[U-Boot] [PATCH 3/6] mtd: nand: Add the sunxi NAND controller driver

Hans de Goede hdegoede at redhat.com
Mon Jun 6 17:36:10 CEST 2016


Hi,

One small remark inline.

On 06-06-16 17:21, Boris Brezillon wrote:
> We already have an SPL driver for the sunxi NAND controller, now add
> the normal/standard one.
>
> The source has been copied from Linux 4.6 with a few changes to make
> it work in u-boot.
>
> Signed-off-by: Boris Brezillon <boris.brezillon at free-electrons.com>
> ---
>  board/sunxi/board.c            |    9 +-
>  drivers/mtd/nand/Kconfig       |    8 +-
>  drivers/mtd/nand/Makefile      |    1 +
>  drivers/mtd/nand/sunxi_nand.c  | 1845 ++++++++++++++++++++++++++++++++++++++++
>  include/configs/sunxi-common.h |    2 +
>  include/fdtdec.h               |    1 +
>  lib/fdtdec.c                   |    1 +
>  7 files changed, 1863 insertions(+), 4 deletions(-)
>  create mode 100644 drivers/mtd/nand/sunxi_nand.c
>
> diff --git a/board/sunxi/board.c b/board/sunxi/board.c
> index 3cf3614..e0b3fb0 100644
> --- a/board/sunxi/board.c
> +++ b/board/sunxi/board.c
> @@ -142,7 +142,7 @@ void dram_init_banksize(void)
>  }
>  #endif
>
> -#if defined(CONFIG_NAND_SUNXI) && defined(CONFIG_SPL_BUILD)
> +#if defined(CONFIG_NAND_SUNXI)
>  static void nand_pinmux_setup(void)
>  {
>  	unsigned int pin;
> @@ -175,10 +175,17 @@ static void nand_clock_setup(void)
>  	setbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
>  }
>
> +#ifndef CONFIG_SPL_BUILD
> +void sunxi_nand_init(void);
> +#endif
> +

Can we have this in a header somewhere please, and without
the #ifdef around it, that is not necessary for prototypes.

Otherwise the entire series looks good to me.

Regards,

Hans

>  void board_nand_init(void)
>  {
>  	nand_pinmux_setup();
>  	nand_clock_setup();
> +#ifndef CONFIG_SPL_BUILD
> +	sunxi_nand_init();
> +#endif
>  }
>  #endif
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 8c46a2f..5ce7d6d 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -64,12 +64,14 @@ config NAND_PXA3XX
>  	  PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2).
>
>  config NAND_SUNXI
> -	bool "Support for NAND on Allwinner SoCs in SPL"
> +	bool "Support for NAND on Allwinner SoCs"
>  	depends on MACH_SUN4I || MACH_SUN5I || MACH_SUN7I
>  	select SYS_NAND_SELF_INIT
>  	---help---
> -	Enable support for NAND. This option allows SPL to read from
> -	sunxi NAND using DMA transfers.
> +	Enable support for NAND. This option enables the standard and
> +	SPL drivers.
> +	The SPL driver only supports reading from the NAND using DMA
> +	transfers.
>
>  config NAND_ARASAN
>  	bool "Configure Arasan Nand"
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 837d397..1df9273 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -66,6 +66,7 @@ obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o
>  obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o
>  obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o
>  obj-$(CONFIG_NAND_PLAT) += nand_plat.o
> +obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o
>
>  else  # minimal SPL drivers
>
> diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c
> new file mode 100644
> index 0000000..c4e2cd7
> --- /dev/null
> +++ b/drivers/mtd/nand/sunxi_nand.c
> @@ -0,0 +1,1845 @@
> +/*
> + * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev at gmail.com>
> + * Copyright (C) 2015 Roy Spliet <r.spliet at ultimaker.com>
> + *
> + * Derived from:
> + *	https://github.com/yuq/sunxi-nfc-mtd
> + *	Copyright (C) 2013 Qiang Yu <yuq825 at gmail.com>
> + *
> + *	https://github.com/hno/Allwinner-Info
> + *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
> + *
> + *	Copyright (C) 2013 Dmitriy B. <rzk333 at gmail.com>
> + *	Copyright (C) 2013 Sergey Lapin <slapin at ossfans.org>
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> + * GNU General Public License for more details.
> + *
> + * SPDX-License-Identifier:	GPL-2.0+
> + */
> +
> +#include <common.h>
> +#include <fdtdec.h>
> +#include <memalign.h>
> +#include <nand.h>
> +
> +#include <linux/kernel.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/io.h>
> +
> +#include <asm/gpio.h>
> +#include <asm/arch/clock.h>
> +
> +DECLARE_GLOBAL_DATA_PTR;
> +
> +#define NFC_REG_CTL		0x0000
> +#define NFC_REG_ST		0x0004
> +#define NFC_REG_INT		0x0008
> +#define NFC_REG_TIMING_CTL	0x000C
> +#define NFC_REG_TIMING_CFG	0x0010
> +#define NFC_REG_ADDR_LOW	0x0014
> +#define NFC_REG_ADDR_HIGH	0x0018
> +#define NFC_REG_SECTOR_NUM	0x001C
> +#define NFC_REG_CNT		0x0020
> +#define NFC_REG_CMD		0x0024
> +#define NFC_REG_RCMD_SET	0x0028
> +#define NFC_REG_WCMD_SET	0x002C
> +#define NFC_REG_IO_DATA		0x0030
> +#define NFC_REG_ECC_CTL		0x0034
> +#define NFC_REG_ECC_ST		0x0038
> +#define NFC_REG_DEBUG		0x003C
> +#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
> +#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
> +#define NFC_REG_SPARE_AREA	0x00A0
> +#define NFC_REG_PAT_ID		0x00A4
> +#define NFC_RAM0_BASE		0x0400
> +#define NFC_RAM1_BASE		0x0800
> +
> +/* define bit use in NFC_CTL */
> +#define NFC_EN			BIT(0)
> +#define NFC_RESET		BIT(1)
> +#define NFC_BUS_WIDTH_MSK	BIT(2)
> +#define NFC_BUS_WIDTH_8		(0 << 2)
> +#define NFC_BUS_WIDTH_16	(1 << 2)
> +#define NFC_RB_SEL_MSK		BIT(3)
> +#define NFC_RB_SEL(x)		((x) << 3)
> +#define NFC_CE_SEL_MSK		(0x7 << 24)
> +#define NFC_CE_SEL(x)		((x) << 24)
> +#define NFC_CE_CTL		BIT(6)
> +#define NFC_PAGE_SHIFT_MSK	(0xf << 8)
> +#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
> +#define NFC_SAM			BIT(12)
> +#define NFC_RAM_METHOD		BIT(14)
> +#define NFC_DEBUG_CTL		BIT(31)
> +
> +/* define bit use in NFC_ST */
> +#define NFC_RB_B2R		BIT(0)
> +#define NFC_CMD_INT_FLAG	BIT(1)
> +#define NFC_DMA_INT_FLAG	BIT(2)
> +#define NFC_CMD_FIFO_STATUS	BIT(3)
> +#define NFC_STA			BIT(4)
> +#define NFC_NATCH_INT_FLAG	BIT(5)
> +#define NFC_RB_STATE(x)		BIT(x + 8)
> +
> +/* define bit use in NFC_INT */
> +#define NFC_B2R_INT_ENABLE	BIT(0)
> +#define NFC_CMD_INT_ENABLE	BIT(1)
> +#define NFC_DMA_INT_ENABLE	BIT(2)
> +#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
> +				 NFC_CMD_INT_ENABLE | \
> +				 NFC_DMA_INT_ENABLE)
> +
> +/* define bit use in NFC_TIMING_CTL */
> +#define NFC_TIMING_CTL_EDO	BIT(8)
> +
> +/* define NFC_TIMING_CFG register layout */
> +#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
> +	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
> +	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
> +	(((tCAD) & 0x7) << 8))
> +
> +/* define bit use in NFC_CMD */
> +#define NFC_CMD_LOW_BYTE_MSK	0xff
> +#define NFC_CMD_HIGH_BYTE_MSK	(0xff << 8)
> +#define NFC_CMD(x)		(x)
> +#define NFC_ADR_NUM_MSK		(0x7 << 16)
> +#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
> +#define NFC_SEND_ADR		BIT(19)
> +#define NFC_ACCESS_DIR		BIT(20)
> +#define NFC_DATA_TRANS		BIT(21)
> +#define NFC_SEND_CMD1		BIT(22)
> +#define NFC_WAIT_FLAG		BIT(23)
> +#define NFC_SEND_CMD2		BIT(24)
> +#define NFC_SEQ			BIT(25)
> +#define NFC_DATA_SWAP_METHOD	BIT(26)
> +#define NFC_ROW_AUTO_INC	BIT(27)
> +#define NFC_SEND_CMD3		BIT(28)
> +#define NFC_SEND_CMD4		BIT(29)
> +#define NFC_CMD_TYPE_MSK	(0x3 << 30)
> +#define NFC_NORMAL_OP		(0 << 30)
> +#define NFC_ECC_OP		(1 << 30)
> +#define NFC_PAGE_OP		(2 << 30)
> +
> +/* define bit use in NFC_RCMD_SET */
> +#define NFC_READ_CMD_MSK	0xff
> +#define NFC_RND_READ_CMD0_MSK	(0xff << 8)
> +#define NFC_RND_READ_CMD1_MSK	(0xff << 16)
> +
> +/* define bit use in NFC_WCMD_SET */
> +#define NFC_PROGRAM_CMD_MSK	0xff
> +#define NFC_RND_WRITE_CMD_MSK	(0xff << 8)
> +#define NFC_READ_CMD0_MSK	(0xff << 16)
> +#define NFC_READ_CMD1_MSK	(0xff << 24)
> +
> +/* define bit use in NFC_ECC_CTL */
> +#define NFC_ECC_EN		BIT(0)
> +#define NFC_ECC_PIPELINE	BIT(3)
> +#define NFC_ECC_EXCEPTION	BIT(4)
> +#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
> +#define NFC_ECC_BLOCK_512	(1 << 5)
> +#define NFC_RANDOM_EN		BIT(9)
> +#define NFC_RANDOM_DIRECTION	BIT(10)
> +#define NFC_ECC_MODE_MSK	(0xf << 12)
> +#define NFC_ECC_MODE(x)		((x) << 12)
> +#define NFC_RANDOM_SEED_MSK	(0x7fff << 16)
> +#define NFC_RANDOM_SEED(x)	((x) << 16)
> +
> +/* define bit use in NFC_ECC_ST */
> +#define NFC_ECC_ERR(x)		BIT(x)
> +#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
> +#define NFC_ECC_ERR_CNT(b, x)	(((x) >> ((b) * 8)) & 0xff)
> +
> +#define NFC_DEFAULT_TIMEOUT_MS	1000
> +
> +#define NFC_SRAM_SIZE		1024
> +
> +#define NFC_MAX_CS		7
> +
> +/*
> + * Ready/Busy detection type: describes the Ready/Busy detection modes
> + *
> + * @RB_NONE:	no external detection available, rely on STATUS command
> + *		and software timeouts
> + * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
> + *		pin of the NAND flash chip must be connected to one of the
> + *		native NAND R/B pins (those which can be muxed to the NAND
> + *		Controller)
> + * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
> + *		pin of the NAND flash chip must be connected to a GPIO capable
> + *		pin.
> + */
> +enum sunxi_nand_rb_type {
> +	RB_NONE,
> +	RB_NATIVE,
> +	RB_GPIO,
> +};
> +
> +/*
> + * Ready/Busy structure: stores information related to Ready/Busy detection
> + *
> + * @type:	the Ready/Busy detection mode
> + * @info:	information related to the R/B detection mode. Either a gpio
> + *		id or a native R/B id (those supported by the NAND controller).
> + */
> +struct sunxi_nand_rb {
> +	enum sunxi_nand_rb_type type;
> +	union {
> +		struct gpio_desc gpio;
> +		int nativeid;
> +	} info;
> +};
> +
> +/*
> + * Chip Select structure: stores information related to NAND Chip Select
> + *
> + * @cs:		the NAND CS id used to communicate with a NAND Chip
> + * @rb:		the Ready/Busy description
> + */
> +struct sunxi_nand_chip_sel {
> +	u8 cs;
> +	struct sunxi_nand_rb rb;
> +};
> +
> +/*
> + * sunxi HW ECC infos: stores information related to HW ECC support
> + *
> + * @mode:	the sunxi ECC mode field deduced from ECC requirements
> + * @layout:	the OOB layout depending on the ECC requirements and the
> + *		selected ECC mode
> + */
> +struct sunxi_nand_hw_ecc {
> +	int mode;
> +	struct nand_ecclayout layout;
> +};
> +
> +/*
> + * NAND chip structure: stores NAND chip device related information
> + *
> + * @node:		used to store NAND chips into a list
> + * @nand:		base NAND chip structure
> + * @mtd:		base MTD structure
> + * @clk_rate:		clk_rate required for this NAND chip
> + * @timing_cfg		TIMING_CFG register value for this NAND chip
> + * @selected:		current active CS
> + * @nsels:		number of CS lines required by the NAND chip
> + * @sels:		array of CS lines descriptions
> + */
> +struct sunxi_nand_chip {
> +	struct list_head node;
> +	struct nand_chip nand;
> +	unsigned long clk_rate;
> +	u32 timing_cfg;
> +	u32 timing_ctl;
> +	int selected;
> +	int addr_cycles;
> +	u32 addr[2];
> +	int cmd_cycles;
> +	u8 cmd[2];
> +	int nsels;
> +	struct sunxi_nand_chip_sel sels[0];
> +};
> +
> +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
> +{
> +	return container_of(nand, struct sunxi_nand_chip, nand);
> +}
> +
> +/*
> + * NAND Controller structure: stores sunxi NAND controller information
> + *
> + * @controller:		base controller structure
> + * @dev:		parent device (used to print error messages)
> + * @regs:		NAND controller registers
> + * @ahb_clk:		NAND Controller AHB clock
> + * @mod_clk:		NAND Controller mod clock
> + * @assigned_cs:	bitmask describing already assigned CS lines
> + * @clk_rate:		NAND controller current clock rate
> + * @chips:		a list containing all the NAND chips attached to
> + *			this NAND controller
> + * @complete:		a completion object used to wait for NAND
> + *			controller events
> + */
> +struct sunxi_nfc {
> +	struct nand_hw_control controller;
> +	struct device *dev;
> +	void __iomem *regs;
> +	struct clk *ahb_clk;
> +	struct clk *mod_clk;
> +	unsigned long assigned_cs;
> +	unsigned long clk_rate;
> +	struct list_head chips;
> +};
> +
> +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
> +{
> +	return container_of(ctrl, struct sunxi_nfc, controller);
> +}
> +
> +static void sunxi_nfc_set_clk_rate(unsigned long hz)
> +{
> +	struct sunxi_ccm_reg *const ccm =
> +	(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
> +	int div_m, div_n;
> +
> +	div_m = (clock_get_pll6() + hz - 1) / hz;
> +	for (div_n = 0; div_n < 3 && div_m > 16; div_n++) {
> +		if (div_m % 2)
> +			div_m++;
> +		div_m >>= 1;
> +	}
> +	if (div_m > 16)
> +		div_m = 16;
> +
> +	/* config mod clock */
> +	writel(CCM_NAND_CTRL_ENABLE | CCM_NAND_CTRL_PLL6 |
> +	       CCM_NAND_CTRL_N(div_n) | CCM_NAND_CTRL_M(div_m),
> +	       &ccm->nand0_clk_cfg);
> +
> +	/* gate on nand clock */
> +	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_NAND0));
> +#ifdef CONFIG_MACH_SUN9I
> +	setbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
> +#else
> +	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
> +#endif
> +}
> +
> +static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
> +			      unsigned int timeout_ms)
> +{
> +	unsigned int timeout_ticks;
> +	u32 time_start, status;
> +	int ret = -ETIMEDOUT;
> +
> +	if (!timeout_ms)
> +		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
> +
> +	timeout_ticks = (timeout_ms * CONFIG_SYS_HZ) / 1000;
> +
> +	time_start = get_timer(0);
> +
> +	do {
> +		status = readl(nfc->regs + NFC_REG_ST);
> +		if ((status & flags) == flags) {
> +			ret = 0;
> +			break;
> +		}
> +
> +		udelay(1);
> +	} while (get_timer(time_start) < timeout_ticks);
> +
> +	writel(status & flags, nfc->regs + NFC_REG_ST);
> +
> +	return ret;
> +}
> +
> +static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
> +{
> +	unsigned long timeout = (CONFIG_SYS_HZ *
> +				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
> +	u32 time_start;
> +
> +	time_start = get_timer(0);
> +	do {
> +		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
> +			return 0;
> +	} while (get_timer(time_start) < timeout);
> +
> +	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
> +	return -ETIMEDOUT;
> +}
> +
> +static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
> +{
> +	unsigned long timeout = (CONFIG_SYS_HZ *
> +				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
> +	u32 time_start;
> +
> +	writel(0, nfc->regs + NFC_REG_ECC_CTL);
> +	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
> +
> +	time_start = get_timer(0);
> +	do {
> +		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
> +			return 0;
> +	} while (get_timer(time_start) < timeout);
> +
> +	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
> +	return -ETIMEDOUT;
> +}
> +
> +static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
> +	struct sunxi_nand_rb *rb;
> +	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
> +	int ret;
> +
> +	if (sunxi_nand->selected < 0)
> +		return 0;
> +
> +	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
> +
> +	switch (rb->type) {
> +	case RB_NATIVE:
> +		ret = !!(readl(nfc->regs + NFC_REG_ST) &
> +			 NFC_RB_STATE(rb->info.nativeid));
> +		if (ret)
> +			break;
> +
> +		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
> +		ret = !!(readl(nfc->regs + NFC_REG_ST) &
> +			 NFC_RB_STATE(rb->info.nativeid));
> +		break;
> +	case RB_GPIO:
> +		ret = dm_gpio_get_value(&rb->info.gpio);
> +		break;
> +	case RB_NONE:
> +	default:
> +		ret = 0;
> +		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
> +		break;
> +	}
> +
> +	return ret;
> +}
> +
> +static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
> +	struct sunxi_nand_chip_sel *sel;
> +	u32 ctl;
> +
> +	if (chip > 0 && chip >= sunxi_nand->nsels)
> +		return;
> +
> +	if (chip == sunxi_nand->selected)
> +		return;
> +
> +	ctl = readl(nfc->regs + NFC_REG_CTL) &
> +	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
> +
> +	if (chip >= 0) {
> +		sel = &sunxi_nand->sels[chip];
> +
> +		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
> +		       NFC_PAGE_SHIFT(nand->page_shift - 10);
> +		if (sel->rb.type == RB_NONE) {
> +			nand->dev_ready = NULL;
> +		} else {
> +			nand->dev_ready = sunxi_nfc_dev_ready;
> +			if (sel->rb.type == RB_NATIVE)
> +				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
> +		}
> +
> +		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
> +
> +		if (nfc->clk_rate != sunxi_nand->clk_rate) {
> +			sunxi_nfc_set_clk_rate(sunxi_nand->clk_rate);
> +			nfc->clk_rate = sunxi_nand->clk_rate;
> +		}
> +	}
> +
> +	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
> +	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
> +	writel(ctl, nfc->regs + NFC_REG_CTL);
> +
> +	sunxi_nand->selected = chip;
> +}
> +
> +static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
> +	int ret;
> +	int cnt;
> +	int offs = 0;
> +	u32 tmp;
> +
> +	while (len > offs) {
> +		cnt = min(len - offs, NFC_SRAM_SIZE);
> +
> +		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
> +		if (ret)
> +			break;
> +
> +		writel(cnt, nfc->regs + NFC_REG_CNT);
> +		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
> +		writel(tmp, nfc->regs + NFC_REG_CMD);
> +
> +		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
> +		if (ret)
> +			break;
> +
> +		if (buf)
> +			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
> +				      cnt);
> +		offs += cnt;
> +	}
> +}
> +
> +static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
> +				int len)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
> +	int ret;
> +	int cnt;
> +	int offs = 0;
> +	u32 tmp;
> +
> +	while (len > offs) {
> +		cnt = min(len - offs, NFC_SRAM_SIZE);
> +
> +		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
> +		if (ret)
> +			break;
> +
> +		writel(cnt, nfc->regs + NFC_REG_CNT);
> +		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
> +		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
> +		      NFC_ACCESS_DIR;
> +		writel(tmp, nfc->regs + NFC_REG_CMD);
> +
> +		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
> +		if (ret)
> +			break;
> +
> +		offs += cnt;
> +	}
> +}
> +
> +static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
> +{
> +	uint8_t ret;
> +
> +	sunxi_nfc_read_buf(mtd, &ret, 1);
> +
> +	return ret;
> +}
> +
> +static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
> +			       unsigned int ctrl)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
> +	int ret;
> +	u32 tmp;
> +
> +	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
> +	if (ret)
> +		return;
> +
> +	if (ctrl & NAND_CTRL_CHANGE) {
> +		tmp = readl(nfc->regs + NFC_REG_CTL);
> +		if (ctrl & NAND_NCE)
> +			tmp |= NFC_CE_CTL;
> +		else
> +			tmp &= ~NFC_CE_CTL;
> +		writel(tmp, nfc->regs + NFC_REG_CTL);
> +	}
> +
> +	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
> +	    !(ctrl & (NAND_CLE | NAND_ALE))) {
> +		u32 cmd = 0;
> +
> +		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
> +			return;
> +
> +		if (sunxi_nand->cmd_cycles--)
> +			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
> +
> +		if (sunxi_nand->cmd_cycles--) {
> +			cmd |= NFC_SEND_CMD2;
> +			writel(sunxi_nand->cmd[1],
> +			       nfc->regs + NFC_REG_RCMD_SET);
> +		}
> +
> +		sunxi_nand->cmd_cycles = 0;
> +
> +		if (sunxi_nand->addr_cycles) {
> +			cmd |= NFC_SEND_ADR |
> +			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
> +			writel(sunxi_nand->addr[0],
> +			       nfc->regs + NFC_REG_ADDR_LOW);
> +		}
> +
> +		if (sunxi_nand->addr_cycles > 4)
> +			writel(sunxi_nand->addr[1],
> +			       nfc->regs + NFC_REG_ADDR_HIGH);
> +
> +		writel(cmd, nfc->regs + NFC_REG_CMD);
> +		sunxi_nand->addr[0] = 0;
> +		sunxi_nand->addr[1] = 0;
> +		sunxi_nand->addr_cycles = 0;
> +		sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
> +	}
> +
> +	if (ctrl & NAND_CLE) {
> +		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
> +	} else if (ctrl & NAND_ALE) {
> +		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
> +				dat << ((sunxi_nand->addr_cycles % 4) * 8);
> +		sunxi_nand->addr_cycles++;
> +	}
> +}
> +
> +/* These seed values have been extracted from Allwinner's BSP */
> +static const u16 sunxi_nfc_randomizer_page_seeds[] = {
> +	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
> +	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
> +	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
> +	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
> +	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
> +	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
> +	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
> +	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
> +	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
> +	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
> +	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
> +	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
> +	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
> +	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
> +	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
> +	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
> +};
> +
> +/*
> + * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
> + * have been generated using
> + * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
> + * the randomizer engine does internally before de/scrambling OOB data.
> + *
> + * Those tables are statically defined to avoid calculating randomizer state
> + * at runtime.
> + */
> +static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
> +	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
> +	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
> +	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
> +	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
> +	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
> +	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
> +	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
> +	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
> +	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
> +	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
> +	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
> +	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
> +	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
> +	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
> +	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
> +	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
> +};
> +
> +static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
> +	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
> +	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
> +	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
> +	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
> +	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
> +	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
> +	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
> +	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
> +	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
> +	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
> +	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
> +	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
> +	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
> +	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
> +	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
> +	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
> +};
> +
> +static u16 sunxi_nfc_randomizer_step(u16 state, int count)
> +{
> +	state &= 0x7fff;
> +
> +	/*
> +	 * This loop is just a simple implementation of a Fibonacci LFSR using
> +	 * the x16 + x15 + 1 polynomial.
> +	 */
> +	while (count--)
> +		state = ((state >> 1) |
> +			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
> +
> +	return state;
> +}
> +
> +static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
> +{
> +	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
> +	int mod = mtd->erasesize / mtd->writesize;
> +
> +	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
> +		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
> +
> +	if (ecc) {
> +		if (mtd->ecc_step_size == 512)
> +			seeds = sunxi_nfc_randomizer_ecc512_seeds;
> +		else
> +			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
> +	}
> +
> +	return seeds[page % mod];
> +}
> +
> +static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
> +					int page, bool ecc)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
> +	u16 state;
> +
> +	if (!(nand->options & NAND_NEED_SCRAMBLING))
> +		return;
> +
> +	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
> +	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
> +	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
> +	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
> +}
> +
> +static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +
> +	if (!(nand->options & NAND_NEED_SCRAMBLING))
> +		return;
> +
> +	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
> +	       nfc->regs + NFC_REG_ECC_CTL);
> +}
> +
> +static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +
> +	if (!(nand->options & NAND_NEED_SCRAMBLING))
> +		return;
> +
> +	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
> +	       nfc->regs + NFC_REG_ECC_CTL);
> +}
> +
> +static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
> +{
> +	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
> +
> +	bbm[0] ^= state;
> +	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
> +}
> +
> +static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
> +					   const uint8_t *buf, int len,
> +					   bool ecc, int page)
> +{
> +	sunxi_nfc_randomizer_config(mtd, page, ecc);
> +	sunxi_nfc_randomizer_enable(mtd);
> +	sunxi_nfc_write_buf(mtd, buf, len);
> +	sunxi_nfc_randomizer_disable(mtd);
> +}
> +
> +static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
> +					  int len, bool ecc, int page)
> +{
> +	sunxi_nfc_randomizer_config(mtd, page, ecc);
> +	sunxi_nfc_randomizer_enable(mtd);
> +	sunxi_nfc_read_buf(mtd, buf, len);
> +	sunxi_nfc_randomizer_disable(mtd);
> +}
> +
> +static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
> +	u32 ecc_ctl;
> +
> +	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
> +	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
> +		     NFC_ECC_BLOCK_SIZE_MSK);
> +	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
> +
> +	if (nand->ecc.size == 512)
> +		ecc_ctl |= NFC_ECC_BLOCK_512;
> +
> +	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
> +}
> +
> +static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +
> +	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
> +	       nfc->regs + NFC_REG_ECC_CTL);
> +}
> +
> +static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
> +{
> +	buf[0] = user_data;
> +	buf[1] = user_data >> 8;
> +	buf[2] = user_data >> 16;
> +	buf[3] = user_data >> 24;
> +}
> +
> +static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
> +				       u8 *data, int data_off,
> +				       u8 *oob, int oob_off,
> +				       int *cur_off,
> +				       unsigned int *max_bitflips,
> +				       bool bbm, int page)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +	struct nand_ecc_ctrl *ecc = &nand->ecc;
> +	int raw_mode = 0;
> +	u32 status;
> +	int ret;
> +
> +	if (*cur_off != data_off)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
> +
> +	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
> +
> +	if (data_off + ecc->size != oob_off)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
> +
> +	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
> +	if (ret)
> +		return ret;
> +
> +	sunxi_nfc_randomizer_enable(mtd);
> +	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
> +	       nfc->regs + NFC_REG_CMD);
> +
> +	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
> +	sunxi_nfc_randomizer_disable(mtd);
> +	if (ret)
> +		return ret;
> +
> +	*cur_off = oob_off + ecc->bytes + 4;
> +
> +	status = readl(nfc->regs + NFC_REG_ECC_ST);
> +	if (status & NFC_ECC_PAT_FOUND(0)) {
> +		u8 pattern = 0xff;
> +
> +		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1)))
> +			pattern = 0x0;
> +
> +		memset(data, pattern, ecc->size);
> +		memset(oob, pattern, ecc->bytes + 4);
> +
> +		return 1;
> +	}
> +
> +	ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
> +
> +	memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
> +
> +	nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
> +	sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page);
> +
> +	if (status & NFC_ECC_ERR(0)) {
> +		/*
> +		 * Re-read the data with the randomizer disabled to identify
> +		 * bitflips in erased pages.
> +		 */
> +		if (nand->options & NAND_NEED_SCRAMBLING) {
> +			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
> +			nand->read_buf(mtd, data, ecc->size);
> +			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
> +			nand->read_buf(mtd, oob, ecc->bytes + 4);
> +		}
> +
> +		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
> +						  oob, ecc->bytes + 4,
> +						  NULL, 0, ecc->strength);
> +		if (ret >= 0)
> +			raw_mode = 1;
> +	} else {
> +		/*
> +		 * The engine protects 4 bytes of OOB data per chunk.
> +		 * Retrieve the corrected OOB bytes.
> +		 */
> +		sunxi_nfc_user_data_to_buf(readl(nfc->regs +
> +						 NFC_REG_USER_DATA(0)),
> +					   oob);
> +
> +		/* De-randomize the Bad Block Marker. */
> +		if (bbm && nand->options & NAND_NEED_SCRAMBLING)
> +			sunxi_nfc_randomize_bbm(mtd, page, oob);
> +	}
> +
> +	if (ret < 0) {
> +		mtd->ecc_stats.failed++;
> +	} else {
> +		mtd->ecc_stats.corrected += ret;
> +		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
> +	}
> +
> +	return raw_mode;
> +}
> +
> +static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
> +					    u8 *oob, int *cur_off,
> +					    bool randomize, int page)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct nand_ecc_ctrl *ecc = &nand->ecc;
> +	int offset = ((ecc->bytes + 4) * ecc->steps);
> +	int len = mtd->oobsize - offset;
> +
> +	if (len <= 0)
> +		return;
> +
> +	if (*cur_off != offset)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
> +			      offset + mtd->writesize, -1);
> +
> +	if (!randomize)
> +		sunxi_nfc_read_buf(mtd, oob + offset, len);
> +	else
> +		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
> +					      false, page);
> +
> +	*cur_off = mtd->oobsize + mtd->writesize;
> +}
> +
> +static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
> +{
> +	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
> +}
> +
> +static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
> +					const u8 *data, int data_off,
> +					const u8 *oob, int oob_off,
> +					int *cur_off, bool bbm,
> +					int page)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
> +	struct nand_ecc_ctrl *ecc = &nand->ecc;
> +	int ret;
> +
> +	if (data_off != *cur_off)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
> +
> +	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
> +
> +	/* Fill OOB data in */
> +	if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) {
> +		u8 user_data[4];
> +
> +		memcpy(user_data, oob, 4);
> +		sunxi_nfc_randomize_bbm(mtd, page, user_data);
> +		writel(sunxi_nfc_buf_to_user_data(user_data),
> +		       nfc->regs + NFC_REG_USER_DATA(0));
> +	} else {
> +		writel(sunxi_nfc_buf_to_user_data(oob),
> +		       nfc->regs + NFC_REG_USER_DATA(0));
> +	}
> +
> +	if (data_off + ecc->size != oob_off)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
> +
> +	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
> +	if (ret)
> +		return ret;
> +
> +	sunxi_nfc_randomizer_enable(mtd);
> +	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
> +	       NFC_ACCESS_DIR | NFC_ECC_OP,
> +	       nfc->regs + NFC_REG_CMD);
> +
> +	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
> +	sunxi_nfc_randomizer_disable(mtd);
> +	if (ret)
> +		return ret;
> +
> +	*cur_off = oob_off + ecc->bytes + 4;
> +
> +	return 0;
> +}
> +
> +static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
> +					     u8 *oob, int *cur_off,
> +					     int page)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct nand_ecc_ctrl *ecc = &nand->ecc;
> +	int offset = ((ecc->bytes + 4) * ecc->steps);
> +	int len = mtd->oobsize - offset;
> +
> +	if (len <= 0)
> +		return;
> +
> +	if (*cur_off != offset)
> +		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
> +			      offset + mtd->writesize, -1);
> +
> +	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
> +
> +	*cur_off = mtd->oobsize + mtd->writesize;
> +}
> +
> +static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
> +				      struct nand_chip *chip, uint8_t *buf,
> +				      int oob_required, int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	unsigned int max_bitflips = 0;
> +	int ret, i, cur_off = 0;
> +	bool raw_mode = false;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	for (i = 0; i < ecc->steps; i++) {
> +		int data_off = i * ecc->size;
> +		int oob_off = i * (ecc->bytes + 4);
> +		u8 *data = buf + data_off;
> +		u8 *oob = chip->oob_poi + oob_off;
> +
> +		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
> +						  oob_off + mtd->writesize,
> +						  &cur_off, &max_bitflips,
> +						  !i, page);
> +		if (ret < 0)
> +			return ret;
> +		else if (ret)
> +			raw_mode = true;
> +	}
> +
> +	if (oob_required)
> +		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
> +						!raw_mode, page);
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return max_bitflips;
> +}
> +
> +static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
> +					 struct nand_chip *chip,
> +					 uint32_t data_offs, uint32_t readlen,
> +					 uint8_t *bufpoi, int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	int ret, i, cur_off = 0;
> +	unsigned int max_bitflips = 0;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
> +	for (i = data_offs / ecc->size;
> +	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
> +		int data_off = i * ecc->size;
> +		int oob_off = i * (ecc->bytes + 4);
> +		u8 *data = bufpoi + data_off;
> +		u8 *oob = chip->oob_poi + oob_off;
> +
> +		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
> +			oob, oob_off + mtd->writesize,
> +			&cur_off, &max_bitflips, !i, page);
> +		if (ret < 0)
> +			return ret;
> +	}
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return max_bitflips;
> +}
> +
> +static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
> +				       struct nand_chip *chip,
> +				       const uint8_t *buf, int oob_required,
> +				       int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	int ret, i, cur_off = 0;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	for (i = 0; i < ecc->steps; i++) {
> +		int data_off = i * ecc->size;
> +		int oob_off = i * (ecc->bytes + 4);
> +		const u8 *data = buf + data_off;
> +		const u8 *oob = chip->oob_poi + oob_off;
> +
> +		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
> +						   oob_off + mtd->writesize,
> +						   &cur_off, !i, page);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
> +		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
> +						 &cur_off, page);
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return 0;
> +}
> +
> +static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
> +					  struct nand_chip *chip,
> +					  u32 data_offs, u32 data_len,
> +					  const u8 *buf, int oob_required,
> +					  int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	int ret, i, cur_off = 0;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	for (i = data_offs / ecc->size;
> +	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
> +		int data_off = i * ecc->size;
> +		int oob_off = i * (ecc->bytes + 4);
> +		const u8 *data = buf + data_off;
> +		const u8 *oob = chip->oob_poi + oob_off;
> +
> +		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
> +						   oob_off + mtd->writesize,
> +						   &cur_off, !i, page);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return 0;
> +}
> +
> +static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
> +					       struct nand_chip *chip,
> +					       uint8_t *buf, int oob_required,
> +					       int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	unsigned int max_bitflips = 0;
> +	int ret, i, cur_off = 0;
> +	bool raw_mode = false;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	for (i = 0; i < ecc->steps; i++) {
> +		int data_off = i * (ecc->size + ecc->bytes + 4);
> +		int oob_off = data_off + ecc->size;
> +		u8 *data = buf + (i * ecc->size);
> +		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
> +
> +		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
> +						  oob_off, &cur_off,
> +						  &max_bitflips, !i, page);
> +		if (ret < 0)
> +			return ret;
> +		else if (ret)
> +			raw_mode = true;
> +	}
> +
> +	if (oob_required)
> +		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
> +						!raw_mode, page);
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return max_bitflips;
> +}
> +
> +static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
> +						struct nand_chip *chip,
> +						const uint8_t *buf,
> +						int oob_required, int page)
> +{
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	int ret, i, cur_off = 0;
> +
> +	sunxi_nfc_hw_ecc_enable(mtd);
> +
> +	for (i = 0; i < ecc->steps; i++) {
> +		int data_off = i * (ecc->size + ecc->bytes + 4);
> +		int oob_off = data_off + ecc->size;
> +		const u8 *data = buf + (i * ecc->size);
> +		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
> +
> +		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
> +						   oob, oob_off, &cur_off,
> +						   false, page);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
> +		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
> +						 &cur_off, page);
> +
> +	sunxi_nfc_hw_ecc_disable(mtd);
> +
> +	return 0;
> +}
> +
> +static const s32 tWB_lut[] = {6, 12, 16, 20};
> +static const s32 tRHW_lut[] = {4, 8, 12, 20};
> +
> +static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
> +		u32 clk_period)
> +{
> +	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
> +	int i;
> +
> +	for (i = 0; i < lut_size; i++) {
> +		if (clk_cycles <= lut[i])
> +			return i;
> +	}
> +
> +	/* Doesn't fit */
> +	return -EINVAL;
> +}
> +
> +#define sunxi_nand_lookup_timing(l, p, c) \
> +			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
> +
> +static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
> +				       const struct nand_sdr_timings *timings)
> +{
> +	u32 min_clk_period = 0;
> +	s32 tWB, tADL, tWHR, tRHW, tCAD;
> +
> +	/* T1 <=> tCLS */
> +	if (timings->tCLS_min > min_clk_period)
> +		min_clk_period = timings->tCLS_min;
> +
> +	/* T2 <=> tCLH */
> +	if (timings->tCLH_min > min_clk_period)
> +		min_clk_period = timings->tCLH_min;
> +
> +	/* T3 <=> tCS */
> +	if (timings->tCS_min > min_clk_period)
> +		min_clk_period = timings->tCS_min;
> +
> +	/* T4 <=> tCH */
> +	if (timings->tCH_min > min_clk_period)
> +		min_clk_period = timings->tCH_min;
> +
> +	/* T5 <=> tWP */
> +	if (timings->tWP_min > min_clk_period)
> +		min_clk_period = timings->tWP_min;
> +
> +	/* T6 <=> tWH */
> +	if (timings->tWH_min > min_clk_period)
> +		min_clk_period = timings->tWH_min;
> +
> +	/* T7 <=> tALS */
> +	if (timings->tALS_min > min_clk_period)
> +		min_clk_period = timings->tALS_min;
> +
> +	/* T8 <=> tDS */
> +	if (timings->tDS_min > min_clk_period)
> +		min_clk_period = timings->tDS_min;
> +
> +	/* T9 <=> tDH */
> +	if (timings->tDH_min > min_clk_period)
> +		min_clk_period = timings->tDH_min;
> +
> +	/* T10 <=> tRR */
> +	if (timings->tRR_min > (min_clk_period * 3))
> +		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
> +
> +	/* T11 <=> tALH */
> +	if (timings->tALH_min > min_clk_period)
> +		min_clk_period = timings->tALH_min;
> +
> +	/* T12 <=> tRP */
> +	if (timings->tRP_min > min_clk_period)
> +		min_clk_period = timings->tRP_min;
> +
> +	/* T13 <=> tREH */
> +	if (timings->tREH_min > min_clk_period)
> +		min_clk_period = timings->tREH_min;
> +
> +	/* T14 <=> tRC */
> +	if (timings->tRC_min > (min_clk_period * 2))
> +		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
> +
> +	/* T15 <=> tWC */
> +	if (timings->tWC_min > (min_clk_period * 2))
> +		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
> +
> +	/* T16 - T19 + tCAD */
> +	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
> +					min_clk_period);
> +	if (tWB < 0) {
> +		dev_err(nfc->dev, "unsupported tWB\n");
> +		return tWB;
> +	}
> +
> +	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
> +	if (tADL > 3) {
> +		dev_err(nfc->dev, "unsupported tADL\n");
> +		return -EINVAL;
> +	}
> +
> +	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
> +	if (tWHR > 3) {
> +		dev_err(nfc->dev, "unsupported tWHR\n");
> +		return -EINVAL;
> +	}
> +
> +	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
> +					min_clk_period);
> +	if (tRHW < 0) {
> +		dev_err(nfc->dev, "unsupported tRHW\n");
> +		return tRHW;
> +	}
> +
> +	/*
> +	 * TODO: according to ONFI specs this value only applies for DDR NAND,
> +	 * but Allwinner seems to set this to 0x7. Mimic them for now.
> +	 */
> +	tCAD = 0x7;
> +
> +	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
> +	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
> +
> +	/*
> +	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
> +	 * output cycle timings shall be used if the host drives tRC less than
> +	 * 30 ns.
> +	 */
> +	chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
> +
> +	/* Convert min_clk_period from picoseconds to nanoseconds */
> +	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
> +
> +	/*
> +	 * Convert min_clk_period into a clk frequency, then get the
> +	 * appropriate rate for the NAND controller IP given this formula
> +	 * (specified in the datasheet):
> +	 * nand clk_rate = min_clk_rate
> +	 */
> +	chip->clk_rate = 1000000000L / min_clk_period;
> +
> +	return 0;
> +}
> +
> +static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(&chip->nand);
> +	const struct nand_sdr_timings *timings;
> +	int ret;
> +	int mode;
> +
> +	mode = onfi_get_async_timing_mode(&chip->nand);
> +	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
> +		mode = chip->nand.onfi_timing_mode_default;
> +	} else {
> +		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
> +		int i;
> +
> +		mode = fls(mode) - 1;
> +		if (mode < 0)
> +			mode = 0;
> +
> +		feature[0] = mode;
> +		for (i = 0; i < chip->nsels; i++) {
> +			chip->nand.select_chip(mtd, i);
> +			ret = chip->nand.onfi_set_features(mtd,
> +						&chip->nand,
> +						ONFI_FEATURE_ADDR_TIMING_MODE,
> +						feature);
> +			chip->nand.select_chip(mtd, -1);
> +			if (ret)
> +				return ret;
> +		}
> +	}
> +
> +	timings = onfi_async_timing_mode_to_sdr_timings(mode);
> +	if (IS_ERR(timings))
> +		return PTR_ERR(timings);
> +
> +	return sunxi_nand_chip_set_timings(chip, timings);
> +}
> +
> +static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
> +					      struct nand_ecc_ctrl *ecc)
> +{
> +	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
> +	struct sunxi_nand_hw_ecc *data;
> +	struct nand_ecclayout *layout;
> +	int nsectors;
> +	int ret;
> +	int i;
> +
> +	data = kzalloc(sizeof(*data), GFP_KERNEL);
> +	if (!data)
> +		return -ENOMEM;
> +
> +	if (ecc->size != 512 && ecc->size != 1024)
> +		return -EINVAL;
> +
> +	/* Prefer 1k ECC chunk over 512 ones */
> +	if (ecc->size == 512 && mtd->writesize > 512) {
> +		ecc->size = 1024;
> +		ecc->strength *= 2;
> +	}
> +
> +	/* Add ECC info retrieval from DT */
> +	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
> +		if (ecc->strength <= strengths[i])
> +			break;
> +	}
> +
> +	if (i >= ARRAY_SIZE(strengths)) {
> +		dev_err(nfc->dev, "unsupported strength\n");
> +		ret = -ENOTSUPP;
> +		goto err;
> +	}
> +
> +	data->mode = i;
> +
> +	/* HW ECC always request ECC bytes for 1024 bytes blocks */
> +	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
> +
> +	/* HW ECC always work with even numbers of ECC bytes */
> +	ecc->bytes = ALIGN(ecc->bytes, 2);
> +
> +	layout = &data->layout;
> +	nsectors = mtd->writesize / ecc->size;
> +
> +	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
> +		ret = -EINVAL;
> +		goto err;
> +	}
> +
> +	layout->eccbytes = (ecc->bytes * nsectors);
> +
> +	ecc->layout = layout;
> +	ecc->priv = data;
> +
> +	return 0;
> +
> +err:
> +	kfree(data);
> +
> +	return ret;
> +}
> +
> +#ifndef __UBOOT__
> +static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
> +{
> +	kfree(ecc->priv);
> +}
> +#endif /* __UBOOT__ */
> +
> +static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
> +				       struct nand_ecc_ctrl *ecc)
> +{
> +	struct nand_ecclayout *layout;
> +	int nsectors;
> +	int i, j;
> +	int ret;
> +
> +	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
> +	if (ret)
> +		return ret;
> +
> +	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
> +	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
> +	ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
> +	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
> +	layout = ecc->layout;
> +	nsectors = mtd->writesize / ecc->size;
> +
> +	for (i = 0; i < nsectors; i++) {
> +		if (i) {
> +			layout->oobfree[i].offset =
> +				layout->oobfree[i - 1].offset +
> +				layout->oobfree[i - 1].length +
> +				ecc->bytes;
> +			layout->oobfree[i].length = 4;
> +		} else {
> +			/*
> +			 * The first 2 bytes are used for BB markers, hence we
> +			 * only have 2 bytes available in the first user data
> +			 * section.
> +			 */
> +			layout->oobfree[i].length = 2;
> +			layout->oobfree[i].offset = 2;
> +		}
> +
> +		for (j = 0; j < ecc->bytes; j++)
> +			layout->eccpos[(ecc->bytes * i) + j] =
> +					layout->oobfree[i].offset +
> +					layout->oobfree[i].length + j;
> +	}
> +
> +	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
> +		layout->oobfree[nsectors].offset =
> +				layout->oobfree[nsectors - 1].offset +
> +				layout->oobfree[nsectors - 1].length +
> +				ecc->bytes;
> +		layout->oobfree[nsectors].length = mtd->oobsize -
> +				((ecc->bytes + 4) * nsectors);
> +	}
> +
> +	return 0;
> +}
> +
> +static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
> +						struct nand_ecc_ctrl *ecc)
> +{
> +	struct nand_ecclayout *layout;
> +	int nsectors;
> +	int i;
> +	int ret;
> +
> +	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
> +	if (ret)
> +		return ret;
> +
> +	ecc->prepad = 4;
> +	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
> +	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
> +
> +	layout = ecc->layout;
> +	nsectors = mtd->writesize / ecc->size;
> +
> +	for (i = 0; i < (ecc->bytes * nsectors); i++)
> +		layout->eccpos[i] = i;
> +
> +	layout->oobfree[0].length = mtd->oobsize - i;
> +	layout->oobfree[0].offset = i;
> +
> +	return 0;
> +}
> +
> +#ifndef __UBOOT__
> +static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
> +{
> +	switch (ecc->mode) {
> +	case NAND_ECC_HW:
> +	case NAND_ECC_HW_SYNDROME:
> +		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
> +		break;
> +	case NAND_ECC_NONE:
> +		kfree(ecc->layout);
> +	default:
> +		break;
> +	}
> +}
> +#endif /* __UBOOT__ */
> +
> +static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	int ret;
> +
> +	if (!ecc->size) {
> +		ecc->size = nand->ecc_step_ds;
> +		ecc->strength = nand->ecc_strength_ds;
> +	}
> +
> +	if (!ecc->size || !ecc->strength)
> +		return -EINVAL;
> +
> +	switch (ecc->mode) {
> +	case NAND_ECC_SOFT_BCH:
> +		break;
> +	case NAND_ECC_HW:
> +		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc);
> +		if (ret)
> +			return ret;
> +		break;
> +	case NAND_ECC_HW_SYNDROME:
> +		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc);
> +		if (ret)
> +			return ret;
> +		break;
> +	case NAND_ECC_NONE:
> +		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
> +		if (!ecc->layout)
> +			return -ENOMEM;
> +		ecc->layout->oobfree[0].length = mtd->oobsize;
> +	case NAND_ECC_SOFT:
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	return 0;
> +}
> +
> +static int sunxi_nand_chip_init(int node, struct sunxi_nfc *nfc, int devnum)
> +{
> +	const struct nand_sdr_timings *timings;
> +	const void *blob = gd->fdt_blob;
> +	struct sunxi_nand_chip *chip;
> +	struct mtd_info *mtd;
> +	struct nand_chip *nand;
> +	int nsels;
> +	int ret;
> +	int i;
> +	u32 cs[8], rb[8];
> +
> +	if (!fdt_getprop(blob, node, "reg", &nsels))
> +		return -EINVAL;
> +
> +	nsels /= sizeof(u32);
> +	if (!nsels || nsels > 8) {
> +		dev_err(dev, "invalid reg property size\n");
> +		return -EINVAL;
> +	}
> +
> +	chip = kzalloc(sizeof(*chip) +
> +		       (nsels * sizeof(struct sunxi_nand_chip_sel)),
> +		       GFP_KERNEL);
> +	if (!chip) {
> +		dev_err(dev, "could not allocate chip\n");
> +		return -ENOMEM;
> +	}
> +
> +	chip->nsels = nsels;
> +	chip->selected = -1;
> +
> +	for (i = 0; i < nsels; i++) {
> +		cs[i] = -1;
> +		rb[i] = -1;
> +	}
> +
> +	ret = fdtdec_get_int_array(gd->fdt_blob, node, "reg", cs, nsels);
> +	if (ret) {
> +		dev_err(dev, "could not retrieve reg property: %d\n", ret);
> +		return ret;
> +	}
> +
> +	ret = fdtdec_get_int_array(gd->fdt_blob, node, "allwinner,rb", rb,
> +				   nsels);
> +	if (ret) {
> +		dev_err(dev, "could not retrieve reg property: %d\n", ret);
> +		return ret;
> +	}
> +
> +	for (i = 0; i < nsels; i++) {
> +		int tmp = cs[i];
> +
> +		if (tmp > NFC_MAX_CS) {
> +			dev_err(dev,
> +				"invalid reg value: %u (max CS = 7)\n",
> +				tmp);
> +			return -EINVAL;
> +		}
> +
> +		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
> +			dev_err(dev, "CS %d already assigned\n", tmp);
> +			return -EINVAL;
> +		}
> +
> +		chip->sels[i].cs = tmp;
> +
> +		tmp = rb[i];
> +		if (tmp >= 0 && tmp < 2) {
> +			chip->sels[i].rb.type = RB_NATIVE;
> +			chip->sels[i].rb.info.nativeid = tmp;
> +		} else {
> +			ret = gpio_request_by_name_nodev(blob, node,
> +						"rb-gpios", i,
> +						&chip->sels[i].rb.info.gpio,
> +						GPIOD_IS_IN);
> +			if (ret)
> +				chip->sels[i].rb.type = RB_GPIO;
> +			else
> +				chip->sels[i].rb.type = RB_NONE;
> +		}
> +	}
> +
> +	timings = onfi_async_timing_mode_to_sdr_timings(0);
> +	if (IS_ERR(timings)) {
> +		ret = PTR_ERR(timings);
> +		dev_err(dev,
> +			"could not retrieve timings for ONFI mode 0: %d\n",
> +			ret);
> +		return ret;
> +	}
> +
> +	ret = sunxi_nand_chip_set_timings(chip, timings);
> +	if (ret) {
> +		dev_err(dev, "could not configure chip timings: %d\n", ret);
> +		return ret;
> +	}
> +
> +	nand = &chip->nand;
> +	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
> +	nand->chip_delay = 200;
> +	nand->controller = &nfc->controller;
> +	/*
> +	 * Set the ECC mode to the default value in case nothing is specified
> +	 * in the DT.
> +	 */
> +	nand->ecc.mode = NAND_ECC_HW;
> +	nand->flash_node = node;
> +	nand->select_chip = sunxi_nfc_select_chip;
> +	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
> +	nand->read_buf = sunxi_nfc_read_buf;
> +	nand->write_buf = sunxi_nfc_write_buf;
> +	nand->read_byte = sunxi_nfc_read_byte;
> +
> +	mtd = nand_to_mtd(nand);
> +	ret = nand_scan_ident(mtd, nsels, NULL);
> +	if (ret)
> +		return ret;
> +
> +	if (nand->bbt_options & NAND_BBT_USE_FLASH)
> +		nand->bbt_options |= NAND_BBT_NO_OOB;
> +
> +	if (nand->options & NAND_NEED_SCRAMBLING)
> +		nand->options |= NAND_NO_SUBPAGE_WRITE;
> +
> +	nand->options |= NAND_SUBPAGE_READ;
> +
> +	ret = sunxi_nand_chip_init_timings(chip);
> +	if (ret) {
> +		dev_err(dev, "could not configure chip timings: %d\n", ret);
> +		return ret;
> +	}
> +
> +	ret = sunxi_nand_ecc_init(mtd, &nand->ecc);
> +	if (ret) {
> +		dev_err(dev, "ECC init failed: %d\n", ret);
> +		return ret;
> +	}
> +
> +	ret = nand_scan_tail(mtd);
> +	if (ret) {
> +		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
> +		return ret;
> +	}
> +
> +	ret = nand_register(devnum, mtd);
> +	if (ret) {
> +		dev_err(dev, "failed to register mtd device: %d\n", ret);
> +		return ret;
> +	}
> +
> +	list_add_tail(&chip->node, &nfc->chips);
> +
> +	return 0;
> +}
> +
> +static int sunxi_nand_chips_init(int node, struct sunxi_nfc *nfc)
> +{
> +	const void *blob = gd->fdt_blob;
> +	int nand_node;
> +	int ret, i = 0;
> +
> +	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
> +	     nand_node = fdt_next_subnode(blob, nand_node))
> +		i++;
> +
> +	if (i > 8) {
> +		dev_err(dev, "too many NAND chips: %d (max = 8)\n", i);
> +		return -EINVAL;
> +	}
> +
> +	i = 0;
> +	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
> +	     nand_node = fdt_next_subnode(blob, nand_node)) {
> +		ret = sunxi_nand_chip_init(nand_node, nfc, i++);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +#ifndef __UBOOT__
> +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
> +{
> +	struct sunxi_nand_chip *chip;
> +
> +	while (!list_empty(&nfc->chips)) {
> +		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
> +					node);
> +		nand_release(&chip->mtd);
> +		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
> +		list_del(&chip->node);
> +		kfree(chip);
> +	}
> +}
> +#endif /* __UBOOT__ */
> +
> +void sunxi_nand_init(void)
> +{
> +	const void *blob = gd->fdt_blob;
> +	struct sunxi_nfc *nfc;
> +	fdt_addr_t regs;
> +	int node;
> +	int ret;
> +
> +	nfc = kzalloc(sizeof(*nfc), GFP_KERNEL);
> +	if (!nfc)
> +		return;
> +
> +	spin_lock_init(&nfc->controller.lock);
> +	init_waitqueue_head(&nfc->controller.wq);
> +	INIT_LIST_HEAD(&nfc->chips);
> +
> +	node = fdtdec_next_compatible(blob, 0, COMPAT_SUNXI_NAND);
> +	if (node < 0) {
> +		pr_err("unable to find nfc node in device tree\n");
> +		goto err;
> +	}
> +
> +	if (!fdtdec_get_is_enabled(blob, node)) {
> +		pr_err("nfc disabled in device tree\n");
> +		goto err;
> +	}
> +
> +	regs = fdtdec_get_addr(blob, node, "reg");
> +	if (regs == FDT_ADDR_T_NONE) {
> +		pr_err("unable to find nfc address in device tree\n");
> +		goto err;
> +	}
> +
> +	nfc->regs = (void *)regs;
> +
> +	ret = sunxi_nfc_rst(nfc);
> +	if (ret)
> +		goto err;
> +
> +	ret = sunxi_nand_chips_init(node, nfc);
> +	if (ret) {
> +		dev_err(dev, "failed to init nand chips\n");
> +		goto err;
> +	}
> +
> +	return;
> +
> +err:
> +	kfree(nfc);
> +}
> +
> +MODULE_LICENSE("GPL v2");
> +MODULE_AUTHOR("Boris BREZILLON");
> +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
> diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h
> index ac2d931..70aaa76 100644
> --- a/include/configs/sunxi-common.h
> +++ b/include/configs/sunxi-common.h
> @@ -135,6 +135,8 @@
>
>  #ifdef CONFIG_NAND_SUNXI
>  #define CONFIG_SPL_NAND_SUPPORT 1
> +#define CONFIG_SYS_NAND_ONFI_DETECTION
> +#define CONFIG_SYS_MAX_NAND_DEVICE 8
>  #endif
>
>  /* mmc config */
> diff --git a/include/fdtdec.h b/include/fdtdec.h
> index 37d482a..940ab8b 100644
> --- a/include/fdtdec.h
> +++ b/include/fdtdec.h
> @@ -166,6 +166,7 @@ enum fdt_compat_id {
>  	COMPAT_INTEL_BAYTRAIL_FSP,	/* Intel Bay Trail FSP */
>  	COMPAT_INTEL_BAYTRAIL_FSP_MDP,	/* Intel FSP memory-down params */
>  	COMPAT_INTEL_IVYBRIDGE_FSP,	/* Intel Ivy Bridge FSP */
> +	COMPAT_SUNXI_NAND,		/* SUNXI NAND controller */
>
>  	COMPAT_COUNT,
>  };
> diff --git a/lib/fdtdec.c b/lib/fdtdec.c
> index 70acc29..ed8e294 100644
> --- a/lib/fdtdec.c
> +++ b/lib/fdtdec.c
> @@ -71,6 +71,7 @@ static const char * const compat_names[COMPAT_COUNT] = {
>  	COMPAT(COMPAT_INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"),
>  	COMPAT(COMPAT_INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"),
>  	COMPAT(COMPAT_INTEL_IVYBRIDGE_FSP, "intel,ivybridge-fsp"),
> +	COMPAT(COMPAT_SUNXI_NAND, "allwinner,sun4i-a10-nand"),
>  };
>
>  const char *fdtdec_get_compatible(enum fdt_compat_id id)
>


More information about the U-Boot mailing list