[U-Boot] [PATCH v2 2/4] nand: lpc32xx: add hardware ECC support
slemieux.tyco at gmail.com
slemieux.tyco at gmail.com
Wed Jul 29 18:14:08 CEST 2015
From: Sylvain Lemieux <slemieux at tycoint.com>
Incorporate NAND SLC hardware ECC support from legacy
LPCLinux NXP BSP.
The code taken from the legacy patch are:
- lpc32xx SLC NAND driver (hardware ECC support)
- lpc3250 header file missing SLC NAND registers definition
The legacy driver code was updated to integrate with the
esisting NAND SLC driver.
Signed-off-by: Sylvain Lemieux <slemieux at tycoint.com>
---
Changes from v1 to v2:
* Moved the NAND SLC patch as the second patch of the series.
* As per discussion on mailing list with Vladimir,
incorporate NAND SLC hardware ECC support into the following
NAND SLC patch: https://patchwork.ozlabs.org/patch/497308/
* As per discussion on mailing list with Vladimir & Albert,
add conditional compile option to build the original
NAND SLC code using software ECC for SPL build.
* Removed ECC layout for small page NAND from this patch.
Update to the legacy code to integrate with the NAND SLC patch:
1) Fixed checkpatch script output in legacy code.
2) Use u-boot API for register access to remove the volatile
in register definition taken from "lpc3250.h" header file.
3) Use register definition from the NAND SLC patch.
The legacy BSP patch (u-boot-2009.03_lpc32x0-v1.07.patch.tar.bz2)
was downloaded from the LPCLinux Web site.
drivers/mtd/nand/lpc32xx_nand_slc.c | 337 ++++++++++++++++++++++++++++++++++++
1 file changed, 337 insertions(+)
diff --git a/drivers/mtd/nand/lpc32xx_nand_slc.c b/drivers/mtd/nand/lpc32xx_nand_slc.c
index 719a74d..b8b33e3 100644
--- a/drivers/mtd/nand/lpc32xx_nand_slc.c
+++ b/drivers/mtd/nand/lpc32xx_nand_slc.c
@@ -8,10 +8,25 @@
#include <common.h>
#include <nand.h>
+#include <linux/mtd/nand_ecc.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>
+#include <asm/arch/dma.h>
+#include <asm/arch/cpu.h>
+
+/* Provide default for ECC size / bytes / OOB size for large page)
+ * if target did not. */
+#if !defined(CONFIG_SYS_NAND_ECCSIZE)
+#define CONFIG_SYS_NAND_ECCSIZE 2048
+#endif
+#if !defined(CONFIG_SYS_NAND_ECCBYTES)
+#define CONFIG_SYS_NAND_ECCBYTES 24
+#endif
+#if !defined(CONFIG_SYS_NAND_OOBSIZE)
+#define CONFIG_SYS_NAND_OOBSIZE 64
+#endif
struct lpc32xx_nand_slc_regs {
u32 data;
@@ -33,11 +48,18 @@ struct lpc32xx_nand_slc_regs {
/* CFG register */
#define CFG_CE_LOW (1 << 5)
+#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
+#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
+#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
+#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
/* CTRL register */
#define CTRL_SW_RESET (1 << 2)
+#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
+#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
/* STAT register */
+#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
#define STAT_NAND_READY (1 << 0)
/* INT_STAT register */
@@ -54,6 +76,47 @@ struct lpc32xx_nand_slc_regs {
#define TAC_R_HOLD(n) (max_t(uint32_t, (n), 0xF) << 4)
#define TAC_R_SETUP(n) (max_t(uint32_t, (n), 0xF) << 0)
+/* control register definitions */
+#define DMAC_CHAN_INT_TC_EN (1 << 31) /* channel terminal count interrupt */
+#define DMAC_CHAN_DEST_AUTOINC (1 << 27) /* automatic destination increment */
+#define DMAC_CHAN_SRC_AUTOINC (1 << 26) /* automatic source increment */
+#define DMAC_CHAN_DEST_AHB1 (1 << 25) /* AHB1 master for dest. transfer */
+#define DMAC_CHAN_DEST_WIDTH_32 (1 << 22) /* Destination data width selection */
+#define DMAC_CHAN_SRC_WIDTH_32 (1 << 19) /* Source data width selection */
+#define DMAC_CHAN_DEST_BURST_1 0
+#define DMAC_CHAN_DEST_BURST_4 (1 << 15) /* Destination data burst size */
+#define DMAC_CHAN_SRC_BURST_1 0
+#define DMAC_CHAN_SRC_BURST_4 (1 << 12) /* Source data burst size */
+
+/* config_ch register definitions
+ * DMAC_CHAN_FLOW_D_xxx: flow control with DMA as the controller
+ * DMAC_DEST_PERIP: Macro for loading destination peripheral
+ * DMAC_SRC_PERIP: Macro for loading source peripheral */
+#define DMAC_CHAN_FLOW_D_M2P (0x1 << 11)
+#define DMAC_CHAN_FLOW_D_P2M (0x2 << 11)
+#define DMAC_DEST_PERIP(n) (((n) & 0x1F) << 6)
+#define DMAC_SRC_PERIP(n) (((n) & 0x1F) << 1)
+
+/* config_ch register definitions
+ * (source and destination peripheral ID numbers).
+ * These can be used with the DMAC_DEST_PERIP and DMAC_SRC_PERIP macros.*/
+#define DMA_PERID_NAND1 1
+
+/* Channel enable bit */
+#define DMAC_CHAN_ENABLE (1 << 0)
+
+#define NAND_LARGE_BLOCK_PAGE_SIZE 2048
+#define NAND_SMALL_BLOCK_PAGE_SIZE 512
+
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+/* DMA Descriptors
+ * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area)
+ * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area) */
+static dmac_ll_t dmalist[(CONFIG_SYS_NAND_ECCSIZE/256) * 2 + 1];
+static uint32_t ecc_buffer[8]; /* MAX ECC size */
+static int dmachan = -1;
+#endif
+
static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs
= (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE;
@@ -108,10 +171,255 @@ static int lpc32xx_nand_dev_ready(struct mtd_info *mtd)
return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY;
}
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+/* Prepares DMA descriptors for NAND RD/WR operations */
+/* If the size is < 256 Bytes then it is assumed to be
+ * an OOB transfer */
+static void lpc32xx_nand_dma_configure(struct nand_chip *chip,
+ const void *buffer, int size, int read)
+{
+ uint32_t i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
+ void __iomem *base = chip->IO_ADDR_R;
+ uint32_t *ecc_gen = ecc_buffer;
+
+ /* CTRL descriptor entry for reading ECC
+ * Copy Multiple times to sync DMA with Flash Controller
+ */
+ ecc_ctrl = (0x5 |
+ DMAC_CHAN_SRC_BURST_1 |
+ DMAC_CHAN_DEST_BURST_1 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1);
+
+ /* CTRL descriptor entry for reading/writing Data */
+ ctrl = 64 | /* 256/4 */
+ DMAC_CHAN_SRC_BURST_4 |
+ DMAC_CHAN_DEST_BURST_4 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1;
+
+ /* CTRL descriptor entry for reading/writing Spare Area */
+ oob_ctrl = ((CONFIG_SYS_NAND_OOBSIZE / 4) |
+ DMAC_CHAN_SRC_BURST_4 |
+ DMAC_CHAN_DEST_BURST_4 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1);
+
+ if (read) {
+ dmasrc = (uint32_t)(base +
+ offsetof(struct lpc32xx_nand_slc_regs,
+ dma_data));
+ dmadst = (uint32_t)(buffer);
+ ctrl |= DMAC_CHAN_DEST_AUTOINC;
+ } else {
+ dmadst = (uint32_t)(base +
+ offsetof(struct lpc32xx_nand_slc_regs,
+ dma_data));
+ dmasrc = (uint32_t)(buffer);
+ ctrl |= DMAC_CHAN_SRC_AUTOINC;
+ }
+
+ /*
+ * Write Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Memory to Flash.
+ * 2. Copy generated ECC data from Register to Spare Area
+ * 3. X'fer next 256 bytes of data from Memory to Flash.
+ * 4. Copy generated ECC data from Register to Spare Area.
+ * 5. X'fer 16 byets of Spare area from Memory to Flash.
+ * Read Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Flash to Memory.
+ * 2. Copy generated ECC data from Register to ECC calc Buffer.
+ * 3. X'fer next 256 bytes of data from Flash to Memory.
+ * 4. Copy generated ECC data from Register to ECC calc Buffer.
+ * 5. X'fer 16 bytes of Spare area from Flash to Memory.
+ * Write Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Write Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Memory to Flash.
+ * Read Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Read Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Flash to Memory.
+ */
+
+ for (i = 0; i < size/256; i++) {
+ dmalist[i*2].dma_src = (read ? (dmasrc) : (dmasrc + (i*256)));
+ dmalist[i*2].dma_dest = (read ? (dmadst + (i*256)) : dmadst);
+ dmalist[i*2].next_lli = (uint32_t)&dmalist[(i*2)+1];
+ dmalist[i*2].next_ctrl = ctrl;
+
+ dmalist[(i*2) + 1].dma_src =
+ (uint32_t)(base + offsetof(struct lpc32xx_nand_slc_regs,
+ ecc));
+ dmalist[(i*2) + 1].dma_dest = (uint32_t)&ecc_gen[i];
+ dmalist[(i*2) + 1].next_lli = (uint32_t)&dmalist[(i*2)+2];
+ dmalist[(i*2) + 1].next_ctrl = ecc_ctrl;
+ }
+
+ if (i) { /* Data only transfer */
+ dmalist[(i*2) - 1].next_lli = 0;
+ dmalist[(i*2) - 1].next_ctrl |= DMAC_CHAN_INT_TC_EN;
+ return;
+ }
+
+ /* OOB only transfer */
+ if (read) {
+ dmasrc = (uint32_t)(base +
+ offsetof(struct lpc32xx_nand_slc_regs,
+ dma_data));
+ dmadst = (uint32_t)(buffer);
+ oob_ctrl |= DMAC_CHAN_DEST_AUTOINC;
+ } else {
+ dmadst = (uint32_t)(base +
+ offsetof(struct lpc32xx_nand_slc_regs,
+ dma_data));
+ dmasrc = (uint32_t)(buffer);
+ oob_ctrl |= DMAC_CHAN_SRC_AUTOINC;
+ }
+
+ /* Read/ Write Spare Area Data To/From Flash */
+ dmalist[i*2].dma_src = dmasrc;
+ dmalist[i*2].dma_dest = dmadst;
+ dmalist[i*2].next_lli = 0;
+ dmalist[i*2].next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN);
+}
+
+static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u_char *buf,
+ int len, int read)
+{
+ struct nand_chip *chip = mtd->priv;
+ uint32_t config;
+
+ /* DMA Channel Configuration */
+ config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) |
+ (read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) |
+ (read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) |
+ DMAC_CHAN_ENABLE;
+
+ /* Prepare DMA descriptors */
+ lpc32xx_nand_dma_configure(chip, buf, len, read);
+
+ /* Setup SLC controller and start transfer */
+ if (read)
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg, SLCCFG_DMA_DIR);
+ else /* NAND_ECC_WRITE */
+ clrbits_le32(&lpc32xx_nand_slc_regs->cfg, SLCCFG_DMA_DIR);
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg, SLCCFG_DMA_BURST);
+
+ /* Write length for new transfers */
+ if (!((readl(&lpc32xx_nand_slc_regs->stat) & SLCSTAT_DMA_FIFO) |
+ readl(&lpc32xx_nand_slc_regs->tc))) {
+ int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0;
+ writel(len + tmp, &lpc32xx_nand_slc_regs->tc);
+ }
+
+ setbits_le32(&lpc32xx_nand_slc_regs->ctrl, SLCCTRL_DMA_START);
+
+ /* Start DMA transfers */
+ lpc32xx_dma_start_xfer(dmachan, dmalist, config);
+
+ /* Wait for NAND to be ready */
+ while (!lpc32xx_nand_dev_ready(mtd))
+ ;
+
+ /* Wait till DMA transfer is DONE */
+ if (lpc32xx_dma_wait_status(dmachan))
+ pr_err("NAND DMA transfer error!\r\n");
+
+ /* Stop DMA & HW ECC */
+ clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, SLCCTRL_DMA_START);
+ clrbits_le32(&lpc32xx_nand_slc_regs->cfg,
+ SLCCFG_DMA_DIR | SLCCFG_DMA_BURST |
+ SLCCFG_ECC_EN | SLCCFG_DMA_ECC);
+}
+
+static uint32_t slc_ecc_copy_to_buffer(uint8_t *spare, const uint32_t *ecc,
+ int count)
+{
+ int i;
+ for (i = 0; i < (count * 3); i += 3) {
+ uint32_t ce = ecc[i/3];
+ ce = ~(ce << 2) & 0xFFFFFF;
+ spare[i+2] = (uint8_t)(ce & 0xFF); ce >>= 8;
+ spare[i+1] = (uint8_t)(ce & 0xFF); ce >>= 8;
+ spare[i] = (uint8_t)(ce & 0xFF);
+ }
+ return 0;
+}
+
+static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
+ uint8_t *ecc_code)
+{
+ return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer,
+ CONFIG_SYS_NAND_ECCSIZE
+ == NAND_LARGE_BLOCK_PAGE_SIZE ? 8 : 2);
+}
+
+/* Enables and prepares SLC NAND controller
+ * for doing data transfers with H/W ECC enabled.
+ */
+static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode)
+{
+ /* Clear ECC */
+ writel(SLCCTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl);
+
+ /* Setup SLC controller for H/W ECC operations */
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg,
+ SLCCFG_ECC_EN | SLCCFG_DMA_ECC);
+}
+
+/**
+ * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip
+ * calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ *
+ */
+int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ uint8_t i, nb_ecc256;
+ int ret1, ret2 = 0;
+ u_char *r = read_ecc;
+ u_char *c = calc_ecc;
+ uint16_t data_offset = 0;
+
+ nb_ecc256 = (CONFIG_SYS_NAND_ECCSIZE == NAND_LARGE_BLOCK_PAGE_SIZE
+ ? 8 : 2);
+
+ for (i = 0 ; i < nb_ecc256 ; i++ , r += 3, c += 3, data_offset += 256) {
+ ret1 = nand_correct_data(mtd, dat + data_offset, r, c);
+
+ if (ret1 < 0)
+ return -EBADMSG;
+ else
+ ret2 += ret1;
+ }
+
+ return ret2;
+}
+#endif
+
static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+ lpc32xx_nand_xfer(mtd, buf, len, 1);
+#else
while (len-- > 0)
*buf++ = readl(&lpc32xx_nand_slc_regs->data);
+#endif
}
static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
@@ -121,8 +429,12 @@ static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+ lpc32xx_nand_xfer(mtd, buf, len, 0);
+#else
while (len-- > 0)
writel(*buf++, &lpc32xx_nand_slc_regs->data);
+#endif
}
static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
@@ -137,15 +449,30 @@ static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
*/
int board_nand_init(struct nand_chip *lpc32xx_chip)
{
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+ /* Acquire a channel for our use */
+ dmachan = lpc32xx_dma_get_channel();
+ if (unlikely(dmachan < 0)) {
+ pr_info("Unable to get free DMA channel for NAND transfers\n");
+ return -1;
+ }
+#endif
+
lpc32xx_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready;
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+ /* Hardware ECC calculation is supported when
+ * DMA driver is selected. */
+ lpc32xx_chip->ecc.mode = NAND_ECC_HW;
+#else
/*
* Hardware ECC calculation is not supported by the driver,
* because it requires DMA support, see LPC32x0 User Manual,
* note after SLC_ECC register description (UM10326, p.198)
*/
lpc32xx_chip->ecc.mode = NAND_ECC_SOFT;
+#endif
/*
* The implementation of these functions is quite common, but
@@ -157,12 +484,22 @@ int board_nand_init(struct nand_chip *lpc32xx_chip)
lpc32xx_chip->write_buf = lpc32xx_write_buf;
lpc32xx_chip->write_byte = lpc32xx_write_byte;
+#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
+ lpc32xx_chip->ecc.calculate = lpc32xx_ecc_calculate;
+ lpc32xx_chip->ecc.correct = lpc32xx_correct_data;
+ lpc32xx_chip->ecc.hwctl = lpc32xx_hwecc_enable;
+ lpc32xx_chip->chip_delay = 2000;
+
+ lpc32xx_chip->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
+ lpc32xx_chip->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
+#else
/*
* Use default ECC layout, but these values are predefined
* for both small and large page NAND flash devices.
*/
lpc32xx_chip->ecc.size = 256;
lpc32xx_chip->ecc.bytes = 3;
+#endif
lpc32xx_chip->ecc.strength = 1;
#if defined(CONFIG_SYS_NAND_USE_FLASH_BBT)
--
1.8.3.1
More information about the U-Boot
mailing list