay, i,
+ new_delay,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_set_dm_out2_delay(write_group, i, new_delay);
+ scc_mgr_load_dm(i);
+ }
+
+ /* dqs shift */
+ new_delay = READ_SCC_DQS_IO_OUT2_DELAY();
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ DPRINT(1, "%s(%u, %u, %u) DQS: %u > %d => %d;"
+ " adding %u to OUT1",
+ __func__, write_group, group_bgn, delay,
+ new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_dqs_out1_delay(write_group, new_delay -
+ IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_set_dqs_out2_delay(write_group, new_delay);
+ scc_mgr_load_dqs_io();
+
+ /* oct shift */
+ new_delay = READ_SCC_OCT_OUT2_DELAY(write_group);
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ DPRINT(1, "%s(%u, %u, %u) DQS: %u > %d => %d;"
+ " adding %u to OUT1",
+ __func__, write_group, group_bgn, delay,
+ new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_oct_out1_delay(write_group, new_delay -
+ IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_set_oct_out2_delay(write_group, new_delay);
+ scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/*
+ * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
+ * and to all ranks
+ */
+static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
+ uint32_t write_group, uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ scc_mgr_apply_group_all_out_delay_add(write_group,
+ group_bgn, delay);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+}
+
+static inline void scc_mgr_spread_out2_delay_all_ranks(uint32_t write_group,
+ uint32_t test_bgn)
+{
+#if STRATIXV || ARRIAVGZ
+ uint32_t found;
+ uint32_t i;
+ uint32_t p;
+ uint32_t d;
+ uint32_t r;
+
+ const uint32_t delay_step = IO_IO_OUT2_DELAY_MAX /
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS-1);
+ /* we start at zero, so have one less dq to devide among */
+
+ TRACE_FUNC("(%lu,%lu)", write_group, test_bgn);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ for (i = 0, p = test_bgn, d = 0;
+ i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
+ i++, p++, d += delay_step) {
+ scc_mgr_set_dq_out2_delay(write_group, i, d);
+ scc_mgr_load_dq(i);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+#endif
+}
+
+#if DDR3
+/* optimization used to recover some slots in ddr3 inst_rom */
+/* could be applied to other protocols if we wanted to */
+static void set_jump_as_return(void)
+{
+ /*
+ * to save space, we replace return with jump to special shared
+ * RETURN instruction so we set the counter to large value so that
+ * we always jump
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0xFF);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN);
+}
+#endif
+
+/*
+ * should always use constants as argument to ensure all computations are
+ * performed at compile time
+ */
+static inline void delay_for_n_mem_clocks(const uint32_t clocks)
+{
+ uint32_t afi_clocks;
+ uint8_t inner = 0;
+ uint8_t outer = 0;
+ uint16_t c_loop = 0;
+
+ TRACE_FUNC("clocks=%u ... start", clocks);
+
+ afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
+ /* scale (rounding up) to get afi clocks */
+
+ /*
+ * Note, we don't bother accounting for being off a little bit
+ * because of a few extra instructions in outer loops
+ * Note, the loops have a test at the end, and do the test before
+ * the decrement, and so always perform the loop
+ * 1 time more than the counter value
+ */
+ if (afi_clocks == 0) {
+ ;
+ } else if (afi_clocks <= 0x100) {
+ inner = afi_clocks-1;
+ outer = 0;
+ c_loop = 0;
+ } else if (afi_clocks <= 0x10000) {
+ inner = 0xff;
+ outer = (afi_clocks-1) >> 8;
+ c_loop = 0;
+ } else {
+ inner = 0xff;
+ outer = 0xff;
+ c_loop = (afi_clocks-1) >> 16;
+ }
+
+ /*
+ * rom instructions are structured as follows:
+ *
+ * IDLE_LOOP2: jnz cntr0, TARGET_A
+ * IDLE_LOOP1: jnz cntr1, TARGET_B
+ * return
+ *
+ * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
+ * TARGET_B is set to IDLE_LOOP2 as well
+ *
+ * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
+ * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
+ *
+ * a little confusing, but it helps save precious space in the inst_rom
+ * and sequencer rom and keeps the delays more accurate and reduces
+ * overhead
+ */
+ if (afi_clocks <= 0x100) {
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1);
+ } else {
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2);
+
+ /* hack to get around compiler not being smart enough */
+ if (afi_clocks <= 0x10000) {
+ /* only need to run once */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_IDLE_LOOP2);
+ } else {
+ do {
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_IDLE_LOOP2);
+ } while (c_loop-- != 0);
+ }
+ }
+ TRACE_FUNC("clocks=%u ... end", clocks);
+}
+
+/*
+ * should always use constants as argument to ensure all computations are
+ * performed at compile time
+ */
+static inline void delay_for_n_ns(const uint32_t nanoseconds)
+{
+ TRACE_FUNC("nanoseconds=%u ... end", nanoseconds);
+ delay_for_n_mem_clocks((1000*nanoseconds) /
+ (1000000/AFI_CLK_FREQ) * AFI_RATE_RATIO);
+}
+
+#if RLDRAM3
+/*
+ * Special routine to recover memory device from illegal state after
+ * ck/dk relationship is potentially violated.
+ */
+static inline void recover_mem_device_after_ck_dqs_violation(void)
+{
+ /*
+ * Issue MRS0 command. For some reason this is required once we
+ * violate tCKDK. Without this all subsequent write tests will
+ * fail even with known good delays.
+ */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+
+ /* Wait MRSC */
+ delay_for_n_mem_clocks(12);
+}
+#else
+/*
+ * Special routine to recover memory device from illegal state after
+ * ck/dqs relationship is violated.
+ */
+static inline void recover_mem_device_after_ck_dqs_violation(void)
+{
+ /* Current protocol doesn't require any special recovery */
+}
+#endif
+
+#if (LRDIMM && DDR3)
+/* Routine to program specific LRDIMM control words. */
+static void rw_mgr_lrdimm_rc_program(uint32_t fscw, uint32_t rc_addr,
+ uint32_t rc_val)
+{
+ uint32_t i;
+ const uint32_t AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
+ /* These values should be dynamically loaded instead of hard-coded */
+ const uint32_t AC_ADDRESS_POSITION = 0x0;
+ const uint32_t AC_BANK_ADDRESS_POSITION = 0xD;
+ uint32_t ac_content;
+ uint32_t lrdimm_cs_msk = RW_MGR_RANK_NONE;
+
+ TRACE_FUNC();
+
+ /* Turn on only CS0 and CS1 for each DIMM. */
+ for (i = 0; i < RW_MGR_MEM_CHIP_SELECT_WIDTH;
+ i += RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM)
+ lrdimm_cs_msk &= (~(3 << i));
+
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, lrdimm_cs_msk);
+
+ /* Program the fscw first (RC7), followed by the actual value */
+ for (i = 0; i < 2; i++) {
+ uint32_t addr;
+ uint32_t val;
+
+ addr = (i == 0) ? 7 : rc_addr;
+ val = (i == 0) ? fscw : rc_val;
+
+ ac_content =
+ AC_BASE_CONTENT |
+ /* Word address */
+ ((addr & 0x7) << AC_ADDRESS_POSITION) |
+ (((addr >> 3) & 0x1) <<
+ (AC_BANK_ADDRESS_POSITION + 2)) |
+ /* Configuration Word */
+ (((val >> 2) & 0x3) << (AC_BANK_ADDRESS_POSITION)) |
+ ((val & 0x3) << (AC_ADDRESS_POSITION + 3));
+
+ /* Override the AC row with the RDIMM command */
+ IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 + (__RW_MGR_ac_rdimm << 2),
+ ac_content);
+
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
+ }
+
+ /*
+ * USER The following registers require a delay of tSTAB (6us)
+ * USER for proper functionality.
+ * USER F0RC2, F0RC10, F0RC11, F1RC8, F1RC11-F1RC15
+ * USER Note that it is only necessary to wait tSTAB after all of these
+ * USER control words have been written, not after each one. Only
+ * USER F0RC0-F0RC15
+ * USER are guaranteed to be written (and in order), but F1* are not so
+ * USER wait after each.
+ */
+ if (((fscw == 0) && (rc_addr == 11)) ||
+ ((fscw == 1) && (rc_addr >= 8)))
+ delay_for_n_ns(6000);
+}
+#endif
+#if (RDIMM || LRDIMM) && DDR3
+void rw_mgr_rdimm_initialize(void)
+{
+ uint32_t i;
+ uint32_t conf_word;
+#if RDIMM
+ const uint32_t AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
+ /* These values should be dynamically loaded instead of hard-coded */
+ const uint32_t AC_ADDRESS_POSITION = 0x0;
+ const uint32_t AC_BANK_ADDRESS_POSITION = 0xD;
+ uint32_t ac_content;
+#endif
+
+ TRACE_FUNC();
+
+ /*
+ * RDIMM registers are programmed by writing 16 configuration words
+ * 1. An RDIMM command is a NOP with all CS asserted
+ * 2. The 4-bit address of the configuration words is
+ * * { mem_ba[2] , mem_a[2] , mem_a[1] , mem_a[0] }
+ * 3. The 4-bit configuration word is
+ * * { mem_ba[1] , mem_ba[0] , mem_a[4] , mem_a[3] }
+ */
+
+#if RDIMM
+ /* Turn on all ranks */
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
+#endif
+
+ for (i = 0; i < 16; i++) {
+ if (i < 8)
+ conf_word = (RDIMM_CONFIG_WORD_LOW >> (i * 4)) & 0xF;
+ else
+ conf_word = (RDIMM_CONFIG_WORD_HIGH >> ((i - 8) * 4))
+ & 0xF;
+
+#if RDIMM
+ ac_content =
+ AC_BASE_CONTENT |
+ /* Word address */
+ ((i & 0x7) << AC_ADDRESS_POSITION) |
+ (((i >> 3) & 0x1) << (AC_BANK_ADDRESS_POSITION + 2)) |
+ /* Configuration Word */
+ (((conf_word >> 2) & 0x3) <<
+ (AC_BANK_ADDRESS_POSITION)) |
+ ((conf_word & 0x3) << (AC_ADDRESS_POSITION + 3));
+
+ /* Override the AC row with the RDIMM command */
+ IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 +
+ (__RW_MGR_ac_rdimm << 2), ac_content);
+
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
+ /*
+ * When sending the RC2 or RC10 word, tSTAB time must
+ * elapse before the next command
+ * is sent out. tSTAB is currently hard-coded to 6us.
+ */
+ if ((i == 2) || (i == 10))
+ /* tSTAB = 6 us */
+ delay_for_n_ns(6000);
+#endif
+#if LRDIMM
+ /* USER Program configuration word with FSCW set to zero. */
+ rw_mgr_lrdimm_rc_program(0, i, conf_word);
+#endif
+ }
+}
+#else
+void rw_mgr_rdimm_initialize(void) { }
+#endif
+
+#if DDR3
+
+#if LRDIMM
+uint32_t ddr3_mirror_mrs_cmd(uint32_t bit_vector)
+{
+ /*
+ * This function performs address mirroring of an AC ROM command, which
+ * requires swapping the following DDR3 bits:
+ * A[3] <=> A[4]
+ * A[5] <=> A[6]
+ * A[7] <=> A[8]
+ * BA[0] <=>BA[1]
+ * We assume AC_ROM_ENTRY = {BA[2:0], A[15:0]}.
+ */
+ uint32_t unchanged_bits;
+ uint32_t mask_a;
+ uint32_t mask_b;
+ uint32_t retval;
+
+ unchanged_bits = (~(DDR3_AC_MIRR_MASK | (DDR3_AC_MIRR_MASK << 1)))
+ & bit_vector;
+ mask_a = DDR3_AC_MIRR_MASK & bit_vector;
+ mask_b = (DDR3_AC_MIRR_MASK << 1) & bit_vector;
+
+ retval = unchanged_bits | (mask_a << 1) | (mask_b >> 1);
+
+ return retval;
+}
+
+void rtt_change_MRS1_MRS2_NOM_WR(uint32_t prev_ac_mr , uint32_t odt_ac_mr,
+ uint32_t mirr_on, uint32_t mr_cmd) {
+ /*
+ * This function updates the ODT-specific Mode Register bits
+ * (MRS1 or MRS2) in the AC ROM.
+ * Parameters: prev_ac_mr - Original, *un-mirrored* AC ROM Entry
+ * odt_ac_mr - ODT bits to update (un-mirrored)
+ * mirr_on - boolean flag indicating if the regular
+ * or mirrored entry is updated
+ * mr_cmd - Mode register command (only MR1 and MR2
+ * are supported for DDR3)
+ */
+ uint32_t new_ac_mr;
+ uint32_t ac_rom_entry = 0;
+ uint32_t ac_rom_mask;
+
+ switch (mr_cmd) {
+ case 1: {
+ /* USER MRS1 = RTT_NOM, RTT_DRV */
+ ac_rom_mask = DDR3_MR1_ODT_MASK;
+ ac_rom_entry = mirr_on ? (0x1C00 |
+ (__RW_MGR_ac_mrs1_mirr << 2))
+ : (0x1C00 | (__RW_MGR_ac_mrs1 << 2));
+ } break;
+ case 2: {
+ /* USER MRS2 = RTT_WR */
+ ac_rom_mask = DDR3_MR2_ODT_MASK;
+ ac_rom_entry = mirr_on ? (0x1C00 |
+ (__RW_MGR_ac_mrs2_mirr << 2))
+ : (0x1C00 | (__RW_MGR_ac_mrs2 << 2));
+ } break;
+ }
+
+ /* USER calculate new AC values and update ROM */
+ new_ac_mr = odt_ac_mr;
+ new_ac_mr |= (prev_ac_mr & ac_rom_mask);
+ if (mirr_on)
+ new_ac_mr = ddr3_mirror_mrs_cmd(new_ac_mr);
+ IOWR_32DIRECT(BASE_RW_MGR, ac_rom_entry, new_ac_mr);
+}
+#endif /*LRDIMM */
+
+void rw_mgr_mem_initialize(void)
+{
+ uint32_t r;
+
+#if LRDIMM
+ uint32_t rtt_nom;
+ uint32_t rtt_drv;
+ uint32_t rtt_wr;
+#endif /* LRDIMM */
+
+ TRACE_FUNC();
+
+ /* The reset / cke part of initialization is broadcasted to all ranks */
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
+
+ /*
+ * Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2, like
+ * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2 least
+ * significant bits
+ */
+
+ /* start with memory RESET activated */
+
+ /* tINIT = 200us */
+
+ /*
+ * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation:
+ * number_of_cycles = ((2 + n) * a + 2) * b
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
+ * b = 6A
+ */
+
+ /* Load counters */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+
+ /* Execute count instruction */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /*
+ * transition the RESET to high
+ * Wait for 500us
+ */
+
+ /*
+ * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation
+ * number_of_cycles = ((2 + n) * a + 2) * b
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
+ * b = FF
+ */
+
+ /* Load counters */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0);
+
+ /* bring up clock enable */
+
+ /* tXRP < 250 ck cycles */
+ delay_for_n_mem_clocks(250);
+
+#ifdef RDIMM
+ /*
+ * USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will
+ * USER be propagated to discrete memory devices
+ */
+ rw_mgr_rdimm_initialize();
+#endif
+
+#if LRDIMM
+ /*
+ * USER initialize LRDIMM MB so MRS and RZQ Calibrate commands will be
+ * USER propagated to all sub-ranks. Per LRDIMM spec, all LRDIMM ranks
+ * USER must have
+ * USER RTT_WR set, but only physical ranks 0 and 1 should have RTT_NOM
+ * USER set.
+ * USER Therefore RTT_NOM=0 is broadcast to all ranks, and the non-zero
+ * USER value is
+ * USER programmed directly into Ranks 0 and 1 using physical MRS
+ * targetting.
+ */
+ rw_mgr_rdimm_initialize();
+
+ rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
+ rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
+ rtt_wr = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
+
+ /* Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks */
+ rw_mgr_lrdimm_rc_program(0, 14, 0x9); /*broadcast mode */
+
+ /*
+ * USER Update contents of AC ROM with new RTT WR, DRV values only
+ * (NOM = Off)
+ */
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 0, 2);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 1, 2);
+#endif
+#if RDIMM
+ /*
+ * USER initialize RDIMM buffer so MRS and RZQ Calibrate commands
+ * USER will be
+ * USER propagated to discrete memory devices
+ */
+ rw_mgr_rdimm_initialize();
+#endif
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+
+ continue;
+ }
+
+ /* set rank */
+#if MRS_MIRROR_PING_PONG_ATSO
+ /* Special case */
+ /* SIDE 0 */
+ set_rank_and_odt_mask_for_ping_pong_atso(0,
+ RW_MGR_ODT_MODE_OFF);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_DLL_RESET);
+
+ /* SIDE 1 */
+ set_rank_and_odt_mask_for_ping_pong_atso(1,
+ RW_MGR_ODT_MODE_OFF);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_DLL_RESET_MIRR);
+
+ /* Unmask all CS */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+#else
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * USER Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS2_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS3_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_DLL_RESET_MIRR);
+ } else {
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS2);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS3);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_DLL_RESET);
+ }
+#endif
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
+
+ /* tZQinit = tDLLK = 512 ck cycles */
+ delay_for_n_mem_clocks(512);
+ }
+#if LRDIMM
+ /*
+ * USER Configure LRDIMM to target physical ranks decoded by
+ * RM bits only (ranks 0,1 only)
+ */
+ rw_mgr_lrdimm_rc_program(0, 14, 0xD);
+ /* USER update AC ROM MR1 entry to include RTT_NOM */
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+ (rtt_drv|rtt_nom), 0, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+ (rtt_drv|rtt_nom), 1, 1);
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* USER request to skip the rank */
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ } else {
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1);
+ delay_for_n_mem_clocks(4);
+ }
+ }
+
+ /*
+ * USER Initiate LRDIMM MB->Physical Rank training here
+ * USER -> Set minimum skew mode for levelling - F3RC6 = 0001
+ */
+ rw_mgr_lrdimm_rc_program(3, 6, 0x1);
+ /*
+ * USER -> Set error status output in register F2RC3 for debugging
+ * purposes
+ */
+ rw_mgr_lrdimm_rc_program(2, 3, 0x8);
+
+#ifdef LRDIMM_EXT_CONFIG_ARRAY
+ /* USER Configure LRDIMM ODT/Drive parameters using SPD information */
+ {
+ static const uint8_t lrdimm_cfg_array[][3] =
+ LRDIMM_EXT_CONFIG_ARRAY;
+ uint32_t cfg_reg_ctr;
+
+ for (cfg_reg_ctr = 0; cfg_reg_ctr < (sizeof(lrdimm_cfg_array) /
+ sizeof(lrdimm_cfg_array[0])); cfg_reg_ctr++) {
+ uint32_t lrdimm_fp = (uint32_t)lrdimm_cfg_array
+ [cfg_reg_ctr][0];
+ uint32_t lrdimm_rc = (uint32_t)lrdimm_cfg_array
+ [cfg_reg_ctr][1];
+ uint32_t lrdimm_val = (uint32_t)lrdimm_cfg_array
+ [cfg_reg_ctr][2];
+
+ rw_mgr_lrdimm_rc_program(lrdimm_fp, lrdimm_rc,
+ lrdimm_val);
+ }
+ }
+#endif /* LRDIMM_EXT_CONFIG_ARRAY */
+
+ /* USER -> Initiate MB->DIMM training on the LRDIMM */
+ rw_mgr_lrdimm_rc_program(0, 12, 0x2);
+#if (!STATIC_SKIP_DELAY_LOOPS)
+ /*
+ * USER Wait for max(tcal) * number of physical ranks. Tcal is approx.
+ * 10ms.
+ */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS *
+ RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM; r++)
+ delay_for_n_ns(40000000UL);
+#endif /* !STATIC_SKIP_DELAY_LOOPS */
+ /* USER Place MB back in normal operating mode */
+ rw_mgr_lrdimm_rc_program(0, 12, 0x0);
+#endif /* LRDIMM */
+}
+#endif /* DDR3 */
+
+#if DDR2
+void rw_mgr_mem_initialize(void)
+{
+ uint32_t r;
+
+ TRACE_FUNC();
+
+ /* *** NOTE *** */
+ /* The following STAGE (n) notation refers to the corresponding
+ stage in the Micron datasheet */
+
+ /*
+ *Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2,
+ like in
+ * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2 least
+ significant bits
+ */
+
+ /* *** STAGE (1, 2, 3) *** */
+
+ /* start with CKE low */
+
+ /* tINIT = 200us */
+
+ /* 200us @ 300MHz (3.33 ns) ~ 60000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation:
+ * number_of_cycles = ((2 + n) * b + 2) * a
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 256 , b = 118 => a = FF,
+ * b = 76
+ */
+
+ /*TODO: Need to manage multi-rank */
+
+ /* Load counters */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_CKE_0);
+
+ /* Execute count instruction */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /* Bring up CKE */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+
+ /* *** STAGE (4) */
+ delay_for_n_ns(400);
+
+ /* Multi-rank section begins here */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * * **** *
+ * * NOTE *
+ * * **** *
+ * The following commands must be spaced by tMRD or tRPA
+ * which are in the order
+ * of 2 to 4 full rate cycles. This is peanuts in the
+ * NIOS domain, so for now
+ * we can avoid redundant wait loops
+ */
+
+ /*
+ * Possible FIXME BEN: for HHP, we need to add delay loops
+ * to be sure although, the sequencer write interface by itself
+ * likely has enough delay
+ */
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* *** STAGE (5) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
+
+ /* *** STAGE (6) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
+
+ /* *** STAGE (7) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+ /* *** STAGE (8) */
+ /* DLL reset */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MR_DLL_RESET);
+
+ /* *** STAGE (9) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* *** STAGE (10) */
+
+ /* Issue 2 refresh commands spaced by tREF */
+
+ /* First REFRESH */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+ /* tREF = 200ns */
+ delay_for_n_ns(200);
+
+ /* Second REFRESH */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+ /* Second idle loop */
+ delay_for_n_ns(200);
+
+ /* *** STAGE (11) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MR_CALIB);
+
+ /* *** STAGE (12) */
+ /* OCD defaults */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_EMR_OCD_ENABLE);
+
+ /* *** STAGE (13) */
+ /* OCD exit */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+ /* *** STAGE (14) */
+
+ /*
+ * The memory is now initialized. Before being able to
+ * use it, we must still
+ * wait for the DLL to lock, 200 clock cycles after it
+ * was reset @ STAGE (8).
+ * Since we cannot keep track of time in any other way,
+ * let's start counting from now
+ */
+ delay_for_n_mem_clocks(200);
+ }
+}
+#endif /* DDR2 */
+
+#if LPDDR2
+void rw_mgr_mem_initialize(void)
+{
+ uint32_t r;
+
+ /*
+ * The following STAGE (n) notation refers to the corresponding
+ * stage in the Micron datasheet
+ */
+
+ /*
+ * Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2,
+ * like in
+ * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2 least
+ * significant bits
+ */
+
+
+ /* *** STAGE (1, 2, 3) *** */
+
+ /* start with CKE low */
+
+ /* tINIT1 = 100ns */
+
+ /*
+ * 100ns @ 300MHz (3.333 ns) ~ 30 cycles
+ * If a is the number of iteration in a loop
+ * it takes the following number of cycles to complete the operation
+ * number_of_cycles = (2 + n) * a
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 15 => a = 0x10
+ */
+
+ /* Load counter */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x10));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
+
+ /* Execute count instruction */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
+
+ /* tINIT3 = 200us */
+ delay_for_n_ns(200000);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /* Multi-rank section begins here */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* MRW RESET */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR63_RESET);
+ }
+
+ /* tINIT5 = 10us */
+ delay_for_n_ns(10000);
+
+ /* Multi-rank section begins here */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * MRW ZQC
+ * Note: We cannot calibrate other ranks when the current rank
+ * is calibrating for tZQINIT
+ */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR10_ZQC);
+
+ /* tZQINIT = 1us */
+ delay_for_n_ns(1000);
+
+ /*
+ * * **** *
+ * * NOTE *
+ * * **** *
+ * The following commands must be spaced by tMRW which is
+ * in the order
+ * of 3 to 5 full rate cycles. This is peanuts in the NIOS
+ * domain, so for now
+ * we can avoid redundant wait loops
+ */
+
+ /* MRW MR1 */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_CALIB);
+
+ /* MRW MR2 */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
+
+ /* MRW MR3 */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
+ }
+}
+#endif /* LPDDR2 */
+
+#if LPDDR1
+void rw_mgr_mem_initialize(void)
+{
+ uint32_t r;
+
+ TRACE_FUNC();
+
+ /* *** NOTE *** */
+ /*
+ * The following STAGE (n) notation refers to the corresponding
+ * stage in the Micron datasheet
+ */
+
+ /*
+ * Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2, like
+ * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2 least
+ * significant bits
+ */
+
+ /* *** STAGE (1, 2, 3) *** */
+
+ /* start with CKE high */
+
+ /* tINIT = 200us */
+
+ /*
+ * 200us @ 300MHz (3.33 ns) ~ 60000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation
+ * number_of_cycles = ((2 + n) * b + 2) * a
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 256 , b = 118 => a = FF,
+ * b = 76
+ */
+
+ /* TODO: Need to manage multi-rank */
+
+ /* Load counters */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x76));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_1);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_1_inloop);
+
+ /*Execute count instruction and bring up CKE */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_1);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /* Multi-rank section begins here */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * * **** *
+ * * NOTE *
+ * * **** *
+ * The following commands must be spaced by tMRD or tRPA
+ * which are in the order
+ * of 2 to 4 full rate cycles. This is peanuts in the
+ * NIOS domain, so for now
+ * we can avoid redundant wait loops
+ */
+
+ /*
+ * Possible FIXME BEN: for HHP, we need to add delay loops
+ * to be sure although, the sequencer write interface by
+ * itself likely has enough delay
+ */
+
+ /* *** STAGE (9) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* *** STAGE (10) */
+
+ /* Issue 2 refresh commands spaced by tREF */
+
+ /* First REFRESH */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+ /* tREF = 200ns */
+ delay_for_n_ns(200);
+
+ /* Second REFRESH */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
+
+ /* Second idle loop */
+ delay_for_n_ns(200);
+
+ /* *** STAGE (11) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_CALIB);
+
+ /* *** STAGE (13) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+ }
+}
+#endif /* LPDDR1 */
+
+#if QDRII
+void rw_mgr_mem_initialize(void)
+{
+ TRACE_FUNC();
+
+ /* Turn off QDRII DLL to reset it */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE);
+
+ /* Turn on QDRII DLL and wait 25us for it to lock */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+ delay_for_n_ns(25000);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_dll_lock_wait(void)
+{
+ /* The DLL in QDR requires 25us to lock */
+ delay_for_n_ns(25000);
+}
+#else
+void rw_mgr_mem_dll_lock_wait(void) { }
+#endif
+
+#if RLDRAMII
+void rw_mgr_mem_initialize(void)
+{
+ TRACE_FUNC();
+
+ /* start with memory RESET activated */
+
+ /* tINIT = 200us */
+ delay_for_n_ns(200000);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /*
+ * Dummy MRS, followed by valid MRS commands to reset the DLL on
+ * memory device
+ */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS_INIT);
+
+ /*
+ * 8192 memory cycles for DLL to lock.
+ * 8192 cycles are required by Renesas LLDRAM-II, though we don't
+ * officially support it.
+ */
+ delay_for_n_mem_clocks(8192);
+
+ /* Refresh all banks */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REF_X8);
+
+ /* 1024 memory cycles */
+ delay_for_n_mem_clocks(1024);
+}
+#endif
+
+#if RLDRAM3
+void rw_mgr_mem_initialize(void)
+{
+ TRACE_FUNC();
+ uint32_t r;
+
+ /*
+ * Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2, like in
+ * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2
+ * least significant bits
+ */
+
+ /* start with memory RESET activated */
+
+ /* tINIT = 200us */
+
+ /*
+ * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation:
+ * number_of_cycles = ((2 + n) * a + 2) * b
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
+ * b = 6A
+ */
+
+ /* Load counters */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
+ SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x6A));
+
+ /* Load jump address */
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_inloop);
+
+ /* Execute count instruction */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0);
+
+ /* indicate that memory is stable */
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ /* transition the RESET to high */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+
+ /* Wait for 10000 cycles */
+ delay_for_n_mem_clocks(10000);
+
+ /* Load MR0 */
+ if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4) {
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+ /* Wait MRSC */
+ delay_for_n_mem_clocks(12);
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF3);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_QUAD_RANK);
+ } else {
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
+ }
+
+ /* Wait MRSC */
+ delay_for_n_mem_clocks(12);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+ /* Load MR1 (reset DLL reset & kick off long ZQ calibration) */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_CALIB);
+ }
+
+ /*
+ * Wait 512 cycles for DLL to reset and for ZQ
+ * calibration to complete
+ */
+ delay_for_n_mem_clocks(512);
+
+ /* Load MR2 (set write protocol to Single Bank) */
+ if (RW_MGR_MEM_NUMBER_OF_RANKS == 1)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+ else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
+ else
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_CALIB);
+
+ /* Wait MRSC and a bit more */
+ delay_for_n_mem_clocks(64);
+}
+#endif
+
+/*
+ * At the end of calibration we have to program the user settings in, and
+ * USER hand off the memory to the user.
+ */
+#if DDR3
+void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
+#if LRDIMM
+ uint32_t rtt_nom;
+ uint32_t rtt_drv;
+ uint32_t rtt_wr;
+#endif /* LRDIMM */
+
+ TRACE_FUNC();
+
+#if LRDIMM
+ rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
+ rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
+ rtt_wr = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
+
+ /* Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks */
+ rw_mgr_lrdimm_rc_program(0, 14, 0x9); /*broadcast mode */
+
+ /* USER Update contents of AC ROM with new RTT WR, DRV values */
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 0, 2);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 1, 2);
+#endif /* LRDIMM */
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+#if MRS_MIRROR_PING_PONG_ATSO
+ /* Side 0 */
+ set_rank_and_odt_mask_for_ping_pong_atso(0,
+ RW_MGR_ODT_MODE_OFF);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
+
+ /* Side 1 */
+ set_rank_and_odt_mask_for_ping_pong_atso(1,
+ RW_MGR_ODT_MODE_OFF);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_USER_MIRR);
+
+ /* Unmask all CS */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+#else
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* load up MR settings specified by user */
+
+ /*
+ * Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS2_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS3_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_USER_MIRR);
+ } else {
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS2);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS3);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS0_USER);
+ }
+#endif
+ /*
+ * USER need to wait tMOD (12CK or 15ns) time before issuing
+ * other commands, but we will have plenty of NIOS cycles before
+ * actual handoff so its okay.
+ */
+ }
+
+
+#if LRDIMM
+ delay_for_n_mem_clocks(12);
+ /* USER Set up targetted MRS commands */
+ rw_mgr_lrdimm_rc_program(0, 14, 0xD);
+ /*
+ * USER update AC ROM MR1 entry to include RTT_NOM for physical
+ * ranks 0,1 only
+ */
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+ (rtt_drv|rtt_nom), 0, 1);
+ rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1,
+ (rtt_drv|rtt_nom), 1, 1);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1_MIRR);
+ delay_for_n_mem_clocks(4);
+ } else {
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_MRS1);
+ delay_for_n_mem_clocks(4);
+ }
+ }
+#endif /* LRDIMM */
+}
+#endif /* DDR3 */
+
+#if DDR2
+void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
+
+ TRACE_FUNC();
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* load up MR settings specified by user */
+
+ /*
+ * FIXME BEN: for HHP, we need to add delay loops to be sure
+ * We can check this with BFM perhaps
+ * Likely enough delay in RW_MGR though
+ */
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
+
+ /*
+ * USER need to wait tMOD (12CK or 15ns) time before issuing
+ * other commands,
+ * USER but we will have plenty of NIOS cycles before actual
+ * handoff so its okay.
+ */
+ }
+}
+#endif /* DDR2 */
+
+#if LPDDR2
+void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks... */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* load up MR settings specified by user */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_USER);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
+ }
+}
+#endif /* LPDDR2 */
+
+#if LPDDR1
+void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
+
+ TRACE_FUNC();
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ /* load up MR settings specified by user */
+
+ /*
+ * FIXME BEN: for HHP, we need to add delay loops to be sure
+ * We can check this with BFM perhaps
+ * Likely enough delay in RW_MGR though
+ */
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
+
+ /*
+ * need to wait tMOD (12CK or 15ns) time before issuing
+ * other commands,
+ * but we will have plenty of NIOS cycles before actual
+ * handoff so its okay.
+ */
+ }
+}
+#endif /* LPDDR1 */
+
+#if RLDRAMII
+void rw_mgr_mem_handoff(void)
+{
+ TRACE_FUNC();
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS);
+}
+#endif
+
+#if RLDRAM3
+void rw_mgr_mem_handoff(void)
+{
+ TRACE_FUNC();
+
+ uint32_t r;
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* Load user requested MR1 */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
+ }
+
+ if (RW_MGR_MEM_NUMBER_OF_RANKS == 1)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
+ else if (RW_MGR_MEM_NUMBER_OF_RANKS == 4)
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
+ else
+ IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
+ /* Load user requested MR2 */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
+
+ /* Wait MRSC and a bit more */
+ delay_for_n_mem_clocks(64);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_handoff(void)
+{
+ TRACE_FUNC();
+}
+#endif
+
+#if DDRX
+/*
+ * performs a guaranteed read on the patterns we are going to use during a
+ * read test to ensure memory works
+ */
+uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
+ uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
+ uint32_t all_ranks)
+{
+ uint32_t r, vg;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+ *bit_chk = param->read_correct_mask;
+ correct_mask_vg = param->read_correct_mask_vg;
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ /* Load up a constant bursts of read commands */
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_GUARANTEED_READ);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_GUARANTEED_READ_CONT);
+
+ tmp_bit_chk = 0;
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+ / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP,
+ ((group *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
+ vg) << 2), __RW_MGR_GUARANTEED_READ);
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+ ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
+ __RW_MGR_CLEAR_DQS_ENABLE);
+
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "test_load_patterns(%u,ALL) => (%u == %u) => %lu",
+ group, *bit_chk, param->read_correct_mask,
+ (long unsigned int)(*bit_chk == param->read_correct_mask));
+ return *bit_chk == param->read_correct_mask;
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
+{
+ return rw_mgr_mem_calibrate_read_test_patterns(0, group,
+ num_tries, bit_chk, 1);
+}
+#endif
+
+/* load up the patterns we are going to use during a read test */
+#if DDRX
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+ uint32_t all_ranks)
+{
+ uint32_t r;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+ TRACE_FUNC();
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ /* Load up a constant bursts */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT0);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT1);
+
+#if QUARTER_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x01);
+#endif
+#if HALF_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x02);
+#endif
+#if FULL_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x04);
+#endif
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT2);
+
+#if QUARTER_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x01);
+#endif
+#if HALF_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x02);
+#endif
+#if FULL_RATE
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x04);
+#endif
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT3);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_GUARANTEED_WRITE);
+ }
+
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+#endif
+
+#if QDRII
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+ uint32_t all_ranks)
+{
+ TRACE_FUNC();
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT0);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT1);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_GUARANTEED_WRITE);
+}
+#endif
+
+#if RLDRAMX
+void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+ uint32_t all_ranks)
+{
+ TRACE_FUNC();
+ uint32_t r;
+ uint32_t rank_end = RW_MGR_MEM_NUMBER_OF_RANKS;
+#if QUARTER_RATE
+ uint32_t write_data_cycles = 0x10;
+#else
+ uint32_t write_data_cycles = 0x20;
+#endif
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, write_data_cycles);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT0);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, write_data_cycles);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT1);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, write_data_cycles);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT2);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, write_data_cycles);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_GUARANTEED_WRITE_WAIT3);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_GUARANTEED_WRITE);
+ }
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+#endif
+
+/*
+ * try a read and see if it returns correct data back. has dummy reads
+ * inserted into the mix used to align dqs enable. has more thorough checks
+ * than the regular read test.
+ */
+
+uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
+ uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+ uint32_t all_groups, uint32_t all_ranks)
+{
+ uint32_t r, vg;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+#if LRDIMM
+ /* USER Disable MB Write-levelling mode and enter normal operation */
+ rw_mgr_lrdimm_rc_program(0, 12, 0x0);
+#endif
+
+ *bit_chk = param->read_correct_mask;
+ correct_mask_vg = param->read_correct_mask_vg;
+
+ uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_READ_B2B_WAIT1);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_READ_B2B_WAIT2);
+
+ if (quick_read_mode)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1);
+ /* need at least two (1+1) reads to capture failures */
+ else if (all_groups)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x06);
+ else
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x32);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
+ if (all_groups)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0,
+ RW_MGR_MEM_IF_READ_DQS_WIDTH *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
+ else
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
+
+ tmp_bit_chk = 0;
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+ / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+ IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS :
+ RW_MGR_RUN_SINGLE_GROUP, ((group *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS
+ + vg) << 2), __RW_MGR_READ_B2B);
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+ ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+#if ENABLE_BRINGUP_DEBUGGING
+ load_di_buf_gbl();
+#endif
+
+ #if DDRX
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
+ __RW_MGR_CLEAR_DQS_ENABLE);
+ #endif
+
+ if (all_correct) {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "read_test(%u,ALL,%u) => (%u == %u) => %lu",
+ group, all_groups, *bit_chk, param->read_correct_mask,
+ (long unsigned int)(*bit_chk ==
+ param->read_correct_mask));
+ return *bit_chk == param->read_correct_mask;
+ } else {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "read_test(%u,ONE,%u) => (%u != %lu) => %lu",
+ group, all_groups, *bit_chk, (long unsigned int)0,
+ (long unsigned int)(*bit_chk != 0x00));
+ return *bit_chk != 0x00;
+ }
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
+ uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+ uint32_t all_groups)
+{
+ return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
+ bit_chk, all_groups, 1);
+}
+
+void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
+{
+ /* fiddle with FIFO */
+ if (HARD_PHY) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp);
+ } else if (QUARTER_RATE_MODE && !HARD_VFIFO) {
+ if ((*v & 3) == 3)
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0, grp);
+ else if ((*v & 2) == 2)
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, grp);
+ else if ((*v & 1) == 1)
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
+ else
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+ } else if (HARD_VFIFO) {
+ /* Arria V & Cyclone V have a hard full-rate VFIFO that only
+ has a single incr signal */
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+ } else {
+ if (!HALF_RATE_MODE || (*v & 1) == 1)
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
+ else
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
+ }
+
+ (*v)++;
+ BFM_INC_VFIFO;
+}
+
+/*Used in quick cal to properly loop through the duplicated VFIFOs in
+AV QDRII/RLDRAM */
+static inline void rw_mgr_incr_vfifo_all(uint32_t grp, uint32_t *v)
+{
+#if VFIFO_CONTROL_WIDTH_PER_DQS == 1
+ rw_mgr_incr_vfifo(grp, v);
+#else
+ uint32_t i;
+ for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+ rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, v);
+ if (i != 0)
+ (*v)--;
+ }
+#endif
+}
+
+void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
+{
+ uint32_t i;
+
+ for (i = 0; i < VFIFO_SIZE-1; i++)
+ rw_mgr_incr_vfifo(grp, v);
+}
+
+/* find a good dqs enable to use */
+#if QDRII || RLDRAMX
+uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+ uint32_t v;
+ uint32_t found;
+ uint32_t dtaps_per_ptap, tmp_delay;
+ uint32_t bit_chk;
+
+ TRACE_FUNC("%lu", grp);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_DQS_EN_PHASE);
+
+ found = 0;
+
+ /* first push vfifo until we get a passing read */
+ for (v = 0; v < VFIFO_SIZE && found == 0;) {
+ DPRINT(2, "find_dqs_en_phase: vfifo %lu",
+ BFM_GBL_GET(vfifo_idx));
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ found = 1;
+ }
+
+ if (!found) {
+ /* fiddle with FIFO */
+#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
+ uint32_t i;
+ for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+ rw_mgr_incr_vfifo(grp *
+ VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
+ v--;
+ /* undo increment of v in rw_mgr_incr_vfifo */
+ }
+ v++; /* add back single increment */
+#else
+ rw_mgr_incr_vfifo(grp, &v);
+#endif
+ }
+ }
+
+#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
+ if (found) {
+ /*
+ * we found a vfifo setting that works for at least one vfifo
+ * "group"
+ * Some groups may need next vfifo setting, so check each one to
+ * see if we get new bits passing by increment the vfifo
+ */
+ uint32_t i;
+ uint32_t best_bit_chk_inv;
+ uint8_t found_on_first_check = (v == 1);
+
+ best_bit_chk_inv = ~bit_chk;
+
+ for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+ rw_mgr_incr_vfifo(grp * VFIFO_CONTROL_WIDTH_PER_DQS+i,
+ &v);
+ v--;
+ /*
+ * undo increment of v in rw_mgr_incr_vfifo,
+ * just in case it matters for next check
+ */
+ rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0);
+ if ((bit_chk & best_bit_chk_inv) != 0) {
+ /* found some new bits */
+ best_bit_chk_inv = ~bit_chk;
+ } else {
+ /* no improvement, so put back */
+ rw_mgr_decr_vfifo(grp *
+ VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
+ v++;
+ if (found_on_first_check) {
+ /* found on first vfifo check, so we
+ also need to check earlier vfifo
+ values */
+ rw_mgr_decr_vfifo(grp *
+ VFIFO_CONTROL_WIDTH_PER_DQS +
+ i, &v);
+ v++; /* undo decrement of v in
+ rw_mgr_incr_vfifo, just in case it
+ matters for next check */
+ rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+ if ((bit_chk & best_bit_chk_inv) != 0) {
+ /* found some new bits */
+ best_bit_chk_inv = ~bit_chk;
+ } else {
+ /* no improvement,
+ so put back */
+ rw_mgr_incr_vfifo(grp *
+ VFIFO_CONTROL_WIDTH_PER_DQS +
+ i, &v);
+ v--;
+ }
+ } /* found_on_first_check */
+ } /* check for new bits */
+ } /* loop over all vfifo control bits */
+ }
+#endif
+
+ if (found) {
+ DPRINT(2, "find_dqs_en_phase: found vfifo=%lu",
+ BFM_GBL_GET(vfifo_idx));
+ /*
+ * Not really dqs_enable left/right edge, but close enough
+ * for testing purposes.
+ */
+ BFM_GBL_SET(dqs_enable_left_edge[grp].v,
+ BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_right_edge[grp].v,
+ BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_mid[grp].v,
+ BFM_GBL_GET(vfifo_idx));
+ } else {
+ DPRINT(2, "find_dqs_en_phase: no valid vfifo found");
+ }
+
+ return found;
+}
+#endif
+
+#if DDRX
+uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+ uint32_t i, d, v, p;
+ uint32_t max_working_cnt;
+ uint32_t fail_cnt;
+ uint32_t bit_chk;
+ uint32_t dtaps_per_ptap;
+ uint32_t found_begin, found_end;
+ uint32_t work_bgn, work_mid, work_end, tmp_delay;
+ uint32_t test_status;
+ uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
+
+ TRACE_FUNC("%u", grp);
+ BFM_STAGE("find_dqs_en_phase");
+ ALTERA_ASSERT(grp < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
+
+ fail_cnt = 0;
+
+ /* ************************************************************** */
+ /* * Step 0 : Determine number of delay taps for each phase tap * */
+
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+ ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
+ tmp_delay = 0;
+
+ /* VFIFO sweep */
+#if ENABLE_DQSEN_SWEEP
+ init_di_buffer();
+ work_bgn = 0;
+ for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+ IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ work_bgn = tmp_delay;
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn +=
+ IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ test_status =
+ rw_mgr_mem_calibrate_read_test_all_ranks(grp,
+ 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0);
+
+ /*if (p ==0 && d == 0) */
+ sample_di_data(bit_chk, work_bgn, d, i, p);
+ }
+ /*Increment FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ work_bgn++;
+ }
+ debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
+ debug_data->di_report.flags |= DI_REPORT_FLAGS_DONE;
+#endif
+
+ /* ********************************************************* */
+ /* * Step 1 : First push vfifo until we get a failing read * */
+ for (v = 0; v < VFIFO_SIZE; ) {
+ DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET
+ (vfifo_idx));
+ test_status = rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+ if (!test_status) {
+ fail_cnt++;
+
+ if (fail_cnt == 2)
+ break;
+ }
+
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (v >= VFIFO_SIZE) {
+ /* no failing read found!! Something must have gone wrong */
+ DPRINT(2, "find_dqs_en_phase: vfifo failed");
+ return 0;
+ }
+
+ max_working_cnt = 0;
+
+ /* ******************************************************** */
+ /* * step 2: find first working phase, increment in ptaps * */
+ found_begin = 0;
+ work_bgn = 0;
+ for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+ IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ work_bgn = tmp_delay;
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn +=
+ IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ test_status =
+ rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+
+ if (test_status) {
+ max_working_cnt = 1;
+ found_begin = 1;
+ break;
+ }
+ }
+
+ if (found_begin)
+ break;
+
+ if (p > IO_DQS_EN_PHASE_MAX)
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (found_begin)
+ break;
+ }
+
+ if (i >= VFIFO_SIZE) {
+ /* cannot find working solution */
+ DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap");
+ return 0;
+ }
+
+ work_end = work_bgn;
+
+ /* If d is 0 then the working window covers a phase tap and
+ we can follow the old procedure otherwise, we've found the beginning,
+ and we need to increment the dtaps until we find the end */
+ if (d == 0) {
+ /* ********************************************************* */
+ /* * step 3a: if we have room, back off by one and
+ increment in dtaps * */
+ COV(EN_PHASE_PTAP_OVERLAP);
+
+ /* Special case code for backing up a phase */
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX ;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ p = p - 1;
+ }
+ tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ found_begin = 0;
+ for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn;
+ d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ found_begin = 1;
+ work_bgn = tmp_delay;
+ break;
+ }
+ }
+
+ /* We have found a working dtap before the ptap found above */
+ if (found_begin == 1)
+ max_working_cnt++;
+
+ /* Restore VFIFO to old state before we decremented it
+ (if needed) */
+ p = p + 1;
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ p = 0;
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+
+ /* ********************************************************* */
+ /* * step 4a: go forward from working phase to non working
+ phase, increment in ptaps * */
+ p = p + 1;
+ work_end += IO_DELAY_PER_OPA_TAP;
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ /* fiddle with FIFO */
+ p = 0;
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ found_end = 0;
+ for (; i < VFIFO_SIZE + 1; i++) {
+ for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end
+ += IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ found_end = 1;
+ break;
+ } else {
+ max_working_cnt++;
+ }
+ }
+
+ if (found_end)
+ break;
+
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ p = 0;
+ }
+ }
+
+ if (i >= VFIFO_SIZE + 1) {
+ /* cannot see edge of failing read */
+ DPRINT(2, "find_dqs_en_phase: end: failed");
+ return 0;
+ }
+
+ /* ********************************************************* */
+ /* * step 5a: back off one from last, increment in dtaps * */
+
+ /* Special case code for backing up a phase */
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ p = p - 1;
+ }
+
+ work_end -= IO_DELAY_PER_OPA_TAP;
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ /* * The actual increment of dtaps is done outside of
+ the if/else loop to share code */
+ d = 0;
+
+ DPRINT(2, "find_dqs_en_phase: v/p: vfifo=%lu ptap=%u",
+ BFM_GBL_GET(vfifo_idx), p);
+ } else {
+ /* ******************************************************* */
+ /* * step 3-5b: Find the right edge of the window using
+ delay taps * */
+ COV(EN_PHASE_PTAP_NO_OVERLAP);
+
+ DPRINT(2, "find_dqs_en_phase:vfifo=%lu ptap=%u dtap=%u bgn=%u",
+ BFM_GBL_GET(vfifo_idx), p, d, work_bgn);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].v,
+ BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_left_edge[grp].p, p);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].d, d);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].ps, work_bgn);
+
+ work_end = work_bgn;
+
+ /* * The actual increment of dtaps is done outside of the
+ if/else loop to share code */
+
+ /* Only here to counterbalance a subtract later on which is
+ not needed if this branch of the algorithm is taken */
+ max_working_cnt++;
+ }
+
+ /* The dtap increment to find the failing edge is done here */
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
+ IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ DPRINT(2, "find_dqs_en_phase: end-2: dtap=%u", d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ /* Go back to working dtap */
+ if (d != 0)
+ work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+
+ DPRINT(2, "find_dqs_en_phase: v/p/d: vfifo=%lu ptap=%u dtap=%u end=%u",
+ BFM_GBL_GET(vfifo_idx), p, d-1, work_end);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].v, BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_right_edge[grp].p, p);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].d, d-1);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].ps, work_end);
+
+ if (work_end >= work_bgn) {
+ /* we have a working range */
+ } else {
+ /* nil range */
+ DPRINT(2, "find_dqs_en_phase: end-2: failed");
+ return 0;
+ }
+
+ DPRINT(2, "find_dqs_en_phase: found range [%u,%u]",
+ work_bgn, work_end);
+
+#if USE_DQS_TRACKING
+ /* *************************************************************** */
+ /*
+ * * We need to calculate the number of dtaps that equal a ptap
+ * * To do that we'll back up a ptap and re-find the edge of the
+ * * window using dtaps
+ */
+
+ DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking");
+
+ /* Special case code for backing up a phase */
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ DPRINT(2, "find_dqs_en_phase: backedup cycle/phase: v=%lu p=%u",
+ BFM_GBL_GET(vfifo_idx), p);
+ } else {
+ p = p - 1;
+ DPRINT(2, "find_dqs_en_phase: backedup phase only: v=%lu p=%u",
+ BFM_GBL_GET(vfifo_idx), p);
+ }
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ /*
+ * Increase dtap until we first see a passing read (in case the
+ * window is smaller than a ptap),
+ * and then a failing read to mark the edge of the window again
+ */
+
+ /* Find a passing read */
+ DPRINT(2, "find_dqs_en_phase: find passing read");
+ found_passing_read = 0;
+ found_failing_read = 0;
+ initial_failing_dtap = d;
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ DPRINT(2, "find_dqs_en_phase: testing read d=%u", d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ found_passing_read = 1;
+ break;
+ }
+ }
+
+ if (found_passing_read) {
+ /* Find a failing read */
+ DPRINT(2, "find_dqs_en_phase: find failing read");
+ for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ DPRINT(2, "find_dqs_en_phase: testing read d=%u", d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ found_failing_read = 1;
+ break;
+ }
+ }
+ } else {
+ DPRINT(1, "find_dqs_en_phase: failed to calculate dtaps ");
+ DPRINT(1, "per ptap. Fall back on static value");
+ }
+
+ /*
+ * The dynamically calculated dtaps_per_ptap is only valid if we
+ * found a passing/failing read. If we didn't, it means d hit the max
+ * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
+ * statically calculated value.
+ */
+ if (found_passing_read && found_failing_read)
+ dtaps_per_ptap = d - initial_failing_dtap;
+
+ ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
+ IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+ DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%u - %u = %u", d,
+ initial_failing_dtap, dtaps_per_ptap);
+#endif
+
+ /* ******************************************** */
+ /* * step 6: Find the centre of the window * */
+
+ work_mid = (work_bgn + work_end) / 2;
+ tmp_delay = 0;
+
+ DPRINT(2, "work_bgn=%d work_end=%d work_mid=%d", work_bgn,
+ work_end, work_mid);
+ /* Get the middle delay to be less than a VFIFO delay */
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX;
+ p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+ ;
+ DPRINT(2, "vfifo ptap delay %d", tmp_delay);
+ while (work_mid > tmp_delay)
+ work_mid -= tmp_delay;
+ DPRINT(2, "new work_mid %d", work_mid);
+ tmp_delay = 0;
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid;
+ p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+ ;
+ tmp_delay -= IO_DELAY_PER_OPA_TAP;
+ DPRINT(2, "new p %d, tmp_delay=%d", p-1, tmp_delay);
+ for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid; d++,
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
+ ;
+ DPRINT(2, "new d %d, tmp_delay=%d", d, tmp_delay);
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p-1);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ /*
+ * push vfifo until we can successfully calibrate. We can do this
+ * because the largest possible margin in 1 VFIFO cycle.
+ */
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu",
+ BFM_GBL_GET(vfifo_idx));
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ break;
+ }
+
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (i >= VFIFO_SIZE) {
+ DPRINT(2, "find_dqs_en_phase: center: failed");
+ return 0;
+ }
+ DPRINT(2, "find_dqs_en_phase: center found: vfifo=%lu ptap=%u dtap=%u",
+ BFM_GBL_GET(vfifo_idx), p-1, d);
+ BFM_GBL_SET(dqs_enable_mid[grp].v, BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_mid[grp].p, p-1);
+ BFM_GBL_SET(dqs_enable_mid[grp].d, d);
+ BFM_GBL_SET(dqs_enable_mid[grp].ps, work_mid);
+ return 1;
+}
+#endif
+
+
+/* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
+dq_in_delay values */
+static inline uint32_t
+rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
+{
+#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
+ uint32_t found;
+ uint32_t i;
+ uint32_t p;
+ uint32_t d;
+ uint32_t r;
+
+ const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
+ (RW_MGR_MEM_DQ_PER_READ_DQS-1);
+ /* we start at zero, so have one less dq to devide among */
+
+ TRACE_FUNC("(%u,%u,%u)", write_group, read_group, test_bgn);
+
+ /* try different dq_in_delays since the dq path is shorter than dqs */
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+ i++, p++, d += delay_step) {
+ DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_");
+ DPRINT(1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
+ write_group, read_group);
+ DPRINT(1, "r=%u, i=%u p=%u d=%u", r, i , p, d);
+ scc_mgr_set_dq_in_delay(write_group, p, d);
+ scc_mgr_load_dq(p);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+
+ DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq");
+ DPRINT(1, "_in_delay: g=%u/%u found=%u; Reseting delay chain to zero",
+ write_group, read_group, found);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+ i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, p, 0);
+ scc_mgr_load_dq(p);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ return found;
+#else
+ return rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+#endif
+}
+
+/* per-bit deskew DQ and center */
+uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
+ uint32_t use_read_test, uint32_t update_fom)
+{
+ uint32_t i, p, d, min_index;
+ /* Store these as signed since there are comparisons with
+ signed numbers */
+ uint32_t bit_chk;
+ uint32_t sticky_bit_chk;
+ int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t mid;
+ int32_t orig_mid_min, mid_min;
+ int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
+ final_dqs_en;
+ int32_t dq_margin, dqs_margin;
+ uint32_t stop;
+
+ TRACE_FUNC("%u %u", read_group, test_bgn);
+
+ ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+ start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
+
+ select_curr_shadow_reg_using_rank(rank_bgn);
+
+ /* per-bit deskew */
+
+ /* set the left and right edge of each bit to an illegal value */
+ /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ }
+
+ /* Search for the left edge of the window for each bit */
+ for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ if (use_read_test) {
+ stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+ read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+ &bit_chk, 0, 0);
+ } else {
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group - (write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+ stop = (bit_chk == 0);
+ }
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+ DPRINT(2, "vfifo_center(left): dtap=%u => " BTFLD_FMT " == "
+ BTFLD_FMT " && %u", d, sticky_bit_chk,
+ param->read_correct_mask, stop);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ /* Remember a passing test as the
+ left_edge */
+ left_edge[i] = d;
+ } else {
+ /* If a left edge has not been seen yet,
+ then a future passing test will mark
+ this edge as the right edge */
+ if (left_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Reset DQ delay chains to 0 */
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
+ sticky_bit_chk = 0;
+ for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
+ DPRINT(2, "vfifo_center: left_edge[%u]: %d right_edge[%u]: %d",
+ i, left_edge[i], i, right_edge[i]);
+
+ /*
+ * Check for cases where we haven't found the left edge,
+ * which makes our assignment of the the right edge invalid.
+ * Reset it to the illegal value.
+ */
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
+ right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ DPRINT(2, "vfifo_center: reset right_edge[%u]: %d",
+ i, right_edge[i]);
+ }
+
+ /*
+ * Reset sticky bit (except for bits where we have seen
+ * both the left and right edge).
+ */
+ sticky_bit_chk = sticky_bit_chk << 1;
+ if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
+ (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ sticky_bit_chk = sticky_bit_chk | 1;
+ }
+
+ if (i == 0)
+ break;
+ }
+
+ /* Search for the right edge of the window for each bit */
+ for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
+ scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ uint32_t delay = d + start_dqs_en;
+ if (delay > IO_DQS_EN_DELAY_MAX)
+ delay = IO_DQS_EN_DELAY_MAX;
+ scc_mgr_set_dqs_en_delay(read_group, delay);
+ }
+ scc_mgr_load_dqs(read_group);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ if (use_read_test) {
+ stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+ read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+ &bit_chk, 0, 0);
+ } else {
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group - (write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+ stop = (bit_chk == 0);
+ }
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+
+ DPRINT(2, "vfifo_center(right): dtap=%u => " BTFLD_FMT " == "
+ BTFLD_FMT " && %u", d, sticky_bit_chk,
+ param->read_correct_mask, stop);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ /* Remember a passing test as
+ the right_edge */
+ right_edge[i] = d;
+ } else {
+ if (d != 0) {
+ /* If a right edge has not been
+ seen yet, then a future passing
+ test will mark this edge as the
+ left edge */
+ if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1) {
+ left_edge[i] = -(d + 1);
+ }
+ } else {
+ /* d = 0 failed, but it passed
+ when testing the left edge,
+ so it must be marginal,
+ set it to -1 */
+ if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_IN_DELAY_MAX
+ + 1) {
+ right_edge[i] = -1;
+ }
+ /* If a right edge has not been
+ seen yet, then a future passing
+ test will mark this edge as the
+ left edge */
+ else if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX +
+ 1) {
+ left_edge[i] = -(d + 1);
+ }
+ }
+ }
+
+ DPRINT(2, "vfifo_center[r,d=%u]: ", d);
+ DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d ",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ DPRINT(2, "right_edge[%u]: %d", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Check that all bits have a window */
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ DPRINT(2, "vfifo_center: left_edge[%u]: %d right_edge[%u]: %d",
+ i, left_edge[i], i, right_edge[i]);
+ BFM_GBL_SET(dq_read_left_edge[read_group][i], left_edge[i]);
+ BFM_GBL_SET(dq_read_right_edge[read_group][i], right_edge[i]);
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
+ == IO_IO_IN_DELAY_MAX + 1)) {
+ /*
+ * Restore delay chain settings before letting the loop
+ * in rw_mgr_mem_calibrate_vfifo to retry different
+ * dqs/ck relationships.
+ */
+ scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ scc_mgr_set_dqs_en_delay(read_group,
+ start_dqs_en);
+ }
+ scc_mgr_load_dqs(read_group);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ DPRINT(1, "vfifo_center: failed to find edge [%u]: %d %d",
+ i, left_edge[i], right_edge[i]);
+ if (use_read_test) {
+ set_failing_group_stage(read_group *
+ RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ } else {
+ set_failing_group_stage(read_group *
+ RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ }
+ return 0;
+ }
+ }
+
+ /* Find middle of window for each DQ bit */
+ mid_min = left_edge[0] - right_edge[0];
+ min_index = 0;
+ for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ mid = left_edge[i] - right_edge[i];
+ if (mid < mid_min) {
+ mid_min = mid;
+ min_index = i;
+ }
+ }
+
+ /*
+ * -mid_min/2 represents the amount that we need to move DQS.
+ * If mid_min is odd and positive we'll need to add one to
+ * make sure the rounding in further calculations is correct
+ * (always bias to the right), so just add 1 for all positive values.
+ */
+ if (mid_min > 0)
+ mid_min++;
+
+ mid_min = mid_min / 2;
+
+ DPRINT(1, "vfifo_center: mid_min=%d (index=%u)", mid_min, min_index);
+
+ /* Determine the amount we can change DQS (which is -mid_min) */
+ orig_mid_min = mid_min;
+#if ENABLE_DQS_IN_CENTERING
+ new_dqs = start_dqs - mid_min;
+ if (new_dqs > IO_DQS_IN_DELAY_MAX)
+ new_dqs = IO_DQS_IN_DELAY_MAX;
+ else if (new_dqs < 0)
+ new_dqs = 0;
+
+ mid_min = start_dqs - new_dqs;
+ DPRINT(1, "vfifo_center: new mid_min=%d new_dqs=%d",
+ mid_min, new_dqs);
+
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
+ mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
+ else if (start_dqs_en - mid_min < 0)
+ mid_min += start_dqs_en - mid_min;
+ }
+ new_dqs = start_dqs - mid_min;
+#else
+ new_dqs = start_dqs;
+ mid_min = 0;
+#endif
+
+ DPRINT(1, "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d",
+ start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
+ new_dqs, mid_min);
+
+ /* Initialize data for export structures */
+ dqs_margin = IO_IO_IN_DELAY_MAX + 1;
+ dq_margin = IO_IO_IN_DELAY_MAX + 1;
+
+ /* add delay to bring centre of all DQ windows to the same "level" */
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ /* Use values before divide by 2 to reduce round off error */
+ shift_dq = (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index]))/2 +
+ (orig_mid_min - mid_min);
+
+ DPRINT(2, "vfifo_center: before: shift_dq[%u]=%d", i,
+ shift_dq);
+
+ if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) >
+ (int32_t)IO_IO_IN_DELAY_MAX) {
+ shift_dq = (int32_t)IO_IO_IN_DELAY_MAX -
+ READ_SCC_DQ_IN_DELAY(i);
+ } else if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) < 0) {
+ shift_dq = -(int32_t)READ_SCC_DQ_IN_DELAY(p);
+ }
+ DPRINT(2, "vfifo_center: after: shift_dq[%u]=%d", i,
+ shift_dq);
+ final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq;
+ scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
+ scc_mgr_load_dq(p);
+
+ DPRINT(2, "vfifo_center: margin[%u]=[%d,%d]", i,
+ left_edge[i] - shift_dq + (-mid_min),
+ right_edge[i] + shift_dq - (-mid_min));
+ /* To determine values for export structures */
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+ dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+ dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
+
+#if ENABLE_DQS_IN_CENTERING
+ final_dqs = new_dqs;
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+ final_dqs_en = start_dqs_en - mid_min;
+#else
+ final_dqs = start_dqs;
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+ final_dqs_en = start_dqs_en;
+#endif
+
+ /* Move DQS-en */
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
+ scc_mgr_load_dqs(read_group);
+ }
+
+#if QDRII || RLDRAMX
+ /*
+ * Move DQS. Do it gradually to minimize the chance of causing a timing
+ * failure in core FPGA logic driven by an input-strobe-derived clock.
+ */
+ d = READ_SCC_DQS_IN_DELAY(read_group);
+ while (d != final_dqs) {
+ if (d > final_dqs)
+ --d;
+ else
+ ++d;
+
+ scc_mgr_set_dqs_bus_in_delay(read_group, d);
+ scc_mgr_load_dqs(read_group);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+#else
+ /* Move DQS */
+ scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
+ scc_mgr_load_dqs(read_group);
+#endif
+ DPRINT(2, "vfifo_center: dq_margin=%d dqs_margin=%d",
+ dq_margin, dqs_margin);
+
+ /* Do not remove this line as it makes sure all of our decisions
+ have been applied */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ return (dq_margin >= 0) && (dqs_margin >= 0);
+}
+
+/*
+ * calibrate the read valid prediction FIFO.
+ *
+ * - read valid prediction will consist of finding a good DQS enable phase,
+ * DQS enable delay, DQS input phase, and DQS input delay.
+ * - we also do a per-bit deskew on the DQ lines.
+ */
+uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, uint32_t test_bgn)
+{
+ uint32_t p, d, rank_bgn, sr;
+ uint32_t dtaps_per_ptap;
+ uint32_t tmp_delay;
+ uint32_t bit_chk;
+ uint32_t grp_calibrated;
+ uint32_t write_group, write_test_bgn;
+ uint32_t failed_substage;
+
+ TRACE_FUNC("%u %u", read_group, test_bgn);
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_VFIFO);
+
+ if (DDRX) {
+ write_group = read_group;
+ write_test_bgn = test_bgn;
+ } else {
+ write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS;
+ }
+
+ /* USER Determine number of delay taps for each phase tap */
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ if (!QDRII) {
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+ tmp_delay = 0;
+ }
+
+ /* update info for sims */
+ reg_file_set_group(read_group);
+
+ grp_calibrated = 0;
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
+ failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
+
+ for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
+ if (DDRX || RLDRAMX) {
+ /*
+ * In RLDRAMX we may be messing the delay of pins in
+ * the same write group but outside of the current read
+ * the group, but that's ok because we haven't
+ * calibrated output side yet.
+ */
+ if (d > 0) {
+ scc_mgr_apply_group_all_out_delay_add_all_ranks
+ (write_group, write_test_bgn, d);
+ }
+ }
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
+ p++) {
+ /* set a particular dqdqs phase */
+ if (DDRX) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(
+ read_group, p);
+ }
+
+ /*
+ * Previous iteration may have failed as a result of
+ * ck/dqs or ck/dk violation, in which case the device
+ * may require special recovery.
+ */
+ if (DDRX || RLDRAMX) {
+ if (d != 0 || p != 0)
+ recover_mem_device_after_ck_dqs_violation();
+ }
+
+ DPRINT(1, "calibrate_vfifo: g=%u p=%u d=%u",
+ read_group, p, d);
+ BFM_GBL_SET(gwrite_pos[read_group].p, p);
+ BFM_GBL_SET(gwrite_pos[read_group].d, d);
+
+ /*
+ * Load up the patterns used by read calibration
+ * using current DQDQS phase.
+ */
+ rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+#if DDRX
+ if (!(gbl->phy_debug_mode_flags &
+ PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
+ if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (read_group, 1, &bit_chk)) {
+ DPRINT(1, "Guaranteed read test failed:");
+ DPRINT(1, " g=%u p=%u d=%u", read_group,
+ p, d);
+ break;
+ }
+ }
+#endif
+
+/* case:56390 */
+ grp_calibrated = 1;
+ if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+ (write_group, read_group, test_bgn)) {
+ /*
+ * USER Read per-bit deskew can be done on a
+ * per shadow register basis.
+ */
+ for (rank_bgn = 0, sr = 0;
+ rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG,
+ ++sr) {
+ /*
+ * Determine if this set of ranks
+ * should be skipped entirely.
+ */
+ if (!param->skip_shadow_regs[sr]) {
+ /* Select shadow register set */
+ select_shadow_regs_for_update
+ (rank_bgn, read_group, 1);
+
+ /*
+ * If doing read after write
+ * calibration, do not update
+ * FOM, now - do it then.
+ */
+#if READ_AFTER_WRITE_CALIBRATION
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, write_group,
+ read_group, test_bgn, 1, 0)) {
+#else
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, write_group,
+ read_group, test_bgn, 1, 1)) {
+#endif
+ grp_calibrated = 0;
+ failed_substage =
+ CAL_SUBSTAGE_VFIFO_CENTER;
+ }
+ }
+ }
+ } else {
+ grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
+ }
+ }
+ }
+
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
+ failed_substage);
+ return 0;
+ }
+
+ /*
+ * Reset the delay chains back to zero if they have moved > 1
+ * (check for > 1 because loop will increase d even when pass in
+ * first case).
+ */
+ if (DDRX || RLDRAMII) {
+ if (d > 2)
+ scc_mgr_zero_group(write_group, write_test_bgn, 1);
+ }
+
+
+ return 1;
+}
+
+#if READ_AFTER_WRITE_CALIBRATION
+/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
+uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, uint32_t test_bgn)
+{
+ uint32_t rank_bgn, sr;
+ uint32_t grp_calibrated;
+ uint32_t write_group;
+
+ TRACE_FUNC("%u %u", read_group, test_bgn);
+
+ /* update info for sims */
+
+ reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+ if (DDRX) {
+ write_group = read_group;
+ } else {
+ write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ }
+
+ /* update info for sims */
+ reg_file_set_group(read_group);
+
+ grp_calibrated = 1;
+ /* Read per-bit deskew can be done on a per shadow register basis */
+ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+ /* Determine if this set of ranks should be skipped entirely */
+ if (!param->skip_shadow_regs[sr]) {
+ /* Select shadow register set */
+ select_shadow_regs_for_update(rank_bgn, read_group, 1);
+
+ /* This is the last calibration round, update FOM here */
+ if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
+ write_group,
+ read_group,
+ test_bgn, 0,
+ 1)) {
+ grp_calibrated = 0;
+ }
+ }
+ }
+
+
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group,
+ CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ return 0;
+ }
+
+ return 1;
+}
+#endif
+
+
+/* Calibrate LFIFO to find smallest read latency */
+uint32_t rw_mgr_mem_calibrate_lfifo(void)
+{
+ uint32_t found_one;
+ uint32_t bit_chk;
+
+ TRACE_FUNC();
+ BFM_STAGE("lfifo");
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_LFIFO);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
+
+ /* Load up the patterns used by read calibration for all ranks */
+ rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+ found_one = 0;
+
+ do {
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+ DPRINT(2, "lfifo: read_lat=%u", gbl->curr_read_lat);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
+ NUM_READ_TESTS,
+ PASS_ALL_BITS,
+ &bit_chk, 1)) {
+ break;
+ }
+
+ found_one = 1;
+ /* reduce read latency and see if things are working */
+ /* correctly */
+ gbl->curr_read_lat--;
+ } while (gbl->curr_read_lat > 0);
+
+ /* reset the fifos to get pointers to known state */
+
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+ if (found_one) {
+ /* add a fudge factor to the read latency that was determined */
+ gbl->curr_read_lat += 2;
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+ DPRINT(2, "lfifo: success: using read_lat=%u",
+ gbl->curr_read_lat);
+
+ return 1;
+ } else {
+ set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
+ CAL_SUBSTAGE_READ_LATENCY);
+
+ DPRINT(2, "lfifo: failed at initial read_lat=%u",
+ gbl->curr_read_lat);
+
+ return 0;
+ }
+}
+
+/*
+ * issue write test command.
+ * two variants are provided. one that just tests a write pattern and
+ * another that tests datamask functionality.
+ */
+
+#if QDRII
+void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
+{
+ uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
+ ENABLE_SUPER_QUICK_CALIBRATION);
+ /*
+ * CNTR 1 - This is used to ensure enough time elapses for
+ * read data to come back.
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
+
+ if (test_dm) {
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+ if (quick_write_mode)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+ else
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group) << 2,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0);
+ } else {
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+ if (quick_write_mode)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+ else
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group) << 2,
+ __RW_MGR_LFSR_WR_RD_BANK_0);
+ }
+}
+#else
+void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
+{
+ uint32_t mcc_instruction;
+ uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
+ ENABLE_SUPER_QUICK_CALIBRATION);
+ uint32_t rw_wl_nop_cycles;
+
+ /*
+ * Set counter and jump addresses for the right
+ * number of NOP cycles.
+ * The number of supported NOP cycles can range from -1 to infinity
+ * Three different cases are handled:
+ *
+ * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
+ * mechanism will be used to insert the right number of NOPs
+ *
+ * 2. For a number of NOP cycles equals to 0, the micro-instruction
+ * issuing the write command will jump straight to the
+ * micro-instruction that turns on DQS (for DDRx), or outputs write
+ * data (for RLD), skipping
+ * the NOP micro-instruction all together
+ *
+ * 3. A number of NOP cycles equal to -1 indicates that DQS must be
+ * turned on in the same micro-instruction that issues the write
+ * command. Then we need
+ * to directly jump to the micro-instruction that sends out the data
+ *
+ * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
+ * (2 and 3). One jump-counter (0) is used to perform multiple
+ * write-read operations.
+ * one counter left to issue this command in "multiple-group" mode
+ */
+
+#if MULTIPLE_AFI_WLAT
+ rw_wl_nop_cycles = gbl->rw_wl_nop_cycles_per_group[group];
+#else
+ rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
+#endif
+
+ if (rw_wl_nop_cycles == -1) {
+ #if DDRX
+ /*
+ * CNTR 2 - We want to execute the special write operation that
+ * turns on DQS right away and then skip directly to the
+ * instruction that sends out the data. We set the counter to a
+ * large number so that the jump is always taken.
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+ /* CNTR 3 - Not used */
+ if (test_dm) {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+ } else {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+ }
+
+ #endif
+ } else if (rw_wl_nop_cycles == 0) {
+ #if DDRX
+ /*
+ * CNTR 2 - We want to skip the NOP operation and go straight
+ * to the DQS enable instruction. We set the counter to a large
+ * number so that the jump is always taken.
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+ /* CNTR 3 - Not used */
+ if (test_dm) {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
+ } else {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
+ }
+ #endif
+
+ #if RLDRAMX
+ /*
+ * CNTR 2 - We want to skip the NOP operation and go straight
+ * to the write data instruction. We set the counter to a large
+ * number so that the jump is always taken.
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
+
+ /* CNTR 3 - Not used */
+ if (test_dm) {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
+ } else {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
+ }
+ #endif
+ } else {
+ /* CNTR 2 - In this case we want to execute the next instruction
+ and NOT take the jump. So we set the counter to 0. The jump
+ address doesn't count */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0);
+
+ /* CNTR 3 - Set the nop counter to the number of cycles we
+ need to loop for, minus 1 */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1);
+ if (test_dm) {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+ } else {
+ mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+ }
+ }
+
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ if (quick_write_mode)
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
+ else
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction);
+
+ /*
+ * CNTR 1 - This is used to ensure enough time elapses
+ * for read data to come back.
+ */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
+
+ if (test_dm) {
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
+ } else {
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
+ }
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
+}
+#endif
+
+/* Test writes, can check for a single bit pass or multiple bit pass */
+uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
+ uint32_t *bit_chk, uint32_t all_ranks)
+{
+ uint32_t r;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t vg;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+ *bit_chk = param->write_correct_mask;
+ correct_mask_vg = param->write_correct_mask_vg;
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ tmp_bit_chk = 0;
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+ tmp_bit_chk = tmp_bit_chk <<
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+ rw_mgr_mem_calibrate_write_test_issue(write_group *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
+ use_dm);
+
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
+ ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+ DPRINT(2, "write_test(%u,%u,%u) :[%u,%u] "
+ BTFLD_FMT " & ~%x => " BTFLD_FMT " => "
+ BTFLD_FMT, write_group, use_dm, all_correct,
+ r, vg, correct_mask_vg,
+ IORD_32DIRECT(BASE_RW_MGR, 0), correct_mask_vg
+ & ~IORD_32DIRECT(BASE_RW_MGR, 0),
+ tmp_bit_chk);
+
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+ if (all_correct) {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "write_test(%u,%u,ALL) : " BTFLD_FMT " == "
+ BTFLD_FMT " => %lu", write_group, use_dm,
+ *bit_chk, param->write_correct_mask,
+ (long unsigned int)(*bit_chk ==
+ param->write_correct_mask));
+ return *bit_chk == param->write_correct_mask;
+ } else {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "write_test(%u,%u,ONE) : " BTFLD_FMT " != ",
+ write_group, use_dm, *bit_chk);
+ DPRINT(2, "%lu" " => %lu", (long unsigned int)0,
+ (long unsigned int)(*bit_chk != 0));
+ return *bit_chk != 0x00;
+ }
+}
+
+static inline uint32_t rw_mgr_mem_calibrate_write_test_all_ranks
+(uint32_t write_group, uint32_t use_dm, uint32_t all_correct, uint32_t *bit_chk)
+{
+ return rw_mgr_mem_calibrate_write_test(0, write_group,
+ use_dm, all_correct, bit_chk, 1);
+}
+
+
+/* level the write operations */
+
+#if DYNAMIC_CALIBRATION_MODE || STATIC_QUICK_CALIBRATION
+
+#if QDRII
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ return 0;
+}
+
+#endif
+
+#if RLDRAMX
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t d;
+ uint32_t bit_chk;
+
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ /* update info for sims */
+
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+ reg_file_set_group(g);
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ break;
+ }
+ }
+
+ if (d > IO_IO_OUT1_DELAY_MAX) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ return 1;
+}
+
+#else
+
+/* Write Levelling -- Super Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t d;
+ uint32_t bit_chk;
+
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ /* The first call to this function will calibrate all groups */
+ if (g != 0)
+ return 1;
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+ reg_file_set_group(g);
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ break;
+ }
+ }
+
+ if (d > IO_IO_OUT1_DELAY_MAX) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
+
+ /* Now copy the calibration settings to all other groups */
+ for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_WRITE_DQS;
+ g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; g++,
+ test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ /* Verify that things worked as expected */
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WLEVEL_COPY);
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+#endif
+#endif
+
+#if DDRX
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+
+/* Write Levelling -- Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t p;
+ uint32_t bit_chk;
+
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ /* update info for sims */
+
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+ /* maximum phases for the sweep */
+
+ /* starting phases */
+
+ /* update info for sims */
+ reg_file_set_group(g);
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ break;
+ }
+ }
+
+ if (p > IO_DQDQS_OUT_PHASE_MAX) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ return 1;
+}
+
+#else
+
+/* Write Levelling -- Super Quick Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t p;
+ uint32_t bit_chk;
+
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ /* The first call to this function will calibrate all groups */
+ if (g != 0)
+ return 1;
+
+ /* update info for sims */
+
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+ /* maximum phases for the sweep */
+
+ /* starting phases */
+
+ /* update info for sims */
+ reg_file_set_group(g);
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ break;
+ }
+ }
+
+ if (p > IO_DQDQS_OUT_PHASE_MAX) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
+
+ /* Now copy the calibration settings to all other groups */
+ for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_READ_DQS;
+ (g < RW_MGR_MEM_IF_READ_DQS_WIDTH); g++,
+ test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, g);
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ /* Verify that things worked as expected */
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WLEVEL_COPY);
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0);
+ return 0;
+ }
+ }
+
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0);
+ return 1;
+}
+
+#endif
+#endif
+
+#endif
+
+#if QDRII
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+
+ return 0;
+}
+#endif
+
+#if RLDRAMX
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t d;
+ uint32_t bit_chk;
+ uint32_t work_bgn, work_end;
+ uint32_t d_bgn, d_end;
+ uint32_t found_begin;
+
+ TRACE_FUNC("%lu %lu", g, test_bgn);
+ BFM_STAGE("wlevel");
+
+ ALTERA_ASSERT(g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+ /* maximum delays for the sweep */
+
+ /* update info for sims */
+ reg_file_set_group(g);
+
+ /* starting and end range where writes work */
+ scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
+
+ work_bgn = 0;
+ work_end = 0;
+
+ /* step 1: find first working dtap, increment in dtaps */
+ found_begin = 0;
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++,
+ work_bgn += IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: begin: d=%lu", d);
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ found_begin = 1;
+ d_bgn = d;
+ break;
+ } else {
+ recover_mem_device_after_ck_dqs_violation();
+ }
+ }
+
+ if (!found_begin) {
+ /* fail, cannot find first working delay */
+ DPRINT(2, "wlevel: failed to find first working delay", d);
+
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ DPRINT(2, "wlevel: found begin d=%lu work_bgn=%lu", d_bgn, work_bgn);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d_bgn);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+ /* step 2 : find first non-working dtap, increment in dtaps */
+ work_end = work_bgn;
+ d = d + 1;
+ for (; d <= IO_IO_OUT1_DELAY_MAX; d++,
+ work_end += IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: end: d=%lu", d);
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ recover_mem_device_after_ck_dqs_violation();
+ break;
+ }
+ }
+ d_end = d - 1;
+
+ if (d_end >= d_bgn) {
+ /* we have a working range */
+ } else {
+ /* nil range */
+ /*Note: don't think this is possible */
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+ return 0;
+ }
+
+ DPRINT(2, "wlevel: found end: d=%lu work_end=%lu", d_end, work_end);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d_end);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
+
+ /* center */
+ d = (d_end + d_bgn) / 2;
+
+ DPRINT(2, "wlevel: found middle: d=%lu work_mid=%lu", d,
+ (work_end + work_bgn)/2);
+ BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_mid[g].ps, (work_end + work_bgn)/2);
+
+ scc_mgr_zero_group(g, test_bgn, 1);
+ scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
+
+ return 1;
+}
+#endif
+
+
+#if DDRX
+/* Write Levelling -- Full Calibration */
+uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t p, d;
+
+#if CALIBRATE_BIT_SLIPS
+#if QUARTER_RATE_MODE
+ int32_t num_additional_fr_cycles = 3;
+#elif HALF_RATE_MODE
+ int32_t num_additional_fr_cycles = 1;
+#else
+ int32_t num_additional_fr_cycles = 0;
+#endif
+#if MULTIPLE_AFI_WLAT
+ num_additional_fr_cycles++;
+#endif
+#else
+ uint32_t num_additional_fr_cycles = 0;
+#endif
+ uint32_t bit_chk;
+ uint32_t work_bgn, work_end, work_mid;
+ uint32_t tmp_delay;
+ uint32_t found_begin;
+ uint32_t dtaps_per_ptap;
+
+ TRACE_FUNC("%u %u", g, test_bgn);
+ BFM_STAGE("wlevel");
+
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+ /* maximum phases for the sweep */
+#if USE_DQS_TRACKING
+ dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0);
+#else
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+ tmp_delay = 0;
+#endif
+
+ /* starting phases */
+
+ /* update info for sims */
+ reg_file_set_group(g);
+
+ /* starting and end range where writes work */
+ scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
+
+ work_bgn = 0;
+ work_end = 0;
+
+ /* step 1: find first working phase, increment in ptaps, and then in
+ dtaps if ptaps doesn't find a working phase */
+ found_begin = 0;
+ tmp_delay = 0;
+ for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
+ IO_DELAY_PER_DCHAIN_TAP) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ work_bgn = tmp_delay;
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX +
+ num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH;
+ p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "wlevel: begin-1: p=%u d=%u", p, d);
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ found_begin = 1;
+ break;
+ }
+ }
+
+ if (found_begin)
+ break;
+ }
+
+ if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles *
+ IO_DLL_CHAIN_LENGTH) {
+ /* fail, cannot find first working phase */
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ DPRINT(2, "wlevel: first valid p=%u d=%u", p, d);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+ /*
+ * If d is 0 then the working window covers a phase tap and we can
+ * follow the old procedure otherwise, we've found the beginning, and
+ * we need to increment the dtaps until we find the end.
+ */
+ if (d == 0) {
+ COV(WLEVEL_PHASE_PTAP_OVERLAP);
+ work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
+
+ /* step 2: if we have room, back off by one and increment
+ in dtaps */
+
+ if (p > 0) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
+
+ tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX &&
+ tmp_delay < work_bgn; d++,
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: begin-2: p=%u d=%u",
+ (p-1), d);
+ scc_mgr_apply_group_all_out_delay_all_ranks
+ (g, test_bgn, d);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks
+ (g, 0, PASS_ONE_BIT, &bit_chk)) {
+ work_bgn = tmp_delay;
+ break;
+ }
+ }
+
+ scc_mgr_apply_group_all_out_delay_all_ranks(g,
+ test_bgn,
+ 0);
+ } else {
+ DPRINT(2, "wlevel: found begin-B: p=%u d=%u ps=%u",
+ p, d, work_bgn);
+
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+ }
+
+ /* step 3: go forward from working phase to non working phase,
+ increment in ptaps */
+
+ for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX +
+ num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH; p++,
+ work_end += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "wlevel: end-0: p=%u d=0", p);
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk)) {
+ break;
+ }
+ }
+
+ /*
+ * step 4: back off one from last, increment in dtaps.
+ * The actual increment is done outside the if/else statement
+ * since it is shared with other code.
+ */
+ p -= 1;
+
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ work_end -= IO_DELAY_PER_OPA_TAP;
+ d = 0;
+ } else {
+ /*
+ * step 5: Window doesn't cover phase tap, just increment
+ * dtaps until failure.
+ * The actual increment is done outside the if/else statement
+ * since it is shared with other code.
+ */
+ COV(WLEVEL_PHASE_PTAP_NO_OVERLAP);
+ work_end = work_bgn;
+ DPRINT(2, "wlevel: found begin-C: p=%u d=%u ps=%u", p,
+ d, work_bgn);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+ }
+
+ /* The actual increment until failure */
+ for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end +=
+ IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: end: p=%u d=%u", p, d);
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0,
+ PASS_ONE_BIT,
+ &bit_chk))
+ break;
+ }
+ scc_mgr_zero_group(g, test_bgn, 1);
+
+ work_end -= IO_DELAY_PER_DCHAIN_TAP;
+
+ if (work_end >= work_bgn) {
+ /* we have a working range */
+ } else {
+ /* nil range */
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL,
+ CAL_SUBSTAGE_LAST_WORKING_DELAY);
+ return 0;
+ }
+
+ DPRINT(2, "wlevel: found end: p=%u d=%u; range: [%u,%u]", p,
+ d-1, work_bgn, work_end);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d-1);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
+
+ /* center */
+ work_mid = (work_bgn + work_end) / 2;
+
+ DPRINT(2, "wlevel: work_mid=%d", work_mid);
+
+ tmp_delay = 0;
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX +
+ num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH &&
+ tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+ ;
+
+ if (tmp_delay > work_mid) {
+ tmp_delay -= IO_DELAY_PER_OPA_TAP;
+ p--;
+ }
+
+ while (p > IO_DQDQS_OUT_PHASE_MAX) {
+ tmp_delay -= IO_DELAY_PER_OPA_TAP;
+ p--;
+ }
+
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ DPRINT(2, "wlevel: p=%u tmp_delay=%u left=%u", p, tmp_delay,
+ work_mid - tmp_delay);
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++,
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP)
+ ;
+
+ if (tmp_delay > work_mid) {
+ tmp_delay -= IO_DELAY_PER_DCHAIN_TAP;
+ d--;
+ }
+
+ DPRINT(2, "wlevel: p=%u d=%u tmp_delay=%u left=%u", p, d,
+ tmp_delay, work_mid - tmp_delay);
+
+ scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
+
+ DPRINT(2, "wlevel: found middle: p=%u d=%u", p, d);
+ BFM_GBL_SET(dqs_wlevel_mid[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_mid[g].ps, work_mid);
+
+ return 1;
+}
+#endif
+
+/*
+ * center all windows. do per-bit-deskew to possibly increase size of
+ * certain windows.
+ */
+uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t test_bgn)
+{
+ uint32_t i, p, min_index;
+ int32_t d;
+ /*
+ * Store these as signed since there are comparisons with
+ * signed numbers.
+ */
+ uint32_t bit_chk;
+#if QDRII
+ uint32_t tmp_bit_chk;
+ uint32_t tmp_mask;
+ uint32_t mask;
+#endif
+ uint32_t sticky_bit_chk;
+ int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+ int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+ int32_t mid;
+ int32_t mid_min, orig_mid_min;
+ int32_t new_dqs, start_dqs, shift_dq;
+ int32_t dq_margin, dqs_margin, dm_margin;
+ uint32_t stop;
+
+ TRACE_FUNC("%u %u", write_group, test_bgn);
+ BFM_STAGE("writes_center");
+
+ ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+
+ dm_margin = 0;
+
+ start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
+
+ select_curr_shadow_reg_using_rank(rank_bgn);
+
+ /* per-bit deskew */
+
+ /*
+ * set the left and right edge of each bit to an illegal value
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+ */
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+
+ /* Search for the left edge of the window for each bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT, &bit_chk, 0);
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+ DPRINT(2, "write_center(left): dtap=%d => " BTFLD_FMT
+ " == " BTFLD_FMT " && %u [bit_chk=" BTFLD_FMT "]",
+ d, sticky_bit_chk, param->write_correct_mask,
+ stop, bit_chk);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (bit_chk & 1) {
+ /*
+ * Remember a passing test as the
+ * left_edge.
+ */
+ left_edge[i] = d;
+ } else {
+ /*
+ * If a left edge has not been seen
+ * yet, then a future passing test will
+ * mark this edge as the right edge.
+ */
+ if (left_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ DPRINT(2, "write_center[l,d=%d):", d);
+ DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ DPRINT(2, "right_edge[%u]: %d", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Reset DQ delay chains to 0 */
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
+ sticky_bit_chk = 0;
+ for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
+ DPRINT(2, "write_center: left_edge[%u]: %d right_edge[%u]: %d",
+ i, left_edge[i], i, right_edge[i]);
+
+ /*
+ * Check for cases where we haven't found the left edge,
+ * which makes our assignment of the the right edge invalid.
+ * Reset it to the illegal value.
+ */
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
+ (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ DPRINT(2, "write_center: reset right_edge[%u]: %d",
+ i, right_edge[i]);
+ }
+
+ /*
+ * Reset sticky bit (except for bits where we have
+ * seen the left edge).
+ */
+ sticky_bit_chk = sticky_bit_chk << 1;
+ if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
+ sticky_bit_chk = sticky_bit_chk | 1;
+
+ if (i == 0)
+ break;
+ }
+
+ /* Search for the right edge of the window for each bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + start_dqs);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (QDRII)
+ rw_mgr_mem_dll_lock_wait();
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT, &bit_chk, 0);
+ if (stop)
+ recover_mem_device_after_ck_dqs_violation();
+
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+ DPRINT(2, "write_center (right): dtap=%u => " BTFLD_FMT " == "
+ BTFLD_FMT " && %u", d, sticky_bit_chk,
+ param->write_correct_mask, stop);
+
+ if (stop == 1) {
+ if (d == 0) {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
+ i++) {
+ /* d = 0 failed, but it passed when
+ testing the left edge, so it must be
+ marginal, set it to -1 */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -1;
+ }
+ }
+ }
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (bit_chk & 1) {
+ /*
+ * Remember a passing test as
+ * the right_edge.
+ */
+ right_edge[i] = d;
+ } else {
+ if (d != 0) {
+ /*
+ * If a right edge has not
+ * been seen yet, then a future
+ * passing test will mark this
+ * edge as the left edge.
+ */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1)
+ left_edge[i] = -(d + 1);
+ } else {
+ /*
+ * d = 0 failed, but it passed
+ * when testing the left edge,
+ * so it must be marginal, set
+ * it to -1.
+ */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_OUT1_DELAY_MAX + 1)
+ right_edge[i] = -1;
+ /*
+ * If a right edge has not been
+ * seen yet, then a future
+ * passing test will mark this
+ * edge as the left edge.
+ */
+ else if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX +
+ 1)
+ left_edge[i] = -(d + 1);
+ }
+ }
+ DPRINT(2, "write_center[r,d=%d):", d);
+ DPRINT(2, "bit_chk_test=%d left_edge[%u]: %d",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ DPRINT(2, "right_edge[%u]: %d", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Check that all bits have a window */
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ DPRINT(2, "write_center: left_edge[%u]: %d right_edge[%u]: %d",
+ i, left_edge[i], i, right_edge[i]);
+ BFM_GBL_SET(dq_write_left_edge[write_group][i], left_edge[i]);
+ BFM_GBL_SET(dq_write_right_edge[write_group][i], right_edge[i]);
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
+ (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
+ set_failing_group_stage(test_bgn + i,
+ CAL_STAGE_WRITES,
+ CAL_SUBSTAGE_WRITES_CENTER);
+ return 0;
+ }
+ }
+
+ /* Find middle of window for each DQ bit */
+ mid_min = left_edge[0] - right_edge[0];
+ min_index = 0;
+ for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ mid = left_edge[i] - right_edge[i];
+ if (mid < mid_min) {
+ mid_min = mid;
+ min_index = i;
+ }
+ }
+
+ /*
+ * -mid_min/2 represents the amount that we need to move DQS.
+ * If mid_min is odd and positive we'll need to add one to
+ * make sure the rounding in further calculations is correct
+ * (always bias to the right), so just add 1 for all positive values.
+ */
+ if (mid_min > 0)
+ mid_min++;
+ mid_min = mid_min / 2;
+ DPRINT(1, "write_center: mid_min=%d", mid_min);
+
+ /* Determine the amount we can change DQS (which is -mid_min) */
+ orig_mid_min = mid_min;
+ new_dqs = start_dqs;
+ mid_min = 0;
+ DPRINT(1, "write_center: start_dqs=%d new_dqs=%d mid_min=%d",
+ start_dqs, new_dqs, mid_min);
+
+ /* Initialize data for export structures */
+ dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
+ dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
+
+ /* add delay to bring centre of all DQ windows to the same "level" */
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ /* Use values before divide by 2 to reduce round off error */
+ shift_dq = (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index]))/2 +
+ (orig_mid_min - mid_min);
+
+ DPRINT(2, "write_center: before: shift_dq[%u]=%d", i,
+ shift_dq);
+
+ if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) >
+ (int32_t)IO_IO_OUT1_DELAY_MAX) {
+ shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX -
+ READ_SCC_DQ_OUT1_DELAY(i);
+ } else if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) < 0) {
+ shift_dq = -(int32_t)READ_SCC_DQ_OUT1_DELAY(i);
+ }
+ DPRINT(2, "write_center: after: shift_dq[%u]=%d",
+ i, shift_dq);
+ scc_mgr_set_dq_out1_delay(write_group, i,
+ READ_SCC_DQ_OUT1_DELAY(i) +
+ shift_dq);
+ scc_mgr_load_dq(i);
+
+ DPRINT(2, "write_center: margin[%u]=[%d,%d]", i,
+ left_edge[i] - shift_dq + (-mid_min),
+ right_edge[i] + shift_dq - (-mid_min));
+ /* To determine values for export structures */
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+ dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+ dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
+
+ /* Move DQS */
+ if (QDRII) {
+ scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group,
+ new_dqs);
+ } else {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ /* Centre DM */
+ BFM_STAGE("dm_center");
+ DPRINT(2, "write_center: DM");
+#if RLDRAMX
+
+ /*
+ * this is essentially the same as DDR with the exception of
+ * the dm_ global accounting.
+ * Determine if first group in device to initialize left and
+ * right edges.
+ */
+ if (!is_write_group_enabled_for_dm(write_group)) {
+ DPRINT(2, "dm_calib: skipping since not last in group");
+ } else {
+ /* last in the group, so we need to do DM */
+ DPRINT(2, "dm_calib: calibrating DM since last in group");
+
+ /*
+ * set the left and right edge of each bit to illegal value,
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+ */
+ left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+
+ sticky_bit_chk = 0;
+ /* Search for the left edge of the window for the DM bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the write test doesn't pass AND
+ * when we've seen a passing write before.
+ */
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn,
+ write_group, 1,
+ PASS_ALL_BITS,
+ &bit_chk, 0)) {
+ DPRINT(2, "dm_calib: left=%lu passed", d);
+ left_edge[0] = d;
+ } else {
+ DPRINT(2, "dm_calib: left=%lu failed", d);
+ /*
+ * If a left edge has not been seen yet, then
+ * a future passing test will mark this edge as
+ * the right edge.
+ */
+ if (left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[0] = -(d + 1);
+ } else {
+ /*
+ * left edge has been seen, so this
+ * failure marks the left edge, and
+ * we are done.
+ */
+ break;
+ }
+ }
+ DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld", d,
+ left_edge[0]);
+ DPRINT(2, "right_edge: %ld", right_edge[0]);
+ }
+
+ DPRINT(2, "dm_calib left done: left_edge: %ld right_edge: %ld",
+ left_edge[0], right_edge[0]);
+
+ /* Reset DM delay chains to 0 */
+ scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+ /*
+ * Check for cases where we haven't found the left edge,
+ * which makes our assignment of the the right edge invalid.
+ * Reset it to the illegal value.
+ */
+ if ((left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) &&
+ (right_edge[0] != IO_IO_OUT1_DELAY_MAX + 1)) {
+ right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ DPRINT(2, "dm_calib: reset right_edge: %ld",
+ right_edge[0]);
+ }
+
+ /* Search for the right edge of the window for the DM bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
+ /*
+ * Note: This only shifts DQS, so are we limiting
+ * ourselve to width of DQ unnecessarily.
+ */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + new_dqs);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the test fails and we've seen
+ * passing test already.
+ */
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn,
+ write_group, 1,
+ PASS_ALL_BITS,
+ &bit_chk, 0)) {
+ DPRINT(2, "dm_calib: right=%lu passed", d);
+ right_edge[0] = d;
+ } else {
+ recover_mem_device_after_ck_dqs_violation();
+
+ DPRINT(2, "dm_calib: right=%lu failed", d);
+ if (d != 0) {
+ /*
+ * If a right edge has not been seen
+ * yet, then a future passing test will
+ * mark this edge as the left edge.
+ */
+ if (right_edge[0] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ left_edge[0] = -(d + 1);
+ } else {
+ break;
+ }
+ } else {
+ /*
+ * d = 0 failed, but it passed when
+ * testing the left edge, so it must be
+ * marginal, set it to -1.
+ */
+ if (right_edge[0] ==
+ IO_IO_OUT1_DELAY_MAX + 1 && left_edge[0]
+ != IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[0] = -1;
+ /* we're done */
+ break;
+ }
+ /*
+ * If a right edge has not been seen
+ * yet, then a future passing test will
+ * mark this edge as the left edge.
+ */
+ else if (right_edge[0] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ left_edge[0] = -(d + 1);
+ }
+ }
+ }
+ DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld", d,
+ left_edge[0]);
+ DPRINT(2, "right_edge: %ld", right_edge[0]);
+ }
+
+ DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0],
+ right_edge[0]);
+
+ /* Move DQS (back to orig) */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+
+ /*
+ * move DM
+ * Find middle of window for the DM bit.
+ */
+ mid = (left_edge[0] - right_edge[0]) / 2;
+ if (mid < 0)
+ mid = 0;
+ scc_mgr_apply_group_dm_out1_delay(write_group, mid);
+
+ dm_margin = left_edge[0];
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
+ left_edge[0], right_edge[0], mid, dm_margin);
+ } /* end of DM calibration */
+#endif
+
+
+#if DDRX
+ /*
+ * set the left and right edge of each bit to an illegal value,
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
+ */
+ left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t win_best = 0;
+
+ /* Search for the/part of the window with DM shift */
+ for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+ PASS_ALL_BITS, &bit_chk,
+ 0)) {
+ /* USE Set current end of the window */
+ end_curr = -d;
+ /*
+ * If a starting edge of our window has not been seen
+ * this is our current start of the DM window.
+ */
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ bgn_curr = -d;
+
+ /*
+ * If current window is bigger than best seen.
+ * Set best seen to be current window.
+ */
+ if ((end_curr-bgn_curr+1) > win_best) {
+ win_best = end_curr-bgn_curr+1;
+ bgn_best = bgn_curr;
+ end_best = end_curr;
+ }
+ } else {
+ /* We just saw a failing test. Reset temp edge */
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+ }
+
+
+ /* Reset DM delay chains to 0 */
+ scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+ /*
+ * Check to see if the current window nudges up aganist 0 delay.
+ * If so we need to continue the search by shifting DQS otherwise DQS
+ * search begins as a new search. */
+ if (end_curr != 0) {
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+
+ /* Search for the/part of the window with DQS shifts */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
+ /*
+ * Note: This only shifts DQS, so are we limiting ourselve to
+ * width of DQ unnecessarily.
+ */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + new_dqs);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+ PASS_ALL_BITS, &bit_chk,
+ 0)) {
+ /* USE Set current end of the window */
+ end_curr = d;
+ /*
+ * If a beginning edge of our window has not been seen
+ * this is our current begin of the DM window.
+ */
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ bgn_curr = d;
+
+ /*
+ * If current window is bigger than best seen. Set best
+ * seen to be current window.
+ */
+ if ((end_curr-bgn_curr+1) > win_best) {
+ win_best = end_curr-bgn_curr+1;
+ bgn_best = bgn_curr;
+ end_best = end_curr;
+ }
+ } else {
+ /* We just saw a failing test. Reset temp edge */
+ recover_mem_device_after_ck_dqs_violation();
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+
+ /* Early exit optimization: if ther remaining delay
+ chain space is less than already seen largest window
+ we can exit */
+ if ((win_best-1) >
+ (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
+ break;
+ }
+ }
+ }
+
+ /* assign left and right edge for cal and reporting; */
+ left_edge[0] = -1*bgn_best;
+ right_edge[0] = end_best;
+
+ DPRINT(2, "dm_calib: left=%d right=%d", left_edge[0], right_edge[0]);
+ BFM_GBL_SET(dm_left_edge[write_group][0], left_edge[0]);
+ BFM_GBL_SET(dm_right_edge[write_group][0], right_edge[0]);
+
+ /* Move DQS (back to orig) */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+
+ /* Move DM */
+
+ /* Find middle of window for the DM bit */
+ mid = (left_edge[0] - right_edge[0]) / 2;
+
+ /* only move right, since we are not moving DQS/DQ */
+ if (mid < 0)
+ mid = 0;
+
+ /* dm_marign should fail if we never find a window */
+ if (win_best == 0)
+ dm_margin = -1;
+ else
+ dm_margin = left_edge[0] - mid;
+
+ scc_mgr_apply_group_dm_out1_delay(write_group, mid);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ DPRINT(2, "dm_calib: left=%d right=%d mid=%d dm_margin=%d",
+ left_edge[0], right_edge[0], mid, dm_margin);
+#endif
+
+#if QDRII
+ sticky_bit_chk = 0;
+
+ /*
+ * set the left and right edge of each bit to an illegal value
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+ */
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+
+ mask = param->dm_correct_mask;
+ /* Search for the left edge of the window for the DM bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ /*
+ * Stop searching when the read test doesn't pass for all bits
+ * (as they've already been calibrated).
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 1, PASS_ONE_BIT, &bit_chk, 0);
+ DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx ",
+ d, stop, bit_chk);
+ DPRINT(2, "sticky_bit_chk=%llx mask=%llx", sticky_bit_chk,
+ param->write_correct_mask);
+ tmp_bit_chk = bit_chk;
+ tmp_mask = mask;
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ if ((tmp_bit_chk & mask) == mask)
+ sticky_bit_chk = sticky_bit_chk | tmp_mask;
+ tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ }
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ DPRINT(2, "dm_calib[l,i=%lu] d=%lu ",
+ BTFLD_FMT, i, d);
+ DPRINT(2, "bit_chk&dm_mask=" BTFLD_FMT " == "
+ bit_chk & mask, mask);
+ if ((bit_chk & mask) == mask) {
+ DPRINT(2, "dm_calib: left[%lu]=%lu",
+ i, d);
+ left_edge[i] = d;
+ } else {
+ /* If a left edge has not been seen yet,
+ then a future passing test will mark
+ this edge as the right edge */
+ if (left_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ }
+ }
+ }
+
+ /* Reset DM delay chains to 0 */
+ scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+ /*
+ * Check for cases where we haven't found the left edge, which makes
+ * our assignment of the the right edge invalid. Reset it to the
+ * illegal value.
+ */
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
+ (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ DPRINT(2, "dm_calib: reset right_edge: %d",
+ right_edge[i]);
+ }
+ }
+
+ /* Search for the right edge of the window for the DM bit */
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + new_dqs);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ rw_mgr_mem_dll_lock_wait();
+
+ /*
+ * Stop searching when the read test doesn't pass for all bits
+ * (as they've already been calibrated).
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 1, PASS_ONE_BIT, &bit_chk, 0);
+ DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx ",
+ d, stop, bit_chk);
+ DPRINT(2, "sticky_bit_chk=%llx mask=%llx", sticky_bit_chk,
+ param->write_correct_mask);
+ tmp_bit_chk = bit_chk;
+ tmp_mask = mask;
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ if ((tmp_bit_chk & mask) == mask)
+ sticky_bit_chk = sticky_bit_chk | tmp_mask;
+
+ tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ }
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ DPRINT(2, "dm_calib[r,i=%lu] d=%lu",
+ BTFLD_FMT, i, d);
+ DPRINT(2, "bit_chk&dm_mask=" BTFLD_FMT " == ",
+ bit_chk & mask, mask);
+ if ((bit_chk & mask) == mask) {
+ right_edge[i] = d;
+ } else {
+ /* d = 0 failed, but it passed when
+ testing the left edge, so it must be
+ marginal, set it to -1 */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -1;
+ /* we're done */
+ break;
+ }
+ /* If a right edge has not been seen
+ yet, then a future passing test will
+ mark this edge as the left edge */
+ else if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ left_edge[i] = -(d + 1);
+ }
+ }
+ bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ }
+ }
+ }
+
+ /* Move DQS (back to orig) */
+ scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group, new_dqs);
+
+ /* Move DM */
+ dm_margin = IO_IO_OUT1_DELAY_MAX;
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ /* Find middle of window for the DM bit */
+ mid = (left_edge[i] - right_edge[i]) / 2;
+ DPRINT(2, "dm_calib[mid,i=%lu] left=%ld right=%ld mid=%ld", i,
+ left_edge[i], right_edge[i], mid);
+ BFM_GBL_SET(dm_left_edge[write_group][i], left_edge[i]);
+ BFM_GBL_SET(dm_right_edge[write_group][i], right_edge[i]);
+
+ if (mid < 0)
+ mid = 0;
+ scc_mgr_set_dm_out1_delay(write_group, i, mid);
+ scc_mgr_load_dm(i);
+ if ((left_edge[i] - mid) < dm_margin)
+ dm_margin = left_edge[i] - mid;
+ }
+#endif
+ /* Export values */
+ gbl->fom_out += dq_margin + dqs_margin;
+
+ DPRINT(2, "write_center: dq_margin=%d dqs_margin=%d dm_margin=%d",
+ dq_margin, dqs_margin, dm_margin);
+
+ /*
+ * Do not remove this line as it makes sure all of our
+ * decisions have been applied.
+ */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
+}
+
+/* calibrate the write operations */
+uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
+ uint32_t test_bgn)
+{
+ /* update info for sims */
+ TRACE_FUNC("%u %u", g, test_bgn);
+
+ reg_file_set_stage(CAL_STAGE_WRITES);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
+
+ reg_file_set_group(g);
+
+ if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
+ set_failing_group_stage(g, CAL_STAGE_WRITES,
+ CAL_SUBSTAGE_WRITES_CENTER);
+ return 0;
+ }
+
+ return 1;
+}
+
+/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
+#if DDRX
+void mem_precharge_and_activate(void)
+{
+ uint32_t r;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_PRECHARGE_ALL);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0F);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x0F);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
+
+ /* activate rows */
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_ACTIVATE_0_AND_1);
+ }
+}
+#endif
+
+#if QDRII || RLDRAMX
+void mem_precharge_and_activate(void) {}
+#endif
+
+/* Configure various memory related parameters. */
+#if DDRX
+void mem_config(void)
+{
+ uint32_t rlat, wlat;
+ uint32_t rw_wl_nop_cycles;
+ uint32_t max_latency;
+#if CALIBRATE_BIT_SLIPS
+ uint32_t i;
+#endif
+
+ TRACE_FUNC();
+
+ /* read in write and read latency */
+ wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
+#if HARD_PHY
+ wlat += IORD_32DIRECT(DATA_MGR_MEM_T_ADD, 0);
+ /* WL for hard phy does not include additive latency */
+
+#if DDR3 || DDR2
+ /*
+ * add addtional write latency to offset the address/command extra
+ * clock cycle. We change the AC mux setting causing AC to be delayed
+ * by one mem clock cycle. Only do this for DDR3
+ */
+ wlat = wlat + 1;
+#endif
+
+#endif
+
+ rlat = IORD_32DIRECT(MEM_T_RL_ADD, 0);
+
+ if (QUARTER_RATE_MODE) {
+ /*
+ * In Quarter-Rate the WL-to-nop-cycles works like this:
+ * 0,1 -> 0
+ * 2,3,4,5 -> 1
+ * 6,7,8,9 -> 2
+ * etc...
+ */
+ rw_wl_nop_cycles = (wlat + 6) / 4 - 1;
+ } else if (HALF_RATE_MODE) {
+ /*
+ * In Half-Rate the WL-to-nop-cycles works like this:
+ * 0,1 -> -1
+ * 2,3 -> 0
+ * 4,5 -> 1
+ * etc...
+ */
+ if (wlat % 2)
+ rw_wl_nop_cycles = ((wlat - 1) / 2) - 1;
+ else
+ rw_wl_nop_cycles = (wlat / 2) - 1;
+ } else {
+ rw_wl_nop_cycles = wlat - 2;
+#if LPDDR2
+ rw_wl_nop_cycles = rw_wl_nop_cycles + 1;
+#endif
+ }
+#if MULTIPLE_AFI_WLAT
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++)
+ gbl->rw_wl_nop_cycles_per_group[i] = rw_wl_nop_cycles;
+#endif
+ gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
+
+#if ARRIAV || CYCLONEV
+ /*
+ * For AV/CV, lfifo is hardened and always runs at full rate so
+ * max latency in AFI clocks, used here, is correspondingly smaller.
+ */
+ if (QUARTER_RATE_MODE)
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/4 - 1;
+ else if (HALF_RATE_MODE)
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/2 - 1;
+ else
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
+#else
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
+#endif
+ /* configure for a burst length of 8 */
+
+ if (QUARTER_RATE_MODE) {
+ /* write latency */
+ wlat = (wlat + 5) / 4 + 1;
+
+ /* set a pretty high read latency initially */
+ gbl->curr_read_lat = (rlat + 1) / 4 + 8;
+ } else if (HALF_RATE_MODE) {
+ /* write latency */
+ wlat = (wlat - 1) / 2 + 1;
+
+ /* set a pretty high read latency initially */
+ gbl->curr_read_lat = (rlat + 1) / 2 + 8;
+ } else {
+ /* write latency */
+#if HARD_PHY
+ /* Adjust Write Latency for Hard PHY */
+ wlat = wlat + 1;
+#if LPDDR2
+ /*
+ * Add another one in hard for LPDDR2 since this value is raw
+ * from controller assume tdqss is one.
+ */
+ wlat = wlat + 1;
+#endif
+#endif
+ /* set a pretty high read latency initially */
+ gbl->curr_read_lat = rlat + 16;
+ }
+
+ if (gbl->curr_read_lat > max_latency)
+ gbl->curr_read_lat = max_latency;
+
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+
+ /* advertise write latency */
+ gbl->curr_write_lat = wlat;
+#if MULTIPLE_AFI_WLAT
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+#if HARD_PHY
+ IOWR_32DIRECT(PHY_MGR_AFI_WLAT, i*4, wlat - 2);
+#else
+ IOWR_32DIRECT(PHY_MGR_AFI_WLAT, i*4, wlat - 1);
+#endif
+ }
+#else
+#if HARD_PHY
+ IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 2);
+#else
+ IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 1);
+#endif
+#endif
+ /* initialize bit slips */
+#if CALIBRATE_BIT_SLIPS
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++)
+ IOWR_32DIRECT(PHY_MGR_FR_SHIFT, i*4, 0);
+#endif
+ mem_precharge_and_activate();
+}
+#endif
+
+#if QDRII || RLDRAMX
+void mem_config(void)
+{
+ uint32_t wlat, nop_cycles, max_latency;
+
+ TRACE_FUNC();
+
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
+
+ if (QUARTER_RATE_MODE)
+ /* TODO_JCHOI: verify confirm */
+ gbl->curr_read_lat =
+ (IORD_32DIRECT(MEM_T_RL_ADD, 0) + 1) / 4 + 8;
+ else if (HALF_RATE_MODE)
+ gbl->curr_read_lat =
+ (IORD_32DIRECT(MEM_T_RL_ADD, 0) + 1) / 2 + 8;
+ else
+ gbl->curr_read_lat =
+ IORD_32DIRECT(MEM_T_RL_ADD, 0) + 16;
+
+ if (gbl->curr_read_lat > max_latency)
+ gbl->curr_read_lat = max_latency;
+
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+
+ if (RLDRAMX) {
+ /* read in write and read latency */
+ wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
+
+ if (QUARTER_RATE_MODE) {
+ /* TODO_JCHOI Verify */
+ nop_cycles = ((wlat - 1) / 4) - 1;
+ } else if (HALF_RATE_MODE) {
+#if HR_DDIO_OUT_HAS_THREE_REGS
+ nop_cycles = (wlat / 2) - 2;
+#else
+ #if RLDRAM3
+ /* RLDRAM3 uses all AFI phases to issue commands */
+ nop_cycles = (wlat / 2) - 2;
+ #else
+ nop_cycles = ((wlat + 1) / 2) - 2;
+ #endif
+#endif
+ } else {
+ nop_cycles = wlat - 1;
+ }
+ gbl->rw_wl_nop_cycles = nop_cycles;
+ }
+}
+#endif
+
+/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
+void mem_skip_calibrate(void)
+{
+ uint32_t vfifo_offset;
+ uint32_t i, j, r;
+#if HCX_COMPAT_MODE && DDR3
+ uint32_t v;
+#if (RDIMM || LRDIMM)
+ uint32_t increment = 2;
+#else
+ uint32_t wlat = IORD_32DIRECT(PHY_MGR_MEM_T_WL, 0);
+ uint32_t rlat = IORD_32DIRECT(PHY_MGR_MEM_T_RL, 0);
+ uint32_t increment = rlat - wlat*2 + 1;
+#endif
+#endif
+
+ TRACE_FUNC();
+
+ /* Need to update every shadow register set used by the interface */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * Strictly speaking this should be called once per group to
+ * make sure each group's delay chains are refreshed from the
+ * SCC register file, but since we're resetting all delay chains
+ * anyway, we can save some runtime by calling
+ * select_shadow_regs_for_update just once to switch rank.
+ */
+ select_shadow_regs_for_update(r, 0, 1);
+
+ /*
+ * Set output phase alignment settings appropriate for
+ * skip calibration.
+ */
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
+ scc_mgr_set_dqs_en_phase(i, 0);
+#else
+#if IO_DLL_CHAIN_LENGTH == 6
+ scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1)
+ - 1);
+#else
+ scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1));
+#endif
+#endif
+#if HCX_COMPAT_MODE && DDR3
+ v = 0;
+ for (j = 0; j < increment; j++)
+ rw_mgr_incr_vfifo(i, &v);
+#if IO_DLL_CHAIN_LENGTH == 6
+ scc_mgr_set_dqdqs_output_phase(i, 6);
+#else
+ scc_mgr_set_dqdqs_output_phase(i, 7);
+#endif
+#else
+ #if HCX_COMPAT_MODE
+ /*
+ * in this mode, write_clk doesn't always lead mem_ck
+ * by 90 deg, and so the enhancement in case:33398 can't
+ * be applied.
+ */
+ scc_mgr_set_dqdqs_output_phase(i, (IO_DLL_CHAIN_LENGTH
+ - IO_DLL_CHAIN_LENGTH / 3));
+ #else
+ /*
+ * Case:33398
+ *
+ * Write data arrives to the I/O two cycles before write
+ * latency is reached (720 deg).
+ * -> due to bit-slip in a/c bus
+ * -> to allow board skew where dqs is longer than ck
+ * -> how often can this happen!?
+ * -> can claim back some ptaps for high freq
+ * support if we can relax this, but i digress...
+ *
+ * The write_clk leads mem_ck by 90 deg
+ * The minimum ptap of the OPA is 180 deg
+ * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
+ * The write_clk is always delayed by 2 ptaps
+ *
+ * Hence, to make DQS aligned to CK, we need to delay
+ * DQS by:
+ * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
+ *
+ * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
+ * gives us the number of ptaps, which simplies to:
+ *
+ * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
+ */
+ scc_mgr_set_dqdqs_output_phase(i, (1.25 *
+ IO_DLL_CHAIN_LENGTH - 2));
+ #endif
+#endif
+ }
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0xff);
+
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+ }
+#if USE_SHADOW_REGS
+ /*
+ * in shadow-register mode, SCC_UPDATE is done on a per-group
+ * basis unless we explicitly ask for a multicast via the
+ * group counter.
+ */
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, 0xFF);
+#endif
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+#if ARRIAV || CYCLONEV
+ /* Compensate for simulation model behaviour */
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ scc_mgr_set_dqs_bus_in_delay(i, 10);
+ scc_mgr_load_dqs(i);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+#endif
+
+#if ARRIAV || CYCLONEV
+ /*
+ * ArriaV has hard FIFOs that can only be initialized by incrementing
+ * in sequencer.
+ */
+ vfifo_offset = CALIB_VFIFO_OFFSET;
+ for (j = 0; j < vfifo_offset; j++) {
+ if (HARD_PHY)
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff);
+ else
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
+ }
+#else
+/*
+ * Note, this is not currently supported; changing this might significantly
+ * increase the size of the ROM.
+ */
+#if SUPPORT_DYNAMIC_SKIP_CALIBRATE_ACTIONS
+ if ((DYNAMIC_CALIB_STEPS) & CALIB_IN_RTL_SIM) {
+ /* VFIFO is reset to the correct settings in RTL simulation */
+ } else {
+ vfifo_offset = IORD_32DIRECT(PHY_MGR_CALIB_VFIFO_OFFSET, 0);
+
+ if (QUARTER_RATE_MODE) {
+ while (vfifo_offset > 3) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0,
+ 0xff);
+ vfifo_offset -= 4;
+ }
+
+ if (vfifo_offset == 3) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR,
+ 0, 0xff);
+ } else if (vfifo_offset == 2) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0,
+ 0xff);
+ } else if (vfifo_offset == 1) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0,
+ 0xff);
+ }
+ } else {
+ while (vfifo_offset > 1) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0,
+ 0xff);
+ vfifo_offset -= 2;
+ }
+
+ if (vfifo_offset == 1) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0,
+ 0xff);
+ }
+ }
+ }
+#endif
+#endif
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+#if ARRIAV || CYCLONEV
+ /*
+ * For ACV with hard lfifo, we get the skip-cal setting from
+ * generation-time constant.
+ */
+ gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
+#else
+ gbl->curr_read_lat = IORD_32DIRECT(PHY_MGR_CALIB_LFIFO_OFFSET, 0);
+#endif
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
+}
+
+/* Memory calibration entry point */
+uint32_t mem_calibrate(void)
+{
+ uint32_t i;
+ uint32_t rank_bgn, sr;
+ uint32_t write_group, write_test_bgn;
+ uint32_t read_group, read_test_bgn;
+ uint32_t run_groups, current_run;
+ uint32_t failing_groups = 0;
+ uint32_t group_failed = 0;
+ uint32_t sr_failed = 0;
+
+ TRACE_FUNC();
+
+ /* Initialize the data settings */
+ DPRINT(1, "Preparing to init data");
+ DPRINT(1, "Init complete");
+
+ gbl->error_substage = CAL_SUBSTAGE_NIL;
+ gbl->error_stage = CAL_STAGE_NIL;
+ gbl->error_group = 0xff;
+ gbl->fom_in = 0;
+ gbl->fom_out = 0;
+
+ mem_config();
+
+ if (ARRIAV || CYCLONEV) {
+ uint32_t bypass_mode = (HARD_PHY) ? 0x1 : 0x0;
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+ scc_set_bypass_mode(i, bypass_mode);
+ }
+ }
+
+ if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
+ /*
+ * Set VFIFO and LFIFO to instant-on settings in skip
+ * calibration mode.
+ */
+ mem_skip_calibrate();
+ } else {
+ for (i = 0; i < NUM_CALIB_REPEAT; i++) {
+ /*
+ * Zero all delay chain/phase settings for all
+ * groups and all shadow register sets.
+ */
+ scc_mgr_zero_all();
+
+#if ENABLE_SUPER_QUICK_CALIBRATION
+ for (write_group = 0, write_test_bgn = 0; write_group
+ < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
+ write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0,
+ write_group);
+ scc_mgr_zero_group(write_group, write_test_bgn,
+ 0);
+ }
+#endif
+
+ run_groups = ~param->skip_groups;
+
+ for (write_group = 0, write_test_bgn = 0; write_group
+ < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
+ write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ /* Initialized the group failure */
+ group_failed = 0;
+
+#if RLDRAMX || QDRII
+ /*
+ * It seems that with rldram and qdr vfifo
+ * starts at max (not sure for ddr)
+ * also not sure if max is really vfifo_size-1
+ * or vfifo_size
+ */
+ BFM_GBL_SET(vfifo_idx, VFIFO_SIZE-1);
+#else
+ BFM_GBL_SET(vfifo_idx, 0);
+#endif
+ current_run = run_groups & ((1 <<
+ RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
+ run_groups = run_groups >>
+ RW_MGR_NUM_DQS_PER_WRITE_GROUP;
+
+ if (current_run == 0)
+ continue;
+
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0,
+ write_group);
+#if !ENABLE_SUPER_QUICK_CALIBRATION
+ scc_mgr_zero_group(write_group, write_test_bgn,
+ 0);
+#endif
+
+ for (read_group = write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ read_test_bgn = 0;
+ read_group < (write_group + 1) *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+ group_failed == 0;
+ read_group++, read_test_bgn +=
+ RW_MGR_MEM_DQ_PER_READ_DQS) {
+ /* Calibrate the VFIFO */
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_VFIFO)) {
+ if (!rw_mgr_mem_calibrate_vfifo
+ (read_group,
+ read_test_bgn)) {
+ group_failed = 1;
+
+ if (!(gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+
+ /*
+ * level writes (or align DK with CK
+ * for RLDRAMX).
+ */
+ if (group_failed == 0) {
+ if ((DDRX || RLDRAMII) && !(ARRIAV ||
+ CYCLONEV)) {
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_WLEVEL)) {
+ if (!rw_mgr_mem_calibrate_wlevel
+ (write_group, write_test_bgn)) {
+ group_failed = 1;
+
+ if (!(gbl->phy_debug_mode_flags
+ & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+
+ /* Calibrate the output side */
+ if (group_failed == 0) {
+ for (rank_bgn = 0, sr = 0; rank_bgn
+ < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn +=
+ NUM_RANKS_PER_SHADOW_REG,
+ ++sr) {
+ sr_failed = 0;
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_WRITES)) {
+ if ((STATIC_CALIB_STEPS)
+ & CALIB_SKIP_DELAY_SWEEPS) {
+ /* not needed in quick mode! */
+ } else {
+ /*
+ * Determine if this set of
+ * ranks should be skipped
+ * entirely.
+ */
+ if (!param->skip_shadow_regs[sr]) {
+ /* Select shadow register set */
+ select_shadow_regs_for_update
+ (rank_bgn, write_group, 1);
+
+ if (!rw_mgr_mem_calibrate_writes
+ (rank_bgn, write_group,
+ write_test_bgn)) {
+ sr_failed = 1;
+ if (!(gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+ if (sr_failed != 0)
+ group_failed = 1;
+ }
+ }
+
+#if READ_AFTER_WRITE_CALIBRATION
+ if (group_failed == 0) {
+ for (read_group = write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ read_test_bgn = 0;
+ read_group < (write_group + 1)
+ * RW_MGR_MEM_IF_READ_DQS_WIDTH
+ / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+ group_failed == 0;
+ read_group++, read_test_bgn +=
+ RW_MGR_MEM_DQ_PER_READ_DQS) {
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_WRITES)) {
+ if (!rw_mgr_mem_calibrate_vfifo_end
+ (read_group, read_test_bgn)) {
+ group_failed = 1;
+
+ if (!(gbl->phy_debug_mode_flags
+ & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+#endif
+
+ if (group_failed != 0)
+ failing_groups++;
+ }
+
+ /*
+ * USER If there are any failing groups then report
+ * the failure.
+ */
+ if (failing_groups != 0)
+ return 0;
+
+ /* Calibrate the LFIFO */
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
+ /*
+ * If we're skipping groups as part of debug,
+ * don't calibrate LFIFO.
+ */
+ if (param->skip_groups == 0) {
+ if (!rw_mgr_mem_calibrate_lfifo())
+ return 0;
+ }
+ }
+ }
+ }
+
+ /*
+ * Do not remove this line as it makes sure all of our decisions
+ * have been applied.
+ */
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ return 1;
+}
+
+uint32_t run_mem_calibrate(void)
+{
+ uint32_t pass;
+ uint32_t debug_info;
+
+ /* Reset pass/fail status shown on afi_cal_success/fail */
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET);
+
+ TRACE_FUNC();
+
+ BFM_STAGE("calibrate");
+
+#if USE_DQS_TRACKING
+ /* stop tracking manger */
+ uint32_t ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG, 0);
+
+ IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF);
+#endif
+
+ initialize();
+ rw_mgr_mem_initialize();
+
+#if ENABLE_BRINGUP_DEBUGGING
+ do_bringup_test();
+#endif
+ pass = mem_calibrate();
+
+ mem_precharge_and_activate();
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+ if (pass) {
+ BFM_STAGE("handoff");
+
+#ifdef TEST_SIZE
+ if (!check_test_mem(0)) {
+ gbl->error_stage = 0x92;
+ gbl->error_group = 0x92;
+ }
+#endif
+ }
+
+ /*
+ * Handoff:
+ * Don't return control of the PHY back to AFI when in debug mode.
+ */
+ if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
+ rw_mgr_mem_handoff();
+#if HARD_PHY
+ /*
+ * In Hard PHY this is a 2-bit control:
+ * 0: AFI Mux Select
+ * 1: DDIO Mux Select
+ */
+ IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x2);
+#else
+ IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0);
+#endif
+ }
+
+#if USE_DQS_TRACKING
+ IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg);
+#endif
+
+ if (pass) {
+ IPRINT("CALIBRATION PASSED");
+
+ gbl->fom_in /= 2;
+ gbl->fom_out /= 2;
+
+ if (gbl->fom_in > 0xff)
+ gbl->fom_in = 0xff;
+
+ if (gbl->fom_out > 0xff)
+ gbl->fom_out = 0xff;
+
+ /* Update the FOM in the register file */
+ debug_info = gbl->fom_in;
+ debug_info |= gbl->fom_out << 8;
+ IOWR_32DIRECT(REG_FILE_FOM, 0, debug_info);
+
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
+ } else {
+ IPRINT("CALIBRATION FAILED");
+
+ debug_info = gbl->error_stage;
+ debug_info |= gbl->error_substage << 8;
+ debug_info |= gbl->error_group << 16;
+
+ IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+
+ /* Update the failing group/stage in the register file */
+ debug_info = gbl->error_stage;
+ debug_info |= gbl->error_substage << 8;
+ debug_info |= gbl->error_group << 16;
+ IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
+ }
+
+ return pass;
+}
+
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+void hc_initialize_rom_data(void)
+{
+ uint32_t i;
+
+ for (i = 0; i < inst_rom_init_size; i++) {
+ uint32_t data = inst_rom_init[i];
+ IOWR_32DIRECT(RW_MGR_INST_ROM_WRITE, (i << 2), data);
+ }
+
+ for (i = 0; i < ac_rom_init_size; i++) {
+ uint32_t data = ac_rom_init[i];
+ IOWR_32DIRECT(RW_MGR_AC_ROM_WRITE, (i << 2), data);
+ }
+}
+#endif
+
+void initialize_reg_file(void)
+{
+ /* Initialize the register file with the correct data */
+ IOWR_32DIRECT(REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE);
+ IOWR_32DIRECT(REG_FILE_DEBUG_DATA_ADDR, 0, 0);
+ IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, 0);
+ IOWR_32DIRECT(REG_FILE_FOM, 0, 0);
+ IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, 0);
+ IOWR_32DIRECT(REG_FILE_DEBUG1, 0, 0);
+ IOWR_32DIRECT(REG_FILE_DEBUG2, 0, 0);
+}
+
+void initialize_hps_phy(void)
+{
+ /* These may need to be included also: */
+ /* wrap_back_en (false) */
+ /* atpg_en (false) */
+ /* pipelineglobalenable (true) */
+
+ uint32_t reg;
+ /*
+ * Tracking also gets configured here because it's in the
+ * same register.
+ */
+ uint32_t trk_sample_count = 7500;
+ uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
+ /*
+ * Format is number of outer loops in the 16 MSB, sample
+ * count in 16 LSB.
+ */
+
+ reg = 0;
+#if DDR3 || DDR2
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
+#else
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(1);
+#endif
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
+#if LPDDR2
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(0);
+#else
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
+#endif
+ /*
+ * This field selects the intrinsic latency to RDATA_EN/FULL path.
+ * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
+ */
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
+ trk_sample_count);
+ IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg);
+
+ reg = 0;
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
+ trk_sample_count >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
+ trk_long_idle_sample_count);
+ IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg);
+
+ reg = 0;
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
+ trk_long_idle_sample_count >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
+ IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg);
+}
+
+#if USE_DQS_TRACKING
+void initialize_tracking(void)
+{
+ uint32_t concatenated_longidle = 0x0;
+ uint32_t concatenated_delays = 0x0;
+ uint32_t concatenated_rw_addr = 0x0;
+ uint32_t concatenated_refresh = 0x0;
+ uint32_t dtaps_per_ptap;
+ uint32_t tmp_delay;
+
+ /*
+ * compute usable version of value in case we skip full
+ * computation later
+ */
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+
+ concatenated_longidle = concatenated_longidle ^ 10;
+ /*longidle outer loop */
+ concatenated_longidle = concatenated_longidle << 16;
+ concatenated_longidle = concatenated_longidle ^ 100;
+ /*longidle sample count */
+ concatenated_delays = concatenated_delays ^ 243;
+ /* trfc, worst case of 933Mhz 4Gb */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 14;
+ /* trcd, worst case */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 10;
+ /* vfifo wait */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 4;
+ /* mux delay */
+
+#if DDR3 || LPDDR2
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
+#endif
+
+#if DDR3 || LPDDR2
+ concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
+#else
+ concatenated_refresh = concatenated_refresh ^ 0;
+#endif
+ concatenated_refresh = concatenated_refresh << 24;
+ concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
+
+ /* Initialize the register file with the correct data */
+ IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+ IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_COUNT, 0, 7500);
+ IOWR_32DIRECT(REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle);
+ IOWR_32DIRECT(REG_FILE_DELAYS, 0, concatenated_delays);
+ IOWR_32DIRECT(REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
+ IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0,
+ RW_MGR_MEM_IF_READ_DQS_WIDTH);
+ IOWR_32DIRECT(REG_FILE_TRK_RFSH, 0, concatenated_refresh);
+}
+
+#else
+
+void initialize_tracking(void)
+{
+ uint32_t concatenated_longidle = 0x0;
+ uint32_t concatenated_delays = 0x0;
+ uint32_t concatenated_rw_addr = 0x0;
+ uint32_t concatenated_refresh = 0x0;
+ uint32_t dtaps_per_ptap;
+ uint32_t tmp_delay;
+
+ /* compute usable version of value in case we skip full
+ computation later */
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+
+ concatenated_longidle = concatenated_longidle ^ 10;
+ /*longidle outer loop */
+ concatenated_longidle = concatenated_longidle << 16;
+ concatenated_longidle = concatenated_longidle ^ 100;
+ /*longidle sample count */
+#if FULL_RATE
+ concatenated_delays = concatenated_delays ^ 60; /* trfc */
+#endif
+#if HALF_RATE
+ concatenated_delays = concatenated_delays ^ 30; /* trfc */
+#endif
+#if QUARTER_RATE
+ concatenated_delays = concatenated_delays ^ 15; /* trfc */
+#endif
+ concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+ concatenated_delays = concatenated_delays ^ 4; /* trcd */
+#endif
+#if HALF_RATE
+ concatenated_delays = concatenated_delays ^ 2; /* trcd */
+#endif
+#if QUARTER_RATE
+ concatenated_delays = concatenated_delays ^ 0; /* trcd */
+#endif
+ concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+ concatenated_delays = concatenated_delays ^ 5; /* vfifo wait */
+#endif
+#if HALF_RATE
+ concatenated_delays = concatenated_delays ^ 3; /* vfifo wait */
+#endif
+#if QUARTER_RATE
+ concatenated_delays = concatenated_delays ^ 1; /* vfifo wait */
+#endif
+ concatenated_delays = concatenated_delays << 8;
+#if FULL_RATE
+ concatenated_delays = concatenated_delays ^ 4; /* mux delay */
+#endif
+#if HALF_RATE
+ concatenated_delays = concatenated_delays ^ 2; /* mux delay */
+#endif
+#if QUARTER_RATE
+ concatenated_delays = concatenated_delays ^ 0; /* mux delay */
+#endif
+
+#if DDR3 || LPDDR2
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
+#endif
+
+#if DDR3 || LPDDR2
+ concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
+#else
+ concatenated_refresh = concatenated_refresh ^ 0;
+#endif
+ concatenated_refresh = concatenated_refresh << 24;
+ concatenated_refresh = concatenated_refresh ^ 546; /* trefi */
+
+ IOWR_32DIRECT(TRK_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
+ IOWR_32DIRECT(TRK_SAMPLE_COUNT, 0, 7500);
+ IOWR_32DIRECT(TRK_LONGIDLE, 0, concatenated_longidle);
+ IOWR_32DIRECT(TRK_DELAYS, 0, concatenated_delays);
+ IOWR_32DIRECT(TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
+ IOWR_32DIRECT(TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
+ IOWR_32DIRECT(TRK_RFSH, 0, concatenated_refresh);
+}
+#endif /* USE_DQS_TRACKING */
+
+void user_init_cal_req(void)
+{
+ uint32_t scc_afi_reg;
+
+ scc_afi_reg = IORD_32DIRECT(SCC_MGR_AFI_CAL_INIT, 0);
+
+ if (scc_afi_reg == 1) { /* 1 is initialization request */
+ initialize();
+ rw_mgr_mem_initialize();
+ rw_mgr_mem_handoff();
+ IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
+ } else if (scc_afi_reg == 2) {
+ run_mem_calibrate();
+ }
+}
+
+int sdram_calibration(void)
+{
+ struct param_type my_param;
+ struct gbl_type my_gbl;
+ uint32_t pass;
+ uint32_t i;
+
+ param = &my_param;
+ gbl = &my_gbl;
+
+ /* Initialize the debug mode flags */
+ gbl->phy_debug_mode_flags = 0;
+ /* Set the calibration enabled by default */
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
+ /* Only enable margining by default if requested */
+#if ENABLE_MARGIN_REPORT_GEN
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_MARGIN_RPT;
+#endif
+ /* Only sweep all groups (regardless of fail state) by default
+ if requested */
+#if ENABLE_SWEEP_ALL_GROUPS
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_SWEEP_ALL_GROUPS;
+#endif
+ /*Set enabled read test by default */
+#if DISABLE_GUARANTEED_READ
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
+#endif
+ /* Initialize the register file */
+ initialize_reg_file();
+
+ /* Initialize any PHY CSR */
+ initialize_hps_phy();
+
+ scc_mgr_initialize();
+
+#if USE_DQS_TRACKING
+ initialize_tracking();
+#endif
+
+ /* USER Enable all ranks, groups */
+ for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
+ param->skip_ranks[i] = 0;
+ for (i = 0; i < NUM_SHADOW_REGS; ++i)
+ param->skip_shadow_regs[i] = 0;
+ param->skip_groups = 0;
+
+ IPRINT("Preparing to start memory calibration");
+
+ TRACE_FUNC();
+ DPRINT(1, "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu",
+ RDIMM ? "r" : (LRDIMM ? "l" : ""),
+ DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ?
+ "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
+ FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ?
+ "QR" : "??RATE??")),
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+ DPRINT(1, "dqs=%lu,%lu dq=%lu dm=%lu ptap_delay=%lu dtap_delay=%lu",
+ (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
+ (long unsigned int)IO_DELAY_PER_OPA_TAP,
+ (long unsigned int)IO_DELAY_PER_DCHAIN_TAP);
+ DPRINT(1, "dtap_dqsen_delay=%lu, dll=%lu",
+ (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
+ (long unsigned int)IO_DLL_CHAIN_LENGTH);
+ DPRINT(1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu",
+ (long unsigned int)IO_DQS_EN_PHASE_MAX,
+ (long unsigned int)IO_DQDQS_OUT_PHASE_MAX,
+ (long unsigned int)IO_DQS_EN_DELAY_MAX,
+ (long unsigned int)IO_DQS_IN_DELAY_MAX);
+ DPRINT(1, "io_in_d=%lu io_out1_d=%lu io_out2_d=%lu",
+ (long unsigned int)IO_IO_IN_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT1_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ DPRINT(1, "dqs_in_reserve=%lu dqs_out_reserve=%lu",
+ (long unsigned int)IO_DQS_IN_RESERVE,
+ (long unsigned int)IO_DQS_OUT_RESERVE);
+
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+ hc_initialize_rom_data();
+#endif
+
+#if !HARD_PHY
+ /* Hard PHY does not support soft reset */
+ IOWR_32DIRECT(RW_MGR_SOFT_RESET, 0, 0);
+#endif
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_NIL);
+ reg_file_set_group(0);
+
+ /*
+ * Load global needed for those actions that require
+ * some dynamic calibration support.
+ */
+#if HARD_PHY
+ dyn_calib_steps = STATIC_CALIB_STEPS;
+#else
+ dyn_calib_steps = IORD_32DIRECT(PHY_MGR_CALIB_SKIP_STEPS, 0);
+#endif
+ /*
+ * Load global to allow dynamic selection of delay loop settings
+ * based on calibration mode.
+ */
+ if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS))
+ skip_delay_mask = 0xff;
+ else
+ skip_delay_mask = 0x0;
+
+#ifdef TEST_SIZE
+ if (!check_test_mem(1)) {
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+ }
+ write_test_mem();
+ if (!check_test_mem(0)) {
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+ }
+#endif
+ pass = run_mem_calibrate();
+
+ IPRINT("Calibration complete");
+ /* Send the end of transmission character */
+ IPRINT("%c", 0x4);
+ return pass;
+}
+
+
+#if ENABLE_BRINGUP_DEBUGGING
+/* Bring-Up test Support */
+void do_bringup_test_guaranteed_write(void)
+{
+ uint32_t r;
+
+ TRACE_FUNC();
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ /* Load up a constant bursts */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
+ __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT0);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT1);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
+ __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT2);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x20);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
+ __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT3);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
+ __RW_MGR_GUARANTEED_WRITE_0_1_A_5);
+ }
+
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+
+void do_bringup_test_clear_di_buf(uint32_t group)
+{
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 128);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_CLEAR_DI_BUF);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, group << 2,
+ __RW_MGR_DO_CLEAR_DI_BUF);
+}
+
+void do_bringup_test_guaranteed_read(uint32_t group)
+{
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+ IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 16);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_TEST_READ);
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 16);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
+ __RW_MGR_DO_TEST_READ_POST_WAIT);
+
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, group << 2,
+ __RW_MGR_DO_TEST_READ);
+}
+
+void do_bringup_test(void)
+{
+ int i;
+ uint32_t group;
+ uint32_t v = 0;
+
+ group = 0;
+
+ mem_config();
+
+ /* 15 is the maximum latency (should make dependent on actual design */
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, 15); /* lfifo setting */
+
+#if ARRIAV || CYCLONEV
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+ scc_set_bypass_mode(i, 0);
+ }
+#endif
+
+ /* initialize global buffer to something known */
+ for (i = 0; i < sizeof(di_buf_gbl); i++)
+ di_buf_gbl[i] = 0xee;
+
+ /* pre-increment vfifo to ensure not at max value */
+ rw_mgr_incr_vfifo(group, &v);
+ rw_mgr_incr_vfifo(group, &v);
+
+ do_bringup_test_clear_di_buf(group);
+
+ while (1) {
+ do_bringup_test_guaranteed_write();
+ do_bringup_test_guaranteed_read(group);
+ load_di_buf_gbl();
+ rw_mgr_incr_vfifo(group, &v);
+ }
+}
+
+
+#endif /* ENABLE_BRINGUP_DEBUGGING */
+
+#if ENABLE_ASSERT
+void err_report_internal_error(
+ const char *description,
+ const char *module,
+ const char *file,
+ int line
+)
+{
+ void *array[10];
+ size_t size;
+ char **strings;
+ size_t i;
+
+ fprintf(stderr, ERR_IE_TEXT, module, file, line, description, "\n");
+
+ size = backtrace(array, 10);
+ strings = backtrace_symbols(array, size);
+
+ fprintf(stderr, "Obtained %zd stack frames.\n", size);
+
+ for (i = 0; i < size; i++)
+ fprintf(stderr, "%s\n", strings[i]);
+
+ free(strings);
+}
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer.h b/board/altera/socfpga/sdram/sequencer.h
new file mode 100644
index 0000000..ce4c7bf
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer.h
@@ -0,0 +1,504 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef _SEQUENCER_H_
+#define _SEQUENCER_H_
+
+extern int32_t inst_rom_init_size;
+extern uint32_t inst_rom_init[];
+extern uint32_t ac_rom_init_size;
+extern uint32_t ac_rom_init[];
+
+#if ENABLE_ASSERT
+#define ERR_IE_TEXT "Internal Error: Sub-system: %s, File: %s, Line: %d\n%s%s"
+
+extern void err_report_internal_error(const char *description,
+ const char *module, const char *file, int line);
+
+#define ALTERA_INTERNAL_ERROR(string) \
+ {err_report_internal_error(string, "SEQ", __FILE__, __LINE__); \
+ exit(-1); }
+
+#define ALTERA_ASSERT(condition) \
+ if (!(condition)) {\
+ ALTERA_INTERNAL_ERROR(#condition); }
+#define ALTERA_INFO_ASSERT(condition, text) \
+ if (!(condition)) {\
+ ALTERA_INTERNAL_ERROR(text); }
+#else
+
+#define ALTERA_ASSERT(condition)
+#define ALTERA_INFO_ASSERT(condition, text)
+
+#endif
+
+#if RLDRAMII
+#define RW_MGR_NUM_DM_PER_WRITE_GROUP (1)
+#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (1)
+#else
+#define RW_MGR_NUM_DM_PER_WRITE_GROUP (RW_MGR_MEM_DATA_MASK_WIDTH \
+ / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (RW_MGR_TRUE_MEM_DATA_MASK_WIDTH \
+ / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#endif
+
+#define RW_MGR_NUM_DQS_PER_WRITE_GROUP (RW_MGR_MEM_IF_READ_DQS_WIDTH \
+ / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#define NUM_RANKS_PER_SHADOW_REG (RW_MGR_MEM_NUMBER_OF_RANKS / NUM_SHADOW_REGS)
+
+#define RW_MGR_RUN_SINGLE_GROUP (BASE_RW_MGR)
+#define RW_MGR_RUN_ALL_GROUPS (BASE_RW_MGR + 0x0400)
+
+#define RW_MGR_DI_BASE (BASE_RW_MGR + 0x0020)
+
+#if DDR3
+#define DDR3_MR1_ODT_MASK 0xFFFFFD99
+#define DDR3_MR2_ODT_MASK 0xFFFFF9FF
+#define DDR3_AC_MIRR_MASK 0x020A8
+
+#if LRDIMM
+/* USER RTT_NOM: bits {4,3,2} of the SPD = bits {9,6,2} of the MR */
+#define LRDIMM_SPD_MR_RTT_NOM(spd_byte) \
+ ((((spd_byte) & (1 << 4)) << (9-4)) \
+ | (((spd_byte) & (1 << 3)) << (6-3)) \
+ | (((spd_byte) & (1 << 2)) << (2-2)))
+
+/* USER RTT_DRV: bits {1,0} of the SPD = bits {5,1} of the MR */
+#define LRDIMM_SPD_MR_RTT_DRV(spd_byte) \
+ ((((spd_byte) & (1 << 1)) << (5-1)) \
+ | (((spd_byte) & (1 << 0)) << (1-0)))
+
+/* USER RTT_WR: bits {7,6} of the SPD = bits {10,9} of the MR */
+#define LRDIMM_SPD_MR_RTT_WR(spd_byte) \
+ (((spd_byte) & (3 << 6)) << (9-6))
+
+#endif /* LRDIMM */
+#endif /* DDR3 */
+
+#define RW_MGR_MEM_NUMBER_OF_RANKS 1
+#define NUM_SHADOW_REGS 1
+
+#define RW_MGR_LOAD_CNTR_0 (BASE_RW_MGR + 0x0800)
+#define RW_MGR_LOAD_CNTR_1 (BASE_RW_MGR + 0x0804)
+#define RW_MGR_LOAD_CNTR_2 (BASE_RW_MGR + 0x0808)
+#define RW_MGR_LOAD_CNTR_3 (BASE_RW_MGR + 0x080C)
+
+#define RW_MGR_LOAD_JUMP_ADD_0 (BASE_RW_MGR + 0x0C00)
+#define RW_MGR_LOAD_JUMP_ADD_1 (BASE_RW_MGR + 0x0C04)
+#define RW_MGR_LOAD_JUMP_ADD_2 (BASE_RW_MGR + 0x0C08)
+#define RW_MGR_LOAD_JUMP_ADD_3 (BASE_RW_MGR + 0x0C0C)
+
+#define RW_MGR_RESET_READ_DATAPATH (BASE_RW_MGR + 0x1000)
+#define RW_MGR_SOFT_RESET (BASE_RW_MGR + 0x2000)
+
+#define RW_MGR_SET_CS_AND_ODT_MASK (BASE_RW_MGR + 0x1400)
+#define RW_MGR_SET_ACTIVE_RANK (BASE_RW_MGR + 0x2400)
+
+#define RW_MGR_LOOPBACK_MODE (BASE_RW_MGR + 0x0200)
+
+#define RW_MGR_RANK_NONE 0xFF
+#define RW_MGR_RANK_ALL 0x00
+
+#define RW_MGR_ODT_MODE_OFF 0
+#define RW_MGR_ODT_MODE_READ_WRITE 1
+
+#define NUM_CALIB_REPEAT 1
+
+#define NUM_READ_TESTS 7
+#define NUM_READ_PB_TESTS 7
+#define NUM_WRITE_TESTS 15
+#define NUM_WRITE_PB_TESTS 31
+
+#define PASS_ALL_BITS 1
+#define PASS_ONE_BIT 0
+
+/* calibration stages */
+
+#define CAL_STAGE_NIL 0
+#define CAL_STAGE_VFIFO 1
+#define CAL_STAGE_WLEVEL 2
+#define CAL_STAGE_LFIFO 3
+#define CAL_STAGE_WRITES 4
+#define CAL_STAGE_FULLTEST 5
+#define CAL_STAGE_REFRESH 6
+#define CAL_STAGE_CAL_SKIPPED 7
+#define CAL_STAGE_CAL_ABORTED 8
+#define CAL_STAGE_VFIFO_AFTER_WRITES 9
+
+/* calibration substages */
+
+#define CAL_SUBSTAGE_NIL 0
+#define CAL_SUBSTAGE_GUARANTEED_READ 1
+#define CAL_SUBSTAGE_DQS_EN_PHASE 2
+#define CAL_SUBSTAGE_VFIFO_CENTER 3
+#define CAL_SUBSTAGE_WORKING_DELAY 1
+#define CAL_SUBSTAGE_LAST_WORKING_DELAY 2
+#define CAL_SUBSTAGE_WLEVEL_COPY 3
+#define CAL_SUBSTAGE_WRITES_CENTER 1
+#define CAL_SUBSTAGE_READ_LATENCY 1
+#define CAL_SUBSTAGE_REFRESH 1
+
+#define MAX_RANKS (RW_MGR_MEM_NUMBER_OF_RANKS)
+#define MAX_DQS (RW_MGR_MEM_IF_WRITE_DQS_WIDTH > \
+ RW_MGR_MEM_IF_READ_DQS_WIDTH ? \
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH : \
+ RW_MGR_MEM_IF_READ_DQS_WIDTH)
+#define MAX_DQ (RW_MGR_MEM_DATA_WIDTH)
+#define MAX_DM (RW_MGR_MEM_DATA_MASK_WIDTH)
+
+/* length of VFIFO, from SW_MACROS */
+#define VFIFO_SIZE (READ_VALID_FIFO_SIZE)
+
+/* Memory for data transfer between TCL scripts and NIOS.
+ *
+ * - First word is a command request.
+ * - The remaining words are part of the transfer.
+ */
+
+/* Define the base address of each manager. */
+
+/* MarkW: how should these base addresses be done for A-V? */
+#define BASE_PTR_MGR SEQUENCER_PTR_MGR_INST_BASE
+#define BASE_PHY_MGR (0x00088000)
+#define BASE_RW_MGR (0x00090000)
+#define BASE_DATA_MGR (0x00098000)
+#define BASE_SCC_MGR SEQUENCER_SCC_MGR_INST_BASE
+#define BASE_REG_FILE SEQUENCER_REG_FILE_INST_BASE
+#define BASE_TIMER SEQUENCER_TIMER_INST_BASE
+#define BASE_MMR (0x000C0000)
+#define BASE_TRK_MGR (0x000D0000)
+
+/* Register file addresses. */
+#define REG_FILE_SIGNATURE (BASE_REG_FILE + 0x0000)
+#define REG_FILE_DEBUG_DATA_ADDR (BASE_REG_FILE + 0x0004)
+#define REG_FILE_CUR_STAGE (BASE_REG_FILE + 0x0008)
+#define REG_FILE_FOM (BASE_REG_FILE + 0x000C)
+#define REG_FILE_FAILING_STAGE (BASE_REG_FILE + 0x0010)
+#define REG_FILE_DEBUG1 (BASE_REG_FILE + 0x0014)
+#define REG_FILE_DEBUG2 (BASE_REG_FILE + 0x0018)
+
+#define REG_FILE_DTAPS_PER_PTAP (BASE_REG_FILE + 0x001C)
+#define REG_FILE_TRK_SAMPLE_COUNT (BASE_REG_FILE + 0x0020)
+#define REG_FILE_TRK_LONGIDLE (BASE_REG_FILE + 0x0024)
+#define REG_FILE_DELAYS (BASE_REG_FILE + 0x0028)
+#define REG_FILE_TRK_RW_MGR_ADDR (BASE_REG_FILE + 0x002C)
+#define REG_FILE_TRK_READ_DQS_WIDTH (BASE_REG_FILE + 0x0030)
+#define REG_FILE_TRK_RFSH (BASE_REG_FILE + 0x0034)
+#define CTRL_CONFIG_REG (BASE_MMR + 0x0000)
+
+/* PHY manager configuration registers. */
+
+#define PHY_MGR_PHY_RLAT (BASE_PHY_MGR + 0x4000)
+#define PHY_MGR_RESET_MEM_STBL (BASE_PHY_MGR + 0x4004)
+#define PHY_MGR_MUX_SEL (BASE_PHY_MGR + 0x4008)
+#define PHY_MGR_CAL_STATUS (BASE_PHY_MGR + 0x400c)
+#define PHY_MGR_CAL_DEBUG_INFO (BASE_PHY_MGR + 0x4010)
+#define PHY_MGR_VFIFO_RD_EN_OVRD (BASE_PHY_MGR + 0x4014)
+#if CALIBRATE_BIT_SLIPS
+#define PHY_MGR_FR_SHIFT (BASE_PHY_MGR + 0x4020)
+#if MULTIPLE_AFI_WLAT
+#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x4020 + 4 * \
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#else
+#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x4018)
+#endif
+#else
+#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x4018)
+#endif
+#define PHY_MGR_AFI_RLAT (BASE_PHY_MGR + 0x401c)
+
+#define PHY_MGR_CAL_RESET (0)
+#define PHY_MGR_CAL_SUCCESS (1)
+#define PHY_MGR_CAL_FAIL (2)
+
+/* PHY manager command addresses. */
+
+#define PHY_MGR_CMD_INC_VFIFO_FR (BASE_PHY_MGR + 0x0000)
+#define PHY_MGR_CMD_INC_VFIFO_HR (BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_CMD_INC_VFIFO_HARD_PHY (BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_CMD_FIFO_RESET (BASE_PHY_MGR + 0x0008)
+#define PHY_MGR_CMD_INC_VFIFO_FR_HR (BASE_PHY_MGR + 0x000C)
+#define PHY_MGR_CMD_INC_VFIFO_QR (BASE_PHY_MGR + 0x0010)
+
+/* PHY manager parameters. */
+
+#define PHY_MGR_MAX_RLAT_WIDTH (BASE_PHY_MGR + 0x0000)
+#define PHY_MGR_MAX_AFI_WLAT_WIDTH (BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_MAX_AFI_RLAT_WIDTH (BASE_PHY_MGR + 0x0008)
+#define PHY_MGR_CALIB_SKIP_STEPS (BASE_PHY_MGR + 0x000c)
+#define PHY_MGR_CALIB_VFIFO_OFFSET (BASE_PHY_MGR + 0x0010)
+#define PHY_MGR_CALIB_LFIFO_OFFSET (BASE_PHY_MGR + 0x0014)
+#define PHY_MGR_RDIMM (BASE_PHY_MGR + 0x0018)
+#define PHY_MGR_MEM_T_WL (BASE_PHY_MGR + 0x001c)
+#define PHY_MGR_MEM_T_RL (BASE_PHY_MGR + 0x0020)
+
+/* Data Manager */
+#define DATA_MGR_DRAM_CFG (BASE_DATA_MGR + 0x0000)
+#define DATA_MGR_MEM_T_WL (BASE_DATA_MGR + 0x0004)
+#define DATA_MGR_MEM_T_ADD (BASE_DATA_MGR + 0x0008)
+#define DATA_MGR_MEM_T_RL (BASE_DATA_MGR + 0x000C)
+#define DATA_MGR_MEM_T_RFC (BASE_DATA_MGR + 0x0010)
+#define DATA_MGR_MEM_T_REFI (BASE_DATA_MGR + 0x0014)
+#define DATA_MGR_MEM_T_WR (BASE_DATA_MGR + 0x0018)
+#define DATA_MGR_MEM_T_MRD (BASE_DATA_MGR + 0x001C)
+#define DATA_MGR_COL_WIDTH (BASE_DATA_MGR + 0x0020)
+#define DATA_MGR_ROW_WIDTH (BASE_DATA_MGR + 0x0024)
+#define DATA_MGR_BANK_WIDTH (BASE_DATA_MGR + 0x0028)
+#define DATA_MGR_CS_WIDTH (BASE_DATA_MGR + 0x002C)
+#define DATA_MGR_ITF_WIDTH (BASE_DATA_MGR + 0x0030)
+#define DATA_MGR_DVC_WIDTH (BASE_DATA_MGR + 0x0034)
+
+#define MEM_T_WL_ADD DATA_MGR_MEM_T_WL
+#define MEM_T_RL_ADD DATA_MGR_MEM_T_RL
+
+#define CALIB_SKIP_DELAY_LOOPS (1 << 0)
+#define CALIB_SKIP_ALL_BITS_CHK (1 << 1)
+#define CALIB_SKIP_DELAY_SWEEPS (1 << 2)
+#define CALIB_SKIP_VFIFO (1 << 3)
+#define CALIB_SKIP_LFIFO (1 << 4)
+#define CALIB_SKIP_WLEVEL (1 << 5)
+#define CALIB_SKIP_WRITES (1 << 6)
+#define CALIB_SKIP_FULL_TEST (1 << 7)
+#define CALIB_SKIP_ALL (CALIB_SKIP_VFIFO | \
+ CALIB_SKIP_LFIFO | CALIB_SKIP_WLEVEL | \
+ CALIB_SKIP_WRITES | CALIB_SKIP_FULL_TEST)
+#define CALIB_IN_RTL_SIM (1 << 8)
+
+/* Scan chain manager command addresses */
+
+#define WRITE_SCC_DQS_IN_DELAY(group, delay) \
+ IOWR_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2, delay)
+#define WRITE_SCC_DQS_EN_DELAY(group, delay) \
+ IOWR_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2, (delay) \
+ + IO_DQS_EN_DELAY_OFFSET)
+#define WRITE_SCC_DQS_EN_PHASE(group, phase) \
+ IOWR_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2, phase)
+#define WRITE_SCC_DQDQS_OUT_PHASE(group, phase) \
+ IOWR_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2, phase)
+#define WRITE_SCC_OCT_OUT1_DELAY(group, delay) \
+ IOWR_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, (group) << 2, delay)
+#define WRITE_SCC_OCT_OUT2_DELAY(group, delay)
+#define WRITE_SCC_DQS_BYPASS(group, bypass)
+
+#define WRITE_SCC_DQ_OUT1_DELAY(pin, delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2, delay)
+
+#define WRITE_SCC_DQ_OUT2_DELAY(pin, delay)
+
+#define WRITE_SCC_DQ_IN_DELAY(pin, delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2, delay)
+
+#define WRITE_SCC_DQ_BYPASS(pin, bypass)
+
+#define WRITE_SCC_RFIFO_MODE(pin, mode)
+
+#define WRITE_SCC_HHP_EXTRAS(value) \
+ IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_EXTRAS_OFFSET, value)
+#define WRITE_SCC_HHP_DQSE_MAP(value) \
+ IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_DQSE_MAP_OFFSET, value)
+
+#define WRITE_SCC_DQS_IO_OUT1_DELAY(delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+
+#define WRITE_SCC_DQS_IO_OUT2_DELAY(delay)
+
+#define WRITE_SCC_DQS_IO_IN_DELAY(delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+
+#define WRITE_SCC_DM_IO_OUT1_DELAY(pin, delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+
+#define WRITE_SCC_DM_IO_OUT2_DELAY(pin, delay)
+
+#define WRITE_SCC_DM_IO_IN_DELAY(pin, delay) \
+ IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+
+#define WRITE_SCC_DM_BYPASS(pin, bypass)
+
+#define READ_SCC_DQS_IN_DELAY(group) \
+ IORD_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2)
+#define READ_SCC_DQS_EN_DELAY(group) \
+ (IORD_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2) \
+ - IO_DQS_EN_DELAY_OFFSET)
+#define READ_SCC_DQS_EN_PHASE(group) \
+ IORD_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2)
+#define READ_SCC_DQDQS_OUT_PHASE(group) \
+ IORD_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2)
+#define READ_SCC_OCT_OUT1_DELAY(group) \
+ IORD_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, \
+ (group * RW_MGR_MEM_IF_READ_DQS_WIDTH / \
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH) << 2)
+#define READ_SCC_OCT_OUT2_DELAY(group) 0
+#define READ_SCC_DQS_BYPASS(group) 0
+#define READ_SCC_DQS_BYPASS(group) 0
+
+#define READ_SCC_DQ_OUT1_DELAY(pin) \
+ IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2)
+#define READ_SCC_DQ_OUT2_DELAY(pin) 0
+#define READ_SCC_DQ_IN_DELAY(pin) \
+ IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2)
+#define READ_SCC_DQ_BYPASS(pin) 0
+#define READ_SCC_RFIFO_MODE(pin) 0
+
+#define READ_SCC_DQS_IO_OUT1_DELAY() \
+ IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+#define READ_SCC_DQS_IO_OUT2_DELAY() 0
+#define READ_SCC_DQS_IO_IN_DELAY() \
+ IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+
+#define READ_SCC_DM_IO_OUT1_DELAY(pin) \
+ IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_IO_OUT2_DELAY(pin) 0
+#define READ_SCC_DM_IO_IN_DELAY(pin) \
+ IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_BYPASS(pin) 0
+
+#define SCC_MGR_GROUP_COUNTER (BASE_SCC_MGR + 0x0000)
+#define SCC_MGR_DQS_IN_DELAY (BASE_SCC_MGR + 0x0100)
+#define SCC_MGR_DQS_EN_PHASE (BASE_SCC_MGR + 0x0200)
+#define SCC_MGR_DQS_EN_DELAY (BASE_SCC_MGR + 0x0300)
+#define SCC_MGR_DQDQS_OUT_PHASE (BASE_SCC_MGR + 0x0400)
+#define SCC_MGR_OCT_OUT1_DELAY (BASE_SCC_MGR + 0x0500)
+#define SCC_MGR_IO_OUT1_DELAY (BASE_SCC_MGR + 0x0700)
+#define SCC_MGR_IO_IN_DELAY (BASE_SCC_MGR + 0x0900)
+
+/* HHP-HPS-specific versions of some commands */
+#define SCC_MGR_DQS_EN_DELAY_GATE (BASE_SCC_MGR + 0x0600)
+#define SCC_MGR_IO_OE_DELAY (BASE_SCC_MGR + 0x0800)
+#define SCC_MGR_HHP_GLOBALS (BASE_SCC_MGR + 0x0A00)
+#define SCC_MGR_HHP_RFILE (BASE_SCC_MGR + 0x0B00)
+
+/* HHP-HPS-specific values */
+#define SCC_MGR_HHP_EXTRAS_OFFSET 0
+#define SCC_MGR_HHP_DQSE_MAP_OFFSET 1
+
+#define SCC_MGR_DQS_ENA (BASE_SCC_MGR + 0x0E00)
+#define SCC_MGR_DQS_IO_ENA (BASE_SCC_MGR + 0x0E04)
+#define SCC_MGR_DQ_ENA (BASE_SCC_MGR + 0x0E08)
+#define SCC_MGR_DM_ENA (BASE_SCC_MGR + 0x0E0C)
+#define SCC_MGR_UPD (BASE_SCC_MGR + 0x0E20)
+#define SCC_MGR_ACTIVE_RANK (BASE_SCC_MGR + 0x0E40)
+#define SCC_MGR_AFI_CAL_INIT (BASE_SCC_MGR + 0x0D00)
+
+/* PHY Debug mode flag constants */
+#define PHY_DEBUG_IN_DEBUG_MODE 0x00000001
+#define PHY_DEBUG_ENABLE_CAL_RPT 0x00000002
+#define PHY_DEBUG_ENABLE_MARGIN_RPT 0x00000004
+#define PHY_DEBUG_SWEEP_ALL_GROUPS 0x00000008
+#define PHY_DEBUG_DISABLE_GUARANTEED_READ 0x00000010
+#define PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION 0x00000020
+
+/* Init and Reset delay constants - Only use if defined by sequencer_defines.h,
+ * otherwise, revert to defaults
+ * Default for Tinit = (0+1) * ((202+1) * (2 * 131 + 1) + 1) = 53532 =
+ * 200.75us @ 266MHz
+ */
+#ifdef TINIT_CNTR0_VAL
+#define SEQ_TINIT_CNTR0_VAL TINIT_CNTR0_VAL
+#else
+#define SEQ_TINIT_CNTR0_VAL 0
+#endif
+
+#ifdef TINIT_CNTR1_VAL
+#define SEQ_TINIT_CNTR1_VAL TINIT_CNTR1_VAL
+#else
+#define SEQ_TINIT_CNTR1_VAL 202
+#endif
+
+#ifdef TINIT_CNTR2_VAL
+#define SEQ_TINIT_CNTR2_VAL TINIT_CNTR2_VAL
+#else
+#define SEQ_TINIT_CNTR2_VAL 131
+#endif
+
+
+/* Default for Treset = (2+1) * ((252+1) * (2 * 131 + 1) + 1) = 133563 =
+ * 500.86us @ 266MHz
+ */
+#ifdef TRESET_CNTR0_VAL
+#define SEQ_TRESET_CNTR0_VAL TRESET_CNTR0_VAL
+#else
+#define SEQ_TRESET_CNTR0_VAL 2
+#endif
+
+#ifdef TRESET_CNTR1_VAL
+#define SEQ_TRESET_CNTR1_VAL TRESET_CNTR1_VAL
+#else
+#define SEQ_TRESET_CNTR1_VAL 252
+#endif
+
+#ifdef TRESET_CNTR2_VAL
+#define SEQ_TRESET_CNTR2_VAL TRESET_CNTR2_VAL
+#else
+#define SEQ_TRESET_CNTR2_VAL 131
+#endif
+
+#define RW_MGR_INST_ROM_WRITE BASE_RW_MGR + 0x1800
+#define RW_MGR_AC_ROM_WRITE BASE_RW_MGR + 0x1C00
+
+/* parameter variable holder */
+struct param_type {
+ uint32_t dm_correct_mask;
+ uint32_t read_correct_mask;
+ uint32_t read_correct_mask_vg;
+ uint32_t write_correct_mask;
+ uint32_t write_correct_mask_vg;
+
+ /* set a particular entry to 1 if we need to skip a particular rank */
+
+ uint32_t skip_ranks[MAX_RANKS];
+
+ /* set a particular entry to 1 if we need to skip a particular group */
+
+ uint32_t skip_groups;
+
+ /* set a particular entry to 1 if the shadow register
+ (which represents a set of ranks) needs to be skipped */
+
+ uint32_t skip_shadow_regs[NUM_SHADOW_REGS];
+
+};
+
+
+/* global variable holder */
+struct gbl_type {
+ uint32_t phy_debug_mode_flags;
+
+ /* current read latency */
+
+ uint32_t curr_read_lat;
+
+ /* current write latency */
+
+ uint32_t curr_write_lat;
+
+ /* error code */
+
+ uint32_t error_substage;
+ uint32_t error_stage;
+ uint32_t error_group;
+
+ /* figure-of-merit in, figure-of-merit out */
+
+ uint32_t fom_in;
+ uint32_t fom_out;
+
+ /*USER Number of RW Mgr NOP cycles between
+ write command and write data */
+#if MULTIPLE_AFI_WLAT
+ uint32_t rw_wl_nop_cycles_per_group[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
+#endif
+ uint32_t rw_wl_nop_cycles;
+};
+#endif /* _SEQUENCER_H_ */
diff --git a/board/altera/socfpga/sdram/sequencer_auto.h b/board/altera/socfpga/sdram/sequencer_auto.h
new file mode 100644
index 0000000..de26b6b
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto.h
@@ -0,0 +1,216 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#define __RW_MGR_ac_mrs1 0x04
+#define __RW_MGR_ac_mrs3 0x06
+#define __RW_MGR_ac_write_bank_0_col_0_nodata_wl_1 0x1C
+#define __RW_MGR_ac_act_1 0x11
+#define __RW_MGR_ac_write_postdata 0x1A
+#define __RW_MGR_ac_act_0 0x10
+#define __RW_MGR_ac_des 0x0D
+#define __RW_MGR_ac_init_reset_1_cke_0 0x01
+#define __RW_MGR_ac_write_data 0x19
+#define __RW_MGR_ac_init_reset_0_cke_0 0x00
+#define __RW_MGR_ac_read_bank_0_1_norden 0x22
+#define __RW_MGR_ac_pre_all 0x12
+#define __RW_MGR_ac_mrs0_user 0x02
+#define __RW_MGR_ac_mrs0_dll_reset 0x03
+#define __RW_MGR_ac_read_bank_0_0 0x1D
+#define __RW_MGR_ac_write_bank_0_col_1 0x16
+#define __RW_MGR_ac_read_bank_0_1 0x1F
+#define __RW_MGR_ac_write_bank_1_col_0 0x15
+#define __RW_MGR_ac_write_bank_1_col_1 0x17
+#define __RW_MGR_ac_write_bank_0_col_0 0x14
+#define __RW_MGR_ac_read_bank_1_0 0x1E
+#define __RW_MGR_ac_mrs1_mirr 0x0A
+#define __RW_MGR_ac_read_bank_1_1 0x20
+#define __RW_MGR_ac_des_odt_1 0x0E
+#define __RW_MGR_ac_mrs0_dll_reset_mirr 0x09
+#define __RW_MGR_ac_zqcl 0x07
+#define __RW_MGR_ac_write_predata 0x18
+#define __RW_MGR_ac_mrs0_user_mirr 0x08
+#define __RW_MGR_ac_ref 0x13
+#define __RW_MGR_ac_nop 0x0F
+#define __RW_MGR_ac_rdimm 0x23
+#define __RW_MGR_ac_mrs2_mirr 0x0B
+#define __RW_MGR_ac_write_bank_0_col_0_nodata 0x1B
+#define __RW_MGR_ac_read_en 0x21
+#define __RW_MGR_ac_mrs3_mirr 0x0C
+#define __RW_MGR_ac_mrs2 0x05
+#define __RW_MGR_CONTENT_ac_mrs1 0x10090004
+#define __RW_MGR_CONTENT_ac_mrs3 0x100B0000
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0_nodata_wl_1 0x18980000
+#define __RW_MGR_CONTENT_ac_act_1 0x106B0000
+#define __RW_MGR_CONTENT_ac_write_postdata 0x38780000
+#define __RW_MGR_CONTENT_ac_act_0 0x10680000
+#define __RW_MGR_CONTENT_ac_des 0x30780000
+#define __RW_MGR_CONTENT_ac_init_reset_1_cke_0 0x20780000
+#define __RW_MGR_CONTENT_ac_write_data 0x3CF80000
+#define __RW_MGR_CONTENT_ac_init_reset_0_cke_0 0x20700000
+#define __RW_MGR_CONTENT_ac_read_bank_0_1_norden 0x10580008
+#define __RW_MGR_CONTENT_ac_pre_all 0x10280400
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_user 0x10080831
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset 0x10080930
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_user 0x10080431
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset 0x10080530
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_read_bank_0_0 0x13580000
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_1 0x1C980008
+#define __RW_MGR_CONTENT_ac_read_bank_0_1 0x13580008
+#define __RW_MGR_CONTENT_ac_write_bank_1_col_0 0x1C9B0000
+#define __RW_MGR_CONTENT_ac_write_bank_1_col_1 0x1C9B0008
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0 0x1C980000
+#define __RW_MGR_CONTENT_ac_read_bank_1_0 0x135B0000
+#define __RW_MGR_CONTENT_ac_mrs1_mirr 0x100A0004
+#define __RW_MGR_CONTENT_ac_read_bank_1_1 0x135B0008
+#define __RW_MGR_CONTENT_ac_des_odt_1 0x38780000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset_mirr 0x100808C8
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_dll_reset_mirr 0x100804C8
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_zqcl 0x10380400
+#define __RW_MGR_CONTENT_ac_write_predata 0x38F80000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_CONTENT_ac_mrs0_user_mirr 0x10080849
+#else
+#define __RW_MGR_CONTENT_ac_mrs0_user_mirr 0x10080449
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_CONTENT_ac_ref 0x10480000
+#define __RW_MGR_CONTENT_ac_nop 0x30780000
+#define __RW_MGR_CONTENT_ac_rdimm 0x10780000
+#define __RW_MGR_CONTENT_ac_mrs2_mirr 0x10090010
+#define __RW_MGR_CONTENT_ac_write_bank_0_col_0_nodata 0x18180000
+#define __RW_MGR_CONTENT_ac_read_en 0x33780000
+#define __RW_MGR_CONTENT_ac_mrs3_mirr 0x100B0000
+#define __RW_MGR_CONTENT_ac_mrs2 0x100A0008
+
+#define __RW_MGR_READ_B2B_WAIT2 0x6A
+#define __RW_MGR_LFSR_WR_RD_BANK_0_WAIT 0x31
+#define __RW_MGR_REFRESH_ALL 0x14
+#define __RW_MGR_ZQCL 0x06
+#define __RW_MGR_LFSR_WR_RD_BANK_0_NOP 0x22
+#define __RW_MGR_LFSR_WR_RD_BANK_0_DQS 0x23
+#define __RW_MGR_ACTIVATE_0_AND_1 0x0D
+#define __RW_MGR_MRS2_MIRR 0x0A
+#define __RW_MGR_INIT_RESET_0_CKE_0 0x6E
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT 0x45
+#define __RW_MGR_ACTIVATE_1 0x0F
+#define __RW_MGR_MRS2 0x04
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1 0x34
+#define __RW_MGR_MRS1 0x03
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_IDLE_LOOP1 0x7A
+#else
+#define __RW_MGR_IDLE_LOOP1 0x7C
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_GUARANTEED_WRITE_WAIT2 0x18
+#define __RW_MGR_MRS3 0x05
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_IDLE_LOOP2 0x79
+#else
+#define __RW_MGR_IDLE_LOOP2 0x7B
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_GUARANTEED_WRITE_WAIT1 0x1E
+#define __RW_MGR_LFSR_WR_RD_BANK_0_DATA 0x24
+#define __RW_MGR_GUARANTEED_WRITE_WAIT3 0x1C
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_RDIMM_CMD 0x78
+#else
+#define __RW_MGR_RDIMM_CMD 0x7A
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP 0x36
+#define __RW_MGR_GUARANTEED_WRITE_WAIT0 0x1A
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA 0x38
+#define __RW_MGR_GUARANTEED_READ_CONT 0x53
+#define __RW_MGR_MRS3_MIRR 0x0B
+#define __RW_MGR_IDLE 0x00
+#define __RW_MGR_READ_B2B 0x58
+#define __RW_MGR_INIT_RESET_0_CKE_0_inloop 0x6F
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS 0x37
+#define __RW_MGR_GUARANTEED_WRITE 0x17
+#define __RW_MGR_PRECHARGE_ALL 0x12
+#define __RW_MGR_INIT_RESET_1_CKE_0_inloop_1 0x74
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define __RW_MGR_SGLE_READ 0x7C
+#else
+#define __RW_MGR_SGLE_READ 0x7E
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define __RW_MGR_MRS0_USER_MIRR 0x0C
+#define __RW_MGR_RETURN 0x01
+#define __RW_MGR_LFSR_WR_RD_DM_BANK_0 0x35
+#define __RW_MGR_MRS0_USER 0x07
+#define __RW_MGR_GUARANTEED_READ 0x4B
+#define __RW_MGR_MRS0_DLL_RESET_MIRR 0x08
+#define __RW_MGR_INIT_RESET_1_CKE_0 0x73
+#define __RW_MGR_ACTIVATE_0_AND_1_WAIT2 0x10
+#define __RW_MGR_LFSR_WR_RD_BANK_0_WL_1 0x20
+#define __RW_MGR_MRS0_DLL_RESET 0x02
+#define __RW_MGR_ACTIVATE_0_AND_1_WAIT1 0x0E
+#define __RW_MGR_LFSR_WR_RD_BANK_0 0x21
+#define __RW_MGR_CLEAR_DQS_ENABLE 0x48
+#define __RW_MGR_MRS1_MIRR 0x09
+#define __RW_MGR_READ_B2B_WAIT1 0x60
+#define __RW_MGR_CONTENT_READ_B2B_WAIT2 0x00C680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_WAIT 0x00A680
+#define __RW_MGR_CONTENT_REFRESH_ALL 0x000980
+#define __RW_MGR_CONTENT_ZQCL 0x008380
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_NOP 0x00E700
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_DQS 0x000C00
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1 0x000800
+#define __RW_MGR_CONTENT_MRS2_MIRR 0x008580
+#define __RW_MGR_CONTENT_INIT_RESET_0_CKE_0 0x000000
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_WAIT 0x00A680
+#define __RW_MGR_CONTENT_ACTIVATE_1 0x000880
+#define __RW_MGR_CONTENT_MRS2 0x008280
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_WL_1 0x00CE00
+#define __RW_MGR_CONTENT_MRS1 0x008200
+#define __RW_MGR_CONTENT_IDLE_LOOP1 0x00A680
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT2 0x00CCE8
+#define __RW_MGR_CONTENT_MRS3 0x008300
+#define __RW_MGR_CONTENT_IDLE_LOOP2 0x008680
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT1 0x00AC88
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_DATA 0x020CE0
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT3 0x00EC88
+#define __RW_MGR_CONTENT_RDIMM_CMD 0x009180
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_NOP 0x00E700
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE_WAIT0 0x008CE8
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_DATA 0x030CE0
+#define __RW_MGR_CONTENT_GUARANTEED_READ_CONT 0x001168
+#define __RW_MGR_CONTENT_MRS3_MIRR 0x008600
+#define __RW_MGR_CONTENT_IDLE 0x080000
+#define __RW_MGR_CONTENT_READ_B2B 0x040E88
+#define __RW_MGR_CONTENT_INIT_RESET_0_CKE_0_inloop 0x000000
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0_DQS 0x000C00
+#define __RW_MGR_CONTENT_GUARANTEED_WRITE 0x000B68
+#define __RW_MGR_CONTENT_PRECHARGE_ALL 0x000900
+#define __RW_MGR_CONTENT_INIT_RESET_1_CKE_0_inloop_1 0x000080
+#define __RW_MGR_CONTENT_SGLE_READ 0x040F08
+#define __RW_MGR_CONTENT_MRS0_USER_MIRR 0x008400
+#define __RW_MGR_CONTENT_RETURN 0x080680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_DM_BANK_0 0x00CD80
+#define __RW_MGR_CONTENT_MRS0_USER 0x008100
+#define __RW_MGR_CONTENT_GUARANTEED_READ 0x001168
+#define __RW_MGR_CONTENT_MRS0_DLL_RESET_MIRR 0x008480
+#define __RW_MGR_CONTENT_INIT_RESET_1_CKE_0 0x000080
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1_WAIT2 0x00A680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0_WL_1 0x00CE00
+#define __RW_MGR_CONTENT_MRS0_DLL_RESET 0x008180
+#define __RW_MGR_CONTENT_ACTIVATE_0_AND_1_WAIT1 0x008680
+#define __RW_MGR_CONTENT_LFSR_WR_RD_BANK_0 0x00CD80
+#define __RW_MGR_CONTENT_CLEAR_DQS_ENABLE 0x001158
+#define __RW_MGR_CONTENT_MRS1_MIRR 0x008500
+#define __RW_MGR_CONTENT_READ_B2B_WAIT1 0x00A680
+
diff --git a/board/altera/socfpga/sdram/sequencer_auto_ac_init.c b/board/altera/socfpga/sdram/sequencer_auto_ac_init.c
new file mode 100644
index 0000000..b618218
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto_ac_init.c
@@ -0,0 +1,88 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "sequencer_defines.h"
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+const unsigned long ac_rom_init_size = 36;
+const unsigned long ac_rom_init[36] = {
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+ 0x20700000,
+ 0x20780000,
+ 0x10080831,
+ 0x10080930,
+ 0x10090004,
+ 0x100a0008,
+ 0x100b0000,
+ 0x10380400,
+ 0x10080849,
+ 0x100808c8,
+ 0x100a0004,
+ 0x10090010,
+ 0x100b0000,
+ 0x30780000,
+ 0x38780000,
+ 0x30780000,
+ 0x10680000,
+ 0x106b0000,
+ 0x10280400,
+ 0x10480000,
+ 0x1c980000,
+ 0x1c9b0000,
+ 0x1c980008,
+ 0x1c9b0008,
+ 0x38f80000,
+ 0x3cf80000,
+ 0x38780000,
+ 0x18180000,
+ 0x18980000,
+ 0x13580000,
+ 0x135b0000,
+ 0x13580008,
+ 0x135b0008,
+ 0x33780000,
+ 0x10580008,
+ 0x10780000
+#else
+ 0x20700000,
+ 0x20780000,
+ 0x10080431,
+ 0x10080530,
+ 0x10090004,
+ 0x100a0008,
+ 0x100b0000,
+ 0x10380400,
+ 0x10080449,
+ 0x100804c8,
+ 0x100a0004,
+ 0x10090010,
+ 0x100b0000,
+ 0x30780000,
+ 0x38780000,
+ 0x30780000,
+ 0x10680000,
+ 0x106b0000,
+ 0x10280400,
+ 0x10480000,
+ 0x1c980000,
+ 0x1c9b0000,
+ 0x1c980008,
+ 0x1c9b0008,
+ 0x38f80000,
+ 0x3cf80000,
+ 0x38780000,
+ 0x18180000,
+ 0x18980000,
+ 0x13580000,
+ 0x135b0000,
+ 0x13580008,
+ 0x135b0008,
+ 0x33780000,
+ 0x10580008,
+ 0x10780000
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+};
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer_auto_inst_init.c b/board/altera/socfpga/sdram/sequencer_auto_inst_init.c
new file mode 100644
index 0000000..a200a3a
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_auto_inst_init.c
@@ -0,0 +1,273 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "sequencer_defines.h"
+#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+const alt_u32 inst_rom_init_size = 126;
+const alt_u32 inst_rom_init[126] = {
+ 0x80000,
+ 0x80680,
+ 0x8180,
+ 0x8200,
+ 0x8280,
+ 0x8300,
+ 0x8380,
+ 0x8100,
+ 0x8480,
+ 0x8500,
+ 0x8580,
+ 0x8600,
+ 0x8400,
+ 0x800,
+ 0x8680,
+ 0x880,
+ 0xa680,
+ 0x80680,
+ 0x900,
+ 0x80680,
+ 0x980,
+ 0x8680,
+ 0x80680,
+ 0xb68,
+ 0xcce8,
+ 0xae8,
+ 0x8ce8,
+ 0xb88,
+ 0xec88,
+ 0xa08,
+ 0xac88,
+ 0x80680,
+ 0xce00,
+ 0xcd80,
+ 0xe700,
+ 0xc00,
+ 0x20ce0,
+ 0x20ce0,
+ 0x20ce0,
+ 0x20ce0,
+ 0xd00,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x60e80,
+ 0x61080,
+ 0x61080,
+ 0x61080,
+ 0xa680,
+ 0x8680,
+ 0x80680,
+ 0xce00,
+ 0xcd80,
+ 0xe700,
+ 0xc00,
+ 0x30ce0,
+ 0x30ce0,
+ 0x30ce0,
+ 0x30ce0,
+ 0xd00,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x70e80,
+ 0x71080,
+ 0x71080,
+ 0x71080,
+ 0xa680,
+ 0x8680,
+ 0x80680,
+ 0x1158,
+ 0x6d8,
+ 0x80680,
+ 0x1168,
+ 0x7e8,
+ 0x7e8,
+ 0x87e8,
+ 0x40fe8,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0x1168,
+ 0x7e8,
+ 0x7e8,
+ 0xa7e8,
+ 0x80680,
+ 0x40e88,
+ 0x41088,
+ 0x41088,
+ 0x41088,
+ 0x40f68,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0xa680,
+ 0x40fe8,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0x41008,
+ 0x41088,
+ 0x41088,
+ 0x41088,
+ 0x1100,
+ 0xc680,
+ 0x8680,
+ 0xe680,
+ 0x80680,
+ 0x0,
+ 0x8000,
+ 0xa000,
+ 0xc000,
+ 0x80000,
+ 0x80,
+ 0x8080,
+ 0xa080,
+ 0xc080,
+ 0x80080,
+ 0x9180,
+ 0x8680,
+ 0xa680,
+ 0x80680,
+ 0x40f08,
+ 0x80680
+};
+#else
+const unsigned long inst_rom_init_size = 128;
+const unsigned long inst_rom_init[128] = {
+ 0x80000,
+ 0x80680,
+ 0x8180,
+ 0x8200,
+ 0x8280,
+ 0x8300,
+ 0x8380,
+ 0x8100,
+ 0x8480,
+ 0x8500,
+ 0x8580,
+ 0x8600,
+ 0x8400,
+ 0x800,
+ 0x8680,
+ 0x880,
+ 0xa680,
+ 0x80680,
+ 0x900,
+ 0x80680,
+ 0x980,
+ 0x8680,
+ 0x80680,
+ 0xb68,
+ 0xcce8,
+ 0xae8,
+ 0x8ce8,
+ 0xb88,
+ 0xec88,
+ 0xa08,
+ 0xac88,
+ 0x80680,
+ 0xce00,
+ 0xcd80,
+ 0xe700,
+ 0xc00,
+ 0x20ce0,
+ 0x20ce0,
+ 0x20ce0,
+ 0x20ce0,
+ 0xd00,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x60e80,
+ 0x61080,
+ 0x61080,
+ 0x61080,
+ 0xa680,
+ 0x8680,
+ 0x80680,
+ 0xce00,
+ 0xcd80,
+ 0xe700,
+ 0xc00,
+ 0x30ce0,
+ 0x30ce0,
+ 0x30ce0,
+ 0x30ce0,
+ 0xd00,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x680,
+ 0x70e80,
+ 0x71080,
+ 0x71080,
+ 0x71080,
+ 0xa680,
+ 0x8680,
+ 0x80680,
+ 0x1158,
+ 0x6d8,
+ 0x80680,
+ 0x1168,
+ 0x7e8,
+ 0x7e8,
+ 0x87e8,
+ 0x40fe8,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0x1168,
+ 0x7e8,
+ 0x7e8,
+ 0xa7e8,
+ 0x80680,
+ 0x40e88,
+ 0x41088,
+ 0x41088,
+ 0x41088,
+ 0x40f68,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0xa680,
+ 0x40fe8,
+ 0x410e8,
+ 0x410e8,
+ 0x410e8,
+ 0x41008,
+ 0x41088,
+ 0x41088,
+ 0x41088,
+ 0x1100,
+ 0xc680,
+ 0x8680,
+ 0xe680,
+ 0x80680,
+ 0x0,
+ 0x0,
+ 0xa000,
+ 0x8000,
+ 0x80000,
+ 0x80,
+ 0x80,
+ 0x80,
+ 0x80,
+ 0xa080,
+ 0x8080,
+ 0x80080,
+ 0x9180,
+ 0x8680,
+ 0xa680,
+ 0x80680,
+ 0x40f08,
+ 0x80680
+};
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#endif
diff --git a/board/altera/socfpga/sdram/sequencer_defines.h b/board/altera/socfpga/sdram/sequencer_defines.h
new file mode 100644
index 0000000..a021257
--- /dev/null
+++ b/board/altera/socfpga/sdram/sequencer_defines.h
@@ -0,0 +1,154 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef _SEQUENCER_DEFINES_H_
+#define _SEQUENCER_DEFINES_H_
+
+#define AC_ROM_MR1_MIRR 0000000000100
+#define AC_ROM_MR1_OCD_ENABLE
+#define AC_ROM_MR2_MIRR 0000000010000
+#define AC_ROM_MR3_MIRR 0000000000000
+#define AC_ROM_MR0_CALIB
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define AC_ROM_MR0_DLL_RESET_MIRR 0100011001000
+#define AC_ROM_MR0_DLL_RESET 0100100110000
+#define AC_ROM_MR0_MIRR 0100001001001
+#define AC_ROM_MR0 0100000110001
+#else
+#define AC_ROM_MR0_DLL_RESET_MIRR 0010011001000
+#define AC_ROM_MR0_DLL_RESET 0010100110000
+#define AC_ROM_MR0_MIRR 0010001001001
+#define AC_ROM_MR0 0010000110001
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define AC_ROM_MR1 0000000000100
+#define AC_ROM_MR2 0000000001000
+#define AC_ROM_MR3 0000000000000
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define AFI_CLK_FREQ 534
+#else
+#define AFI_CLK_FREQ 401
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define AFI_RATE_RATIO 1
+#define ARRIAVGZ 0
+#define ARRIAV 1
+#define AVL_CLK_FREQ 67
+#define BFM_MODE 0
+#define BURST2 0
+#define CALIBRATE_BIT_SLIPS 0
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define CALIB_LFIFO_OFFSET 8
+#define CALIB_VFIFO_OFFSET 6
+#else
+#define CALIB_LFIFO_OFFSET 7
+#define CALIB_VFIFO_OFFSET 5
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define CYCLONEV 0
+#define DDR2 0
+#define DDR3 1
+#define DDRX 1
+#define DM_PINS_ENABLED 1
+#define ENABLE_ASSERT 0
+#define ENABLE_BRINGUP_DEBUGGING 0
+#define ENABLE_DQS_IN_CENTERING 1
+#define ENABLE_EXPORT_SEQ_DEBUG_BRIDGE 0
+#define ENABLE_INST_ROM_WRITE 1
+#define ENABLE_MARGIN_REPORT_GEN 0
+#define ENABLE_SUPER_QUICK_CALIBRATION 0
+#define FULL_RATE 1
+#define GUARANTEED_READ_BRINGUP_TEST 0
+#define HALF_RATE 0
+#define HARD_PHY 1
+#define HARD_VFIFO 1
+#define HCX_COMPAT_MODE 0
+#define HPS_HW 1
+#define HR_DDIO_OUT_HAS_THREE_REGS 0
+#define IO_DELAY_PER_DCHAIN_TAP 25
+#define IO_DELAY_PER_DQS_EN_DCHAIN_TAP 25
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define IO_DELAY_PER_OPA_TAP 234
+#else
+#define IO_DELAY_PER_OPA_TAP 312
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define IO_DLL_CHAIN_LENGTH 8
+#define IO_DM_OUT_RESERVE 0
+#define IO_DQDQS_OUT_PHASE_MAX 0
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define IO_DQS_EN_DELAY_MAX 15
+#define IO_DQS_EN_DELAY_OFFSET 16
+#else
+#define IO_DQS_EN_DELAY_MAX 31
+#define IO_DQS_EN_DELAY_OFFSET 0
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define IO_DQS_EN_PHASE_MAX 7
+#define IO_DQS_IN_DELAY_MAX 31
+#define IO_DQS_IN_RESERVE 4
+#define IO_DQS_OUT_RESERVE 6
+#define IO_DQ_OUT_RESERVE 0
+#define IO_IO_IN_DELAY_MAX 31
+#define IO_IO_OUT1_DELAY_MAX 31
+#define IO_IO_OUT2_DELAY_MAX 0
+#define IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS 0
+#define LPDDR1 0
+#define LPDDR2 0
+#define LRDIMM 0
+#define MARGIN_VARIATION_TEST 0
+#define MAX_LATENCY_COUNT_WIDTH 5
+#define MEM_ADDR_WIDTH 13
+#define MRS_MIRROR_PING_PONG_ATSO 0
+#define MULTIPLE_AFI_WLAT 0
+#define QDRII 0
+#define QUARTER_RATE 0
+#define RDIMM 0
+#define READ_AFTER_WRITE_CALIBRATION 1
+#define READ_VALID_FIFO_SIZE 16
+#ifdef CONFIG_SOCFPGA_ARRIA5
+/* The if..else... is not required if generated by tools */
+#define REG_FILE_INIT_SEQ_SIGNATURE 0x5555048c
+#else
+#define REG_FILE_INIT_SEQ_SIGNATURE 0x55550483
+#endif /* CONFIG_SOCFPGA_ARRIA5 */
+#define RLDRAM3 0
+#define RLDRAMII 0
+#define RLDRAMX 0
+#define RW_MGR_MEM_ADDRESS_MIRRORING 0
+#define RW_MGR_MEM_ADDRESS_WIDTH 15
+#define RW_MGR_MEM_BANK_WIDTH 3
+#define RW_MGR_MEM_CHIP_SELECT_WIDTH 1
+#define RW_MGR_MEM_CLK_EN_WIDTH 1
+#define RW_MGR_MEM_CONTROL_WIDTH 1
+#define RW_MGR_MEM_DATA_MASK_WIDTH 5
+#define RW_MGR_MEM_DATA_WIDTH 40
+#define RW_MGR_MEM_DQ_PER_READ_DQS 8
+#define RW_MGR_MEM_DQ_PER_WRITE_DQS 8
+#define RW_MGR_MEM_IF_READ_DQS_WIDTH 5
+#define RW_MGR_MEM_IF_WRITE_DQS_WIDTH 5
+#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 1
+#define RW_MGR_MEM_ODT_WIDTH 1
+#define RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS 1
+#define RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS 1
+#define RW_MGR_MR0_BL 1
+#define RW_MGR_MR0_CAS_LATENCY 3
+#define RW_MGR_TRUE_MEM_DATA_MASK_WIDTH 5
+#define RW_MGR_WRITE_TO_DEBUG_READ 1.0
+#define SKEW_CALIBRATION 0
+#define STATIC_SIM_FILESET 0
+#define STATIC_SKIP_MEM_INIT 0
+#define STRATIXV 0
+#define TINIT_CNTR1_VAL 32
+#define TINIT_CNTR2_VAL 32
+#define TINIT_CNTR0_VAL 132
+#define TRESET_CNTR1_VAL 99
+#define TRESET_CNTR2_VAL 10
+#define TRESET_CNTR0_VAL 132
+#define USE_DQS_TRACKING 1
+#define USE_SHADOW_REGS 0
+
+#endif /* _SEQUENCER_DEFINES_H_ */
diff --git a/board/altera/socfpga/sdram/system.h b/board/altera/socfpga/sdram/system.h
new file mode 100644
index 0000000..6ba5915
--- /dev/null
+++ b/board/altera/socfpga/sdram/system.h
@@ -0,0 +1,15 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#define SEQUENCER_DATA_MGR_INST_BASE 0x60000
+#define SEQUENCER_PHY_MGR_INST_BASE 0x48000
+#define SEQUENCER_PTR_MGR_INST_BASE 0x40000
+#define SEQUENCER_RAM_BASE 0x20000
+#define SEQUENCER_ROM_BASE 0x10000
+#define SEQUENCER_RW_MGR_INST_BASE 0x50000
+#define SEQUENCER_SCC_MGR_INST_BASE 0x58000
+#define SEQUENCER_REG_FILE_INST_BASE 0x70000
+#define SEQUENCER_TIMER_INST_BASE 0x78000
--
2.2.1
More information about the U-Boot
mailing list