[PATCH 04/19] drivers: mtd: nand: Add driver for Cadence Nand
dinesh.maniyam at intel.com
dinesh.maniyam at intel.com
Thu Sep 19 05:54:57 CEST 2024
From: Dinesh Maniyam <dinesh.maniyam at intel.com>
This patch is to enable driver for Cadence NAND for the family
device agilex5. This driver is leveraged from linux.
Signed-off-by: Dinesh Maniyam <dinesh.maniyam at intel.com>
---
drivers/mtd/nand/raw/cadence_nand.c | 2210 +++++++++++++++++++++++++++
include/cadence-nand.h | 526 +++++++
2 files changed, 2736 insertions(+)
create mode 100644 drivers/mtd/nand/raw/cadence_nand.c
create mode 100644 include/cadence-nand.h
diff --git a/drivers/mtd/nand/raw/cadence_nand.c b/drivers/mtd/nand/raw/cadence_nand.c
new file mode 100644
index 0000000000..f9f28c392b
--- /dev/null
+++ b/drivers/mtd/nand/raw/cadence_nand.c
@@ -0,0 +1,2210 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ *
+ * Author: Piotr Sroka <piotrs at cadence.com>
+ *
+ */
+
+#include <cadence-nand.h>
+#include <clk.h>
+#include <dm.h>
+#include <hang.h>
+#include <malloc.h>
+#include <memalign.h>
+#include <nand.h>
+#include <reset.h>
+#include <wait_bit.h>
+#include <dm/device_compat.h>
+#include <dm/devres.h>
+#include <linux/bitfield.h>
+#include <linux/bug.h>
+#include <linux/delay.h>
+#include <linux/dma-direction.h>
+#include <linux/dma-mapping.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/ioport.h>
+#include <linux/printk.h>
+#include <linux/sizes.h>
+
+static inline struct cadence_nand_info *mtd_to_cadence(struct mtd_info *mtd)
+{
+ return container_of(mtd_to_nand(mtd), struct cadence_nand_info, selected_chip);
+}
+
+static inline struct
+cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
+{
+ return container_of(chip, struct cdns_nand_chip, chip);
+}
+
+static bool
+cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf,
+ u32 buf_len)
+{
+ u8 data_dma_width = cadence->caps2.data_dma_width;
+
+ return buf &&
+ likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
+ likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
+}
+
+static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence,
+ u32 reg_offset, u32 timeout_us,
+ u32 mask, bool is_clear)
+{
+ u32 val;
+ int ret;
+
+ ret = readl_poll_sleep_timeout(cadence->reg + reg_offset,
+ val, !(val & mask) == is_clear,
+ 10, timeout_us);
+
+ if (ret < 0) {
+ dev_err(cadence->dev,
+ "Timeout while waiting for reg %x with mask %x is clear %d\n",
+ reg_offset, mask, is_clear);
+ }
+
+ return ret;
+}
+
+static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence,
+ bool enable)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ECC_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ECC_EN;
+
+ writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
+
+ return 0;
+}
+
+static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence,
+ u8 corr_str_idx)
+{
+ u32 reg;
+
+ if (cadence->curr_corr_str_idx == corr_str_idx)
+ return;
+
+ reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
+ reg &= ~ECC_CONFIG_0_CORR_STR;
+ reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
+ writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
+
+ cadence->curr_corr_str_idx = corr_str_idx;
+}
+
+static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence,
+ u8 strength)
+{
+ int i, corr_str_idx = -1;
+
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cadence->ecc_strengths[i] == strength) {
+ corr_str_idx = i;
+ break;
+ }
+ }
+
+ return corr_str_idx;
+}
+
+static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence,
+ u16 marker_value)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_MARKER_VALUE;
+ reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
+ marker_value);
+
+ writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
+
+ return 0;
+}
+
+static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence,
+ u8 num_of_bytes,
+ u32 offset_value,
+ int enable)
+{
+ u32 reg, skip_bytes_offset;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ if (!enable) {
+ num_of_bytes = 0;
+ offset_value = 0;
+ }
+
+ reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_NUM_OF_BYTES;
+ reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
+ num_of_bytes);
+ skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
+ offset_value);
+
+ writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
+ writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET);
+
+ return 0;
+}
+
+/* Functions enables/disables hardware detection of erased data */
+static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence,
+ bool enable,
+ u8 bitflips_threshold)
+{
+ u32 reg;
+
+ reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ERASE_DET_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
+
+ writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
+ writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1);
+}
+
+static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence,
+ bool bit_bus16)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cadence->reg + COMMON_SET);
+ if (!bit_bus16)
+ reg &= ~COMMON_SET_DEVICE_16BIT;
+ else
+ reg |= COMMON_SET_DEVICE_16BIT;
+ writel_relaxed(reg, cadence->reg + COMMON_SET);
+
+ return 0;
+}
+
+static void
+cadence_nand_clear_interrupt(struct cadence_nand_info *cadence,
+ struct cadence_nand_irq_status *irq_status)
+{
+ writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS);
+ writel_relaxed(irq_status->trd_status,
+ cadence->reg + TRD_COMP_INT_STATUS);
+ writel_relaxed(irq_status->trd_error,
+ cadence->reg + TRD_ERR_INT_STATUS);
+}
+
+static void
+cadence_nand_read_int_status(struct cadence_nand_info *cadence,
+ struct cadence_nand_irq_status *irq_status)
+{
+ irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS);
+ irq_status->trd_status = readl_relaxed(cadence->reg
+ + TRD_COMP_INT_STATUS);
+ irq_status->trd_error = readl_relaxed(cadence->reg
+ + TRD_ERR_INT_STATUS);
+}
+
+static u32 irq_detected(struct cadence_nand_info *cadence,
+ struct cadence_nand_irq_status *irq_status)
+{
+ cadence_nand_read_int_status(cadence, irq_status);
+
+ return irq_status->status || irq_status->trd_status ||
+ irq_status->trd_error;
+}
+
+static void cadence_nand_reset_irq(struct cadence_nand_info *cadence)
+{
+ memset(&cadence->irq_status, 0, sizeof(cadence->irq_status));
+ memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask));
+}
+
+/*
+ * This is the interrupt service routine. It handles all interrupts
+ * sent to this device.
+ */
+static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence)
+{
+ struct cadence_nand_irq_status irq_status;
+ irqreturn_t result = IRQ_NONE;
+
+ if (irq_detected(cadence, &irq_status)) {
+ /* Handle interrupt. */
+ /* First acknowledge it. */
+ cadence_nand_clear_interrupt(cadence, &irq_status);
+ /* Status in the device context for someone to read. */
+ cadence->irq_status.status |= irq_status.status;
+ cadence->irq_status.trd_status |= irq_status.trd_status;
+ cadence->irq_status.trd_error |= irq_status.trd_error;
+ /* Tell the OS that we've handled this. */
+ result = IRQ_HANDLED;
+ }
+ return result;
+}
+
+static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence,
+ struct cadence_nand_irq_status *irq_mask)
+{
+ writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
+ cadence->reg + INTR_ENABLE);
+
+ writel_relaxed(irq_mask->trd_error,
+ cadence->reg + TRD_ERR_INT_STATUS_EN);
+}
+
+static void
+cadence_nand_wait_for_irq(struct cadence_nand_info *cadence,
+ struct cadence_nand_irq_status *irq_mask,
+ struct cadence_nand_irq_status *irq_status)
+{
+ irqreturn_t result = IRQ_NONE;
+ u32 start = get_timer(0);
+
+ while (get_timer(start) < TIMEOUT_US) {
+ result = cadence_nand_isr(cadence);
+
+ if (result == IRQ_HANDLED) {
+ *irq_status = cadence->irq_status;
+ break;
+ }
+ udelay(1);
+ }
+
+ if (!result) {
+ /* Timeout error. */
+ dev_err(cadence->dev, "timeout occurred:\n");
+ dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n",
+ irq_status->status, irq_mask->status);
+ dev_err(cadence->dev,
+ "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
+ irq_status->trd_status, irq_mask->trd_status);
+ dev_err(cadence->dev,
+ "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
+ irq_status->trd_error, irq_mask->trd_error);
+ }
+}
+
+/* Execute generic command on NAND controller. */
+static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence,
+ u8 chip_nr,
+ u64 mini_ctrl_cmd)
+{
+ u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
+ mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
+ mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_reset_irq(cadence);
+
+ writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2);
+ writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3);
+
+ /* Select generic command. */
+ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
+ /* Thread number. */
+ reg |= FIELD_PREP(CMD_REG0_TN, 0);
+
+ /* Issue command. */
+ writel_relaxed(reg, cadence->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* Wait for data on slave DMA interface. */
+static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd,
+ u32 *out_sdma_size)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status;
+
+ irq_mask.trd_status = 0;
+ irq_mask.trd_error = 0;
+ irq_mask.status = INTR_STATUS_SDMA_TRIGG
+ | INTR_STATUS_SDMA_ERR
+ | INTR_STATUS_UNSUPP_CMD;
+
+ cadence_nand_set_irq_mask(cadence, &irq_mask);
+ cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
+ if (irq_status.status == 0) {
+ dev_err(cadence->dev, "Timeout while waiting for SDMA\n");
+ return -ETIMEDOUT;
+ }
+
+ if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
+ *out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE);
+ *out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM);
+ *out_sdma_trd =
+ FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
+ } else {
+ dev_err(cadence->dev, "SDMA error - irq_status %x\n",
+ irq_status.status);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static void cadence_nand_get_caps(struct cadence_nand_info *cadence)
+{
+ u32 reg;
+
+ reg = readl_relaxed(cadence->reg + CTRL_FEATURES);
+
+ cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
+
+ if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
+ cadence->caps2.data_dma_width = 8;
+ else
+ cadence->caps2.data_dma_width = 4;
+
+ if (reg & CTRL_FEATURES_CONTROL_DATA)
+ cadence->caps2.data_control_supp = true;
+
+ if (reg & (CTRL_FEATURES_NVDDR_2_3
+ | CTRL_FEATURES_NVDDR))
+ cadence->caps2.is_phy_type_dll = true;
+}
+
+/* Prepare CDMA descriptor. */
+static void
+cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence,
+ char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
+ dma_addr_t ctrl_data_ptr, u16 ctype)
+{
+ struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc;
+
+ memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
+
+ /* Set fields for one descriptor. */
+ cdma_desc->flash_pointer = flash_ptr;
+ if (cadence->ctrl_rev >= 13)
+ cdma_desc->bank = nf_mem;
+ else
+ cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
+
+ cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
+ cdma_desc->command_flags |= CDMA_CF_INT;
+
+ cdma_desc->memory_pointer = mem_ptr;
+ cdma_desc->status = 0;
+ cdma_desc->sync_flag_pointer = 0;
+ cdma_desc->sync_arguments = 0;
+
+ cdma_desc->command_type = ctype;
+ cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
+}
+
+static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence,
+ u32 desc_status)
+{
+ if (desc_status & CDMA_CS_ERP)
+ return STAT_ERASED;
+
+ if (desc_status & CDMA_CS_UNCE)
+ return STAT_ECC_UNCORR;
+
+ if (desc_status & CDMA_CS_ERR) {
+ dev_err(cadence->dev, ":CDMA desc error flag detected.\n");
+ return STAT_FAIL;
+ }
+
+ if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
+ return STAT_ECC_CORR;
+
+ return STAT_FAIL;
+}
+
+static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence)
+{
+ struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc;
+ u8 status = STAT_BUSY;
+
+ if (desc_ptr->status & CDMA_CS_FAIL) {
+ status = cadence_nand_check_desc_error(cadence,
+ desc_ptr->status);
+ dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status);
+ } else if (desc_ptr->status & CDMA_CS_COMP) {
+ /* Descriptor finished with no errors. */
+ if (desc_ptr->command_flags & CDMA_CF_CONT) {
+ dev_info(cadence->dev, "DMA unsupported flag is set");
+ status = STAT_UNKNOWN;
+ } else {
+ /* Last descriptor. */
+ status = STAT_OK;
+ }
+ }
+
+ return status;
+}
+
+static int cadence_nand_cdma_send(struct cadence_nand_info *cadence,
+ u8 thread)
+{
+ u32 reg;
+ int status;
+
+ /* Wait for thread ready. */
+ status = cadence_nand_wait_for_value(cadence, TRD_STATUS,
+ TIMEOUT_US,
+ BIT(thread), true);
+ if (status)
+ return status;
+
+ cadence_nand_reset_irq(cadence);
+
+ writel_relaxed((u32)cadence->dma_cdma_desc,
+ cadence->reg + CMD_REG2);
+ writel_relaxed(0, cadence->reg + CMD_REG3);
+
+ /* Select CDMA mode. */
+ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
+ /* Thread number. */
+ reg |= FIELD_PREP(CMD_REG0_TN, thread);
+ /* Issue command. */
+ writel_relaxed(reg, cadence->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* Send SDMA command and wait for finish. */
+static u32
+cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence,
+ u8 thread)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status = {0};
+ int status;
+
+ irq_mask.trd_status = BIT(thread);
+ irq_mask.trd_error = BIT(thread);
+ irq_mask.status = INTR_STATUS_CDMA_TERR;
+
+ cadence_nand_set_irq_mask(cadence, &irq_mask);
+
+ status = cadence_nand_cdma_send(cadence, thread);
+ if (status)
+ return status;
+
+ cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
+
+ if (irq_status.status == 0 && irq_status.trd_status == 0 &&
+ irq_status.trd_error == 0) {
+ dev_err(cadence->dev, "CDMA command timeout\n");
+ return -ETIMEDOUT;
+ }
+ if (irq_status.status & irq_mask.status) {
+ dev_err(cadence->dev, "CDMA command failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * ECC size depends on configured ECC strength and on maximum supported
+ * ECC step size.
+ */
+static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
+{
+ int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
+
+ return ALIGN(nbytes, 2);
+}
+
+#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
+ static int \
+ cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
+ int strength)\
+ {\
+ return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
+ }
+
+CADENCE_NAND_CALC_ECC_BYTES(256)
+CADENCE_NAND_CALC_ECC_BYTES(512)
+CADENCE_NAND_CALC_ECC_BYTES(1024)
+CADENCE_NAND_CALC_ECC_BYTES(2048)
+CADENCE_NAND_CALC_ECC_BYTES(4096)
+
+/* Function reads BCH capabilities. */
+static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence)
+{
+ struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps;
+ int max_step_size = 0, nstrengths, i;
+ u32 reg;
+
+ reg = readl_relaxed(cadence->reg + BCH_CFG_3);
+ cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
+ if (cadence->bch_metadata_size < 4) {
+ dev_err(cadence->dev,
+ "Driver needs at least 4 bytes of BCH meta data\n");
+ return -EIO;
+ }
+
+ reg = readl_relaxed(cadence->reg + BCH_CFG_0);
+ cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
+ cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
+ cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
+ cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
+
+ reg = readl_relaxed(cadence->reg + BCH_CFG_1);
+ cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
+ cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
+ cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
+ cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
+
+ reg = readl_relaxed(cadence->reg + BCH_CFG_2);
+ cadence->ecc_stepinfos[0].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_0, reg);
+
+ cadence->ecc_stepinfos[1].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_1, reg);
+
+ nstrengths = 0;
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cadence->ecc_strengths[i] != 0)
+ nstrengths++;
+ }
+
+ ecc_caps->nstepinfos = 0;
+ for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
+ /* ECC strengths are common for all step infos. */
+ cadence->ecc_stepinfos[i].nstrengths = nstrengths;
+ cadence->ecc_stepinfos[i].strengths =
+ cadence->ecc_strengths;
+
+ if (cadence->ecc_stepinfos[i].stepsize != 0)
+ ecc_caps->nstepinfos++;
+
+ if (cadence->ecc_stepinfos[i].stepsize > max_step_size)
+ max_step_size = cadence->ecc_stepinfos[i].stepsize;
+ }
+ ecc_caps->stepinfos = &cadence->ecc_stepinfos[0];
+
+ switch (max_step_size) {
+ case 256:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
+ break;
+ case 512:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
+ break;
+ case 1024:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
+ break;
+ case 2048:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
+ break;
+ case 4096:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
+ break;
+ default:
+ dev_err(cadence->dev,
+ "Unsupported sector size(ecc step size) %d\n",
+ max_step_size);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/* Hardware initialization. */
+static int cadence_nand_hw_init(struct cadence_nand_info *cadence)
+{
+ int status;
+ u32 reg;
+
+ status = cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_INIT_COMP, false);
+ if (status)
+ return status;
+
+ reg = readl_relaxed(cadence->reg + CTRL_VERSION);
+ cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
+
+ dev_info(cadence->dev,
+ "%s: cadence nand controller version reg %x\n",
+ __func__, reg);
+
+ /* Disable cache and multiplane. */
+ writel_relaxed(0, cadence->reg + MULTIPLANE_CFG);
+ writel_relaxed(0, cadence->reg + CACHE_CFG);
+
+ /* Clear all interrupts. */
+ writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS);
+
+ cadence_nand_get_caps(cadence);
+ if (cadence_nand_read_bch_caps(cadence))
+ return -EIO;
+
+ /*
+ * Set IO width access to 8.
+ * It is because during SW device discovering width access
+ * is expected to be 8.
+ */
+ status = cadence_nand_set_access_width16(cadence, false);
+
+ return status;
+}
+
+#define TT_MAIN_OOB_AREAS 2
+#define TT_RAW_PAGE 3
+#define TT_BBM 4
+#define TT_MAIN_OOB_AREA_EXT 5
+
+/* Prepare size of data to transfer. */
+static void
+cadence_nand_prepare_data_size(struct mtd_info *mtd,
+ int transfer_type)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ u32 sec_size = 0, offset = 0, sec_cnt = 1;
+ u32 last_sec_size = cdns_chip->sector_size;
+ u32 data_ctrl_size = 0;
+ u32 reg = 0;
+
+ if (cadence->curr_trans_type == transfer_type)
+ return;
+
+ switch (transfer_type) {
+ case TT_MAIN_OOB_AREA_EXT:
+ sec_cnt = cdns_chip->sector_count;
+ sec_size = cdns_chip->sector_size;
+ data_ctrl_size = cdns_chip->avail_oob_size;
+ break;
+ case TT_MAIN_OOB_AREAS:
+ sec_cnt = cdns_chip->sector_count;
+ last_sec_size = cdns_chip->sector_size
+ + cdns_chip->avail_oob_size;
+ sec_size = cdns_chip->sector_size;
+ break;
+ case TT_RAW_PAGE:
+ last_sec_size = mtd->writesize + mtd->oobsize;
+ break;
+ case TT_BBM:
+ offset = mtd->writesize + cdns_chip->bbm_offs;
+ last_sec_size = 8;
+ break;
+ }
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
+ reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
+ writel_relaxed(reg, cadence->reg + TRAN_CFG_0);
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
+ reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
+ writel_relaxed(reg, cadence->reg + TRAN_CFG_1);
+
+ if (cadence->caps2.data_control_supp) {
+ reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL);
+ reg &= ~CONTROL_DATA_CTRL_SIZE;
+ reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
+ writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL);
+ }
+
+ cadence->curr_trans_type = transfer_type;
+}
+
+static int
+cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr,
+ int page, void *buf, void *ctrl_dat, u32 buf_size,
+ u32 ctrl_dat_size, enum dma_data_direction dir,
+ bool with_ecc)
+{
+ dma_addr_t dma_buf, dma_ctrl_dat = 0;
+ u8 thread_nr = chip_nr;
+ int status;
+ u16 ctype;
+
+ if (dir == DMA_FROM_DEVICE)
+ ctype = CDMA_CT_RD;
+ else
+ ctype = CDMA_CT_WR;
+
+ cadence_nand_set_ecc_enable(cadence, with_ecc);
+
+ dma_buf = dma_map_single(buf, buf_size, dir);
+ if (dma_mapping_error(cadence->dev, dma_buf)) {
+ dev_err(cadence->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+
+ if (ctrl_dat && ctrl_dat_size) {
+ dma_ctrl_dat = dma_map_single(ctrl_dat,
+ ctrl_dat_size, dir);
+ if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) {
+ dma_unmap_single(dma_buf,
+ buf_size, dir);
+ dev_err(cadence->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+ }
+
+ cadence_nand_cdma_desc_prepare(cadence, chip_nr, page,
+ dma_buf, dma_ctrl_dat, ctype);
+
+ status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
+
+ dma_unmap_single(dma_buf,
+ buf_size, dir);
+
+ if (ctrl_dat && ctrl_dat_size)
+ dma_unmap_single(dma_ctrl_dat,
+ ctrl_dat_size, dir);
+ if (status)
+ return status;
+
+ return cadence_nand_cdma_finish(cadence);
+}
+
+static void cadence_nand_set_timings(struct cadence_nand_info *cadence,
+ struct cadence_nand_timings *t)
+{
+ writel_relaxed(t->async_toggle_timings,
+ cadence->reg + ASYNC_TOGGLE_TIMINGS);
+ writel_relaxed(t->timings0, cadence->reg + TIMINGS0);
+ writel_relaxed(t->timings1, cadence->reg + TIMINGS1);
+ writel_relaxed(t->timings2, cadence->reg + TIMINGS2);
+
+ if (cadence->caps2.is_phy_type_dll)
+ writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL);
+
+ writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL);
+
+ if (cadence->caps2.is_phy_type_dll) {
+ writel_relaxed(0, cadence->reg + PHY_TSEL);
+ writel_relaxed(2, cadence->reg + PHY_DQ_TIMING);
+ writel_relaxed(t->phy_dqs_timing,
+ cadence->reg + PHY_DQS_TIMING);
+ writel_relaxed(t->phy_gate_lpbk_ctrl,
+ cadence->reg + PHY_GATE_LPBK_CTRL);
+ writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
+ cadence->reg + PHY_DLL_MASTER_CTRL);
+ writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL);
+ }
+}
+
+static int cadence_nand_select_target(struct cadence_nand_info *cadence, struct nand_chip *chip)
+{
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_set_timings(cadence, &cdns_chip->timings);
+
+ cadence_nand_set_ecc_strength(cadence,
+ cdns_chip->corr_str_idx);
+
+ cadence_nand_set_erase_detection(cadence, true,
+ chip->ecc.strength);
+
+ cadence->curr_trans_type = -1;
+
+ return 0;
+}
+
+static int cadence_nand_erase(struct mtd_info *mtd, int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int status;
+ u8 thread_nr = cdns_chip->cs[cadence->assigned_cs];
+
+ cadence_nand_cdma_desc_prepare(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, 0, 0,
+ CDMA_CT_ERASE);
+ status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
+ if (status) {
+ dev_err(cadence->dev, "erase operation failed\n");
+ return -EIO;
+ }
+
+ status = cadence_nand_cdma_finish(cadence);
+ if (status)
+ return status;
+
+ return 0;
+}
+
+static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ int ret;
+
+ /*
+ * If .size and .strength are already set (usually by DT),
+ * check if they are supported by this controller.
+ */
+ if (chip->ecc.size && chip->ecc.strength)
+ return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail);
+
+ /*
+ * We want .size and .strength closest to the chip's requirement
+ * unless NAND_ECC_MAXIMIZE is requested.
+ */
+ if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+ ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail);
+ if (!ret)
+ return 0;
+ }
+
+ /* Max ECC strength is the last thing we can do */
+ return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail);
+}
+
+static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf)
+{
+ int status;
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ cadence_nand_prepare_data_size(mtd, TT_BBM);
+
+ cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
+
+ /*
+ * Read only bad block marker from offset
+ * defined by a memory manufacturer.
+ */
+ status = cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, cadence->buf, NULL,
+ mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+ if (status) {
+ dev_err(cadence->dev, "read BBM failed\n");
+ return -EIO;
+ }
+
+ memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len);
+
+ return 0;
+}
+
+static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int oob_required, int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int status;
+ u16 marker_val = 0xFFFF;
+
+ cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
+ mtd->writesize
+ + cdns_chip->bbm_offs,
+ 1);
+
+ if (oob_required) {
+ marker_val = *(u16 *)(chip->oob_poi
+ + cdns_chip->bbm_offs);
+ } else {
+ /* Set oob data to 0xFF. */
+ memset(cadence->buf + mtd->writesize, 0xFF,
+ cdns_chip->avail_oob_size);
+ }
+
+ cadence_nand_set_skip_marker_val(cadence, marker_val);
+
+ cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
+
+ if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
+ cadence->caps2.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cadence->buf + mtd->writesize;
+
+ status = cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, (void *)buf, oob,
+ mtd->writesize,
+ cdns_chip->avail_oob_size,
+ DMA_TO_DEVICE, true);
+ if (status) {
+ dev_err(cadence->dev, "write page failed\n");
+ return -EIO;
+ }
+
+ return 0;
+ }
+
+ if (oob_required) {
+ /* Transfer the data to the oob area. */
+ memcpy(cadence->buf + mtd->writesize, chip->oob_poi,
+ cdns_chip->avail_oob_size);
+ }
+
+ memcpy(cadence->buf, buf, mtd->writesize);
+
+ cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
+
+ return cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, cadence->buf, NULL,
+ mtd->writesize
+ + cdns_chip->avail_oob_size,
+ 0, DMA_TO_DEVICE, true);
+}
+
+static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+
+ memset(cadence->buf, 0xFF, mtd->writesize);
+
+ return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page);
+}
+
+static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int oob_required, int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cadence->buf;
+ int oob_skip = cdns_chip->bbm_len;
+ size_t size = writesize + oobsize;
+ int i, pos, len;
+
+ /*
+ * Fill the buffer with 0xff first except the full page transfer.
+ * This simplifies the logic.
+ */
+ if (!buf || !oob_required)
+ memset(tmp_buf, 0xff, size);
+
+ cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
+
+ /* Arrange the buffer for syndrome payload/ecc layout. */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, buf, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(tmp_buf + writesize + oob_skip, buf,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ const u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+ (cdns_chip->sector_size + chip->ecc.bytes)
+ + cdns_chip->sector_size + oob_skip;
+
+ /* BBM at the beginning of the OOB area. */
+ memcpy(tmp_buf + writesize, oob, oob_skip);
+
+ /* OOB free. */
+ memcpy(tmp_buf + oob_data_offset, oob,
+ cdns_chip->avail_oob_size);
+ oob += cdns_chip->avail_oob_size;
+
+ /* OOB ECC. */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ if (i == (ecc_steps - 1))
+ pos += cdns_chip->avail_oob_size;
+
+ len = ecc_bytes;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, oob, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(tmp_buf + writesize + oob_skip, oob,
+ len);
+ oob += len;
+ }
+ }
+ }
+
+ cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
+
+ return cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, cadence->buf, NULL,
+ mtd->writesize +
+ mtd->oobsize,
+ 0, DMA_TO_DEVICE, false);
+}
+
+static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_write_page_raw(mtd, chip, NULL, true, page);
+}
+
+static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int status = 0;
+ int ecc_err_count = 0;
+
+ cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
+ mtd->writesize
+ + cdns_chip->bbm_offs, 1);
+
+ /*
+ * If data buffer can be accessed by DMA and data_control feature
+ * is supported then transfer data and oob directly.
+ */
+ if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
+ cadence->caps2.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cadence->buf + mtd->writesize;
+
+ cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
+ status = cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, buf, oob,
+ mtd->writesize,
+ cdns_chip->avail_oob_size,
+ DMA_FROM_DEVICE, true);
+ /* Otherwise use bounce buffer. */
+ } else {
+ cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
+ status = cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, cadence->buf,
+ NULL, mtd->writesize
+ + cdns_chip->avail_oob_size,
+ 0, DMA_FROM_DEVICE, true);
+
+ memcpy(buf, cadence->buf, mtd->writesize);
+ if (oob_required)
+ memcpy(chip->oob_poi,
+ cadence->buf + mtd->writesize,
+ mtd->oobsize);
+ }
+
+ switch (status) {
+ case STAT_ECC_UNCORR:
+ mtd->ecc_stats.failed++;
+ ecc_err_count++;
+ break;
+ case STAT_ECC_CORR:
+ ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
+ cadence->cdma_desc->status);
+ mtd->ecc_stats.corrected += ecc_err_count;
+ break;
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cadence->dev, "read page failed\n");
+ return -EIO;
+ }
+
+ if (oob_required)
+ if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi))
+ return -EIO;
+
+ return ecc_err_count;
+}
+
+static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+
+ return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page);
+}
+
+static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int oob_skip = cdns_chip->bbm_len;
+ int writesize = mtd->writesize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cadence->buf;
+ int i, pos, len;
+ int status = 0;
+
+ cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
+
+ cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
+ status = cadence_nand_cdma_transfer(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ page, cadence->buf, NULL,
+ mtd->writesize
+ + mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+
+ switch (status) {
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cadence->dev, "read raw page failed\n");
+ return -EIO;
+ }
+
+ /* Arrange the buffer for syndrome payload/ecc layout. */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(buf, tmp_buf + pos, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(buf, tmp_buf + writesize + oob_skip,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+ (cdns_chip->sector_size + chip->ecc.bytes)
+ + cdns_chip->sector_size + oob_skip;
+
+ /* OOB free. */
+ memcpy(oob, tmp_buf + oob_data_offset,
+ cdns_chip->avail_oob_size);
+
+ /* BBM at the beginning of the OOB area. */
+ memcpy(oob, tmp_buf + writesize, oob_skip);
+
+ oob += cdns_chip->avail_oob_size;
+
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
+
+ if (i == (ecc_steps - 1))
+ pos += cdns_chip->avail_oob_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(oob, tmp_buf + pos, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(oob, tmp_buf + writesize + oob_skip,
+ len);
+ oob += len;
+ }
+ }
+ }
+ return 0;
+}
+
+static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_read_page_raw(mtd, chip, NULL, true, page);
+}
+
+static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int status;
+ int len_in_words = len >> 2;
+
+ /* Wait until slave DMA interface is ready to data transfer. */
+ status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
+ if (status) {
+ pr_err("Wait on sdma failed:%x\n", status);
+ hang();
+ }
+
+ if (!cadence->caps1->has_dma) {
+ readsq(cadence->io.virt, buf, len_in_words);
+
+ if (sdma_size > len) {
+ memcpy(cadence->buf, buf + (len_in_words << 2),
+ len - (len_in_words << 2));
+ readsl(cadence->io.virt, cadence->buf,
+ sdma_size / 4 - len_in_words);
+ }
+ }
+}
+
+static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int status;
+ int len_in_words = len >> 2;
+
+ /* Wait until slave DMA interface is ready to data transfer. */
+ status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
+ if (status) {
+ pr_err("Wait on sdma failed:%x\n", status);
+ hang();
+ }
+
+ if (!cadence->caps1->has_dma) {
+ writesq(cadence->io.virt, buf, len_in_words);
+
+ if (sdma_size > len) {
+ memcpy(cadence->buf, buf + (len_in_words << 2),
+ len - (len_in_words << 2));
+ writesl(cadence->io.virt, cadence->buf,
+ sdma_size / 4 - len_in_words);
+ }
+ }
+}
+
+static int cadence_nand_cmd_opcode(struct cadence_nand_info *cadence, unsigned int op_id)
+{
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(&cadence->selected_chip);
+ u64 mini_ctrl_cmd = 0;
+ int ret;
+
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id);
+
+ ret = cadence_nand_generic_cmd_send(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ mini_ctrl_cmd);
+
+ if (ret)
+ dev_err(cadence->dev, "send cmd %x failed\n",
+ op_id);
+
+ return ret;
+}
+
+static int cadence_nand_cmd_address(struct cadence_nand_info *cadence,
+ unsigned int naddrs, const u8 *addrs)
+{
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(&cadence->selected_chip);
+ u64 address = 0;
+ u64 mini_ctrl_cmd = 0;
+ int ret;
+ int i;
+
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_ADDR);
+
+ for (i = 0; i < naddrs; i++)
+ address |= (u64)addrs[i] << (8 * i);
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
+ address);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
+ naddrs - 1);
+
+ ret = cadence_nand_generic_cmd_send(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ mini_ctrl_cmd);
+
+ if (ret)
+ pr_err("send address %llx failed\n", address);
+
+ return ret;
+}
+
+static int cadence_nand_cmd_data(struct cadence_nand_info *cadence,
+ unsigned int len, u8 mode)
+{
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(&cadence->selected_chip);
+ u64 mini_ctrl_cmd = 0;
+ int ret;
+
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_DATA);
+
+ if (mode)
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE);
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
+
+ ret = cadence_nand_generic_cmd_send(cadence,
+ cdns_chip->cs[cadence->assigned_cs],
+ mini_ctrl_cmd);
+
+ if (ret) {
+ pr_err("send generic data cmd failed\n");
+ return ret;
+ }
+
+ return ret;
+}
+
+static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(&cadence->selected_chip);
+ int status;
+
+ status = cadence_nand_wait_for_value(cadence, RBN_SETINGS,
+ TIMEOUT_US,
+ BIT(cdns_chip->cs[cadence->assigned_cs]),
+ false);
+ return status;
+}
+
+static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_chip->bbm_len;
+ oobregion->length = cdns_chip->avail_oob_size
+ - cdns_chip->bbm_len;
+
+ return 0;
+}
+
+static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_chip->avail_oob_size;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
+ .rfree = cadence_nand_ooblayout_free,
+ .ecc = cadence_nand_ooblayout_ecc,
+};
+
+static int calc_cycl(u32 timing, u32 clock)
+{
+ if (timing == 0 || clock == 0)
+ return 0;
+
+ if ((timing % clock) > 0)
+ return timing / clock;
+ else
+ return timing / clock - 1;
+}
+
+/* Calculate max data valid window. */
+static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+ u32 board_delay_skew_min, u32 ext_mode)
+{
+ if (ext_mode == 0)
+ clk_period /= 2;
+
+ return (trp_cnt + 1) * clk_period + trhoh_min +
+ board_delay_skew_min;
+}
+
+/* Calculate data valid window. */
+static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+ u32 trea_max, u32 ext_mode)
+{
+ if (ext_mode == 0)
+ clk_period /= 2;
+
+ return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
+}
+
+static inline int of_get_child_count(const ofnode node)
+{
+ return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
+}
+
+static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd));
+ const struct nand_sdr_timings *sdr;
+ struct cadence_nand_timings *t = &cdns_chip->timings;
+ u32 reg;
+ u32 board_delay = cadence->board_delay;
+ u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
+ cadence->nf_clk_rate);
+ u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
+ u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
+ u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
+ u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
+ u32 if_skew = cadence->caps1->if_skew;
+ u32 board_delay_skew_min = board_delay - if_skew;
+ u32 board_delay_skew_max = board_delay + if_skew;
+ u32 dqs_sampl_res, phony_dqs_mod;
+ u32 tdvw, tdvw_min, tdvw_max;
+ u32 ext_rd_mode, ext_wr_mode;
+ u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
+ u32 sampling_point;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ memset(t, 0, sizeof(*t));
+ /* Sampling point calculation. */
+ if (cadence->caps2.is_phy_type_dll)
+ phony_dqs_mod = 2;
+ else
+ phony_dqs_mod = 1;
+
+ dqs_sampl_res = clk_period / phony_dqs_mod;
+
+ tdvw_min = sdr->tREA_max + board_delay_skew_max;
+ /*
+ * The idea of those calculation is to get the optimum value
+ * for tRP and tRH timings. If it is NOT possible to sample data
+ * with optimal tRP/tRH settings, the parameters will be extended.
+ * If clk_period is 50ns (the lowest value) this condition is met
+ * for SDR timing modes 1, 2, 3, 4 and 5.
+ * If clk_period is 20ns the condition is met only for SDR timing
+ * mode 5.
+ */
+ if (sdr->tRC_min <= clk_period &&
+ sdr->tRP_min <= (clk_period / 2) &&
+ sdr->tREH_min <= (clk_period / 2)) {
+ /* Performance mode. */
+ ext_rd_mode = 0;
+ tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+ sdr->tREA_max, ext_rd_mode);
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
+ board_delay_skew_min,
+ ext_rd_mode);
+ /*
+ * Check if data valid window and sampling point can be found
+ * and is not on the edge (ie. we have hold margin).
+ * If not extend the tRP timings.
+ */
+ if (tdvw > 0) {
+ if (tdvw_max <= tdvw_min ||
+ (tdvw_max % dqs_sampl_res) == 0) {
+ /*
+ * No valid sampling point so the RE pulse need
+ * to be widen widening by half clock cycle.
+ */
+ ext_rd_mode = 1;
+ }
+ } else {
+ /*
+ * There is no valid window
+ * to be able to sample data the tRP need to be widen.
+ * Very safe calculations are performed here.
+ */
+ trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ + dqs_sampl_res) / clk_period;
+ ext_rd_mode = 1;
+ }
+
+ } else {
+ /* Extended read mode. */
+ u32 trh;
+
+ ext_rd_mode = 1;
+ trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
+ trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
+ if (sdr->tREH_min >= trh)
+ trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
+ else
+ trh_cnt = calc_cycl(trh, clk_period);
+
+ tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+ sdr->tREA_max, ext_rd_mode);
+ /*
+ * Check if data valid window and sampling point can be found
+ * or if it is at the edge check if previous is valid
+ * - if not extend the tRP timings.
+ */
+ if (tdvw > 0) {
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+ sdr->tRHOH_min,
+ board_delay_skew_min,
+ ext_rd_mode);
+
+ if ((((tdvw_max / dqs_sampl_res)
+ * dqs_sampl_res) <= tdvw_min) ||
+ (((tdvw_max % dqs_sampl_res) == 0) &&
+ (((tdvw_max / dqs_sampl_res - 1)
+ * dqs_sampl_res) <= tdvw_min))) {
+ /*
+ * Data valid window width is lower than
+ * sampling resolution and do not hit any
+ * sampling point to be sure the sampling point
+ * will be found the RE low pulse width will be
+ * extended by one clock cycle.
+ */
+ trp_cnt = trp_cnt + 1;
+ }
+ } else {
+ /*
+ * There is no valid window to be able to sample data.
+ * The tRP need to be widen.
+ * Very safe calculations are performed here.
+ */
+ trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ + dqs_sampl_res) / clk_period;
+ }
+ }
+
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+ sdr->tRHOH_min,
+ board_delay_skew_min, ext_rd_mode);
+
+ if (sdr->tWC_min <= clk_period &&
+ (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
+ (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
+ ext_wr_mode = 0;
+ } else {
+ u32 twh;
+
+ ext_wr_mode = 1;
+ twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
+ if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
+ twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
+ clk_period);
+
+ twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
+ if (sdr->tWH_min >= twh)
+ twh = sdr->tWH_min;
+
+ twh_cnt = calc_cycl(twh + if_skew, clk_period);
+ }
+
+ reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
+ t->async_toggle_timings = reg;
+ dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
+
+ tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
+ tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
+ twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
+ trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
+ reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
+
+ /*
+ * If timing exceeds delay field in timing register
+ * then use maximum value.
+ */
+ if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
+ reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
+ else
+ reg |= TIMINGS0_TCCS;
+
+ reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
+ reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
+ t->timings0 = reg;
+ dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg);
+
+ /* The following is related to single signal so skew is not needed. */
+ trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
+ trhz_cnt = trhz_cnt + 1;
+ twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
+ /*
+ * Because of the two stage syncflop the value must be increased by 3
+ * first value is related with sync, second value is related
+ * with output if delay.
+ */
+ twb_cnt = twb_cnt + 3 + 5;
+ /*
+ * The following is related to the we edge of the random data input
+ * sequence so skew is not needed.
+ */
+ tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
+ reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
+ t->timings1 = reg;
+ dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg);
+
+ tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
+ if (tfeat_cnt < twb_cnt)
+ tfeat_cnt = twb_cnt;
+
+ tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
+ tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
+
+ reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
+ t->timings2 = reg;
+ dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg);
+
+ if (cadence->caps2.is_phy_type_dll) {
+ reg = DLL_PHY_CTRL_DLL_RST_N;
+ if (ext_wr_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
+ if (ext_rd_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
+
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
+ t->dll_phy_ctrl = reg;
+ dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
+ }
+
+ /* Sampling point calculation. */
+ if ((tdvw_max % dqs_sampl_res) > 0)
+ sampling_point = tdvw_max / dqs_sampl_res;
+ else
+ sampling_point = (tdvw_max / dqs_sampl_res - 1);
+
+ if (sampling_point * dqs_sampl_res > tdvw_min) {
+ dll_phy_dqs_timing =
+ FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
+ dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
+ phony_dqs_timing = sampling_point / phony_dqs_mod;
+
+ if ((sampling_point % 2) > 0) {
+ dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
+ if ((tdvw_max % dqs_sampl_res) == 0)
+ /*
+ * Calculation for sampling point at the edge
+ * of data and being odd number.
+ */
+ phony_dqs_timing = (tdvw_max / dqs_sampl_res)
+ / phony_dqs_mod - 1;
+
+ if (!cadence->caps2.is_phy_type_dll)
+ phony_dqs_timing--;
+
+ } else {
+ phony_dqs_timing--;
+ }
+ rd_del_sel = phony_dqs_timing + 3;
+ } else {
+ dev_warn(cadence->dev,
+ "ERROR : cannot find valid sampling point\n");
+ }
+
+ reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
+ if (cadence->caps2.is_phy_type_dll)
+ reg |= PHY_CTRL_SDR_DQS;
+ t->phy_ctrl = reg;
+ dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
+
+ if (cadence->caps2.is_phy_type_dll) {
+ dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
+ dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
+ dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
+ dll_phy_dqs_timing);
+ t->phy_dqs_timing = dll_phy_dqs_timing;
+
+ reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
+ dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
+ reg);
+ t->phy_gate_lpbk_ctrl = reg;
+
+ dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
+ PHY_DLL_MASTER_CTRL_BYPASS_MODE);
+ dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
+ }
+ return 0;
+}
+
+static int cadence_nand_attach_chip(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ static struct nand_ecclayout nand_oob;
+ u32 ecc_size;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ ret = cadence_nand_set_access_width16(cadence, true);
+ if (ret)
+ return ret;
+ }
+
+ chip->bbt_options |= NAND_BBT_USE_FLASH;
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+ chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ cdns_chip->bbm_offs = chip->badblockpos;
+ cdns_chip->bbm_offs &= ~0x01;
+ /* this value should be even number */
+ cdns_chip->bbm_len = 2;
+
+ ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len);
+ if (ret) {
+ dev_err(cadence->dev, "ECC configuration failed\n");
+ return ret;
+ }
+
+ dev_dbg(cadence->dev,
+ "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+ chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+ /* Error correction configuration. */
+ cdns_chip->sector_size = chip->ecc.size;
+ cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
+ ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
+
+ cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
+
+ if (cdns_chip->avail_oob_size > cadence->bch_metadata_size)
+ cdns_chip->avail_oob_size = cadence->bch_metadata_size;
+
+ if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
+ > mtd->oobsize)
+ cdns_chip->avail_oob_size -= 4;
+
+ ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength);
+ if (ret < 0)
+ return -EINVAL;
+
+ cdns_chip->corr_str_idx = (u8)ret;
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_set_ecc_strength(cadence,
+ cdns_chip->corr_str_idx);
+
+ cadence_nand_set_erase_detection(cadence, true,
+ chip->ecc.strength);
+
+ dev_dbg(cadence->dev,
+ "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+ chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+ /* Override the default read operations. */
+ chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
+ chip->ecc.read_page = cadence_nand_read_page;
+ chip->ecc.read_page_raw = cadence_nand_read_page_raw;
+ chip->ecc.write_page = cadence_nand_write_page;
+ chip->ecc.write_page_raw = cadence_nand_write_page_raw;
+ chip->ecc.read_oob = cadence_nand_read_oob;
+ chip->ecc.write_oob = cadence_nand_write_oob;
+ chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
+ chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
+ chip->erase = cadence_nand_erase;
+
+ if ((mtd->writesize + mtd->oobsize) > cadence->buf_size)
+ cadence->buf_size = mtd->writesize + mtd->oobsize;
+
+ mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
+
+ nand_oob.eccbytes = cadence->selected_chip.ecc.bytes;
+ cadence->selected_chip.ecc.layout = &nand_oob;
+
+ return 0;
+}
+
+/* Dummy implementation: we don't support multiple chips */
+static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ switch (chipnr) {
+ case -1:
+ case 0:
+ break;
+
+ default:
+ WARN_ON(chipnr);
+ }
+}
+
+static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int offset_in_page, int page)
+{
+}
+
+static int cadence_nand_dev_ready(struct mtd_info *mtd)
+{
+ struct cadence_nand_info *cadence = mtd_to_cadence(mtd);
+
+ if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
+ TIMEOUT_US,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static u8 cadence_nand_read_byte(struct mtd_info *mtd)
+{
+ return 0;
+}
+
+static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte)
+{
+ cadence_nand_write_buf(mtd, &byte, 1);
+}
+
+static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node)
+{
+ struct cdns_nand_chip *cdns_chip;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int ret, i;
+ int nsels;
+ u32 cs;
+
+ if (!ofnode_get_property(node, "reg", &nsels))
+ return -ENODEV;
+
+ nsels /= sizeof(u32);
+ if (nsels <= 0) {
+ dev_err(cadence->dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) +
+ (nsels * sizeof(u8)), GFP_KERNEL);
+ if (!cdns_chip)
+ return -ENODEV;
+
+ cdns_chip->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ /* Retrieve CS id. */
+ ret = ofnode_read_u32_index(node, "reg", i, &cs);
+ if (ret) {
+ dev_err(cadence->dev,
+ "could not retrieve reg property: %d\n",
+ ret);
+ goto free_buf;
+ }
+
+ if (cs >= cadence->caps2.max_banks) {
+ dev_err(cadence->dev,
+ "invalid reg value: %u (max CS = %d)\n",
+ cs, cadence->caps2.max_banks);
+ ret = -EINVAL;
+ goto free_buf;
+ }
+
+ if (test_and_set_bit(cs, &cadence->assigned_cs)) {
+ dev_err(cadence->dev,
+ "CS %d already assigned\n", cs);
+ ret = -EINVAL;
+ goto free_buf;
+ }
+
+ cdns_chip->cs[i] = cs;
+ }
+
+ cadence->selected_chip = cdns_chip->chip;
+ chip = &cadence->selected_chip;
+ mtd = nand_to_mtd(chip);
+ nand_set_flash_node(chip, node);
+ chip->options |= NAND_BUSWIDTH_AUTO;
+
+ chip->select_chip = cadence_nand_select_chip;
+ chip->cmdfunc = cadence_nand_cmdfunc;
+ chip->dev_ready = cadence_nand_dev_ready;
+ chip->read_byte = cadence_nand_read_byte;
+ chip->write_byte = cadence_nand_write_byte;
+ chip->waitfunc = cadence_nand_waitfunc;
+ chip->read_buf = cadence_nand_read_buf;
+ chip->write_buf = cadence_nand_write_buf;
+ chip->setup_data_interface = cadence_setup_data_interface;
+
+ ret = nand_scan_ident(mtd, 1, NULL);
+ if (ret) {
+ dev_err(cadence->dev, "Chip identification failure\n");
+ goto free_buf;
+ }
+
+ ret = cadence_nand_attach_chip(mtd, chip);
+ if (ret) {
+ dev_err(cadence->dev, "Chip not able to attached\n");
+ goto free_buf;
+ }
+
+ ret = nand_scan_tail(mtd);
+ if (ret) {
+ dev_err(cadence->dev, "could not scan the nand chip\n");
+ goto free_buf;
+ }
+
+ ret = nand_register(0, mtd);
+ if (ret) {
+ dev_err(cadence->dev, "Failed to register MTD: %d\n", ret);
+ goto free_buf;
+ }
+
+free_buf:
+ devm_kfree(cadence->dev, cdns_chip);
+ return ret;
+}
+
+static int cadence_nand_chips_init(struct cadence_nand_info *cadence)
+{
+ struct udevice *dev = cadence->dev;
+ ofnode node = dev_ofnode(dev);
+ ofnode nand_node;
+ int max_cs = cadence->caps2.max_banks;
+ int nchips, ret;
+
+ nchips = of_get_child_count(node);
+
+ if (nchips > max_cs) {
+ dev_err(cadence->dev,
+ "too many NAND chips: %d (max = %d CS)\n",
+ nchips, max_cs);
+ return -EINVAL;
+ }
+
+ ofnode_for_each_subnode(nand_node, node) {
+ ret = cadence_nand_chip_init(cadence, nand_node);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int cadence_nand_init(struct cadence_nand_info *cadence)
+{
+ int ret;
+
+ cadence->cdma_desc = dma_alloc_coherent(sizeof(struct cadence_nand_cdma_desc),
+ (unsigned long *)&cadence->dma_cdma_desc);
+ if (!cadence->cdma_desc)
+ return -ENOMEM;
+
+ cadence->buf_size = SZ_16K;
+ cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL);
+ if (!cadence->buf) {
+ ret = -ENOMEM;
+ goto free_buf_desc;
+ }
+
+ //Hardware initialization
+ ret = cadence_nand_hw_init(cadence);
+ if (ret)
+ goto free_buf;
+
+ cadence->curr_corr_str_idx = 0xFF;
+
+ ret = cadence_nand_chips_init(cadence);
+ if (ret) {
+ dev_err(cadence->dev, "Failed to register MTD: %d\n",
+ ret);
+ goto free_buf;
+ }
+
+ kfree(cadence->buf);
+ cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL);
+ if (!cadence->buf) {
+ ret = -ENOMEM;
+ goto free_buf_desc;
+ }
+
+ return 0;
+
+free_buf:
+ kfree(cadence->buf);
+
+free_buf_desc:
+ dma_free_coherent(cadence->cdma_desc);
+
+ return ret;
+}
+
+static const struct cadence_nand_dt_devdata cadence_nand_default = {
+ .if_skew = 0,
+ .has_dma = 0,
+};
+
+static const struct udevice_id cadence_nand_dt_ids[] = {
+ {
+ .compatible = "cdns,nand",
+ .data = (unsigned long)&cadence_nand_default
+ }, {}
+};
+
+static int cadence_nand_dt_probe(struct udevice *dev)
+{
+ struct cadence_nand_info *cadence = dev_get_priv(dev);
+ const struct udevice_id *of_id;
+ const struct cadence_nand_dt_devdata *devdata;
+ struct resource res;
+ int ret;
+ u32 val;
+
+ if (!dev) {
+ dev_warn(dev, "Device ptr null\n");
+ return -EINVAL;
+ }
+
+ of_id = &cadence_nand_dt_ids[0];
+ devdata = (struct cadence_nand_dt_devdata *)of_id->data;
+
+ cadence->caps1 = devdata;
+ cadence->dev = dev;
+
+ ret = clk_get_by_index(dev, 0, &cadence->clk);
+ if (ret)
+ return ret;
+
+ ret = clk_enable(&cadence->clk);
+ if (ret && ret != -ENOSYS && ret != -ENOMEM) {
+ clk_free(&cadence->clk);
+ dev_err(dev, "failed to enable clock\n");
+ return ret;
+ }
+ cadence->nf_clk_rate = clk_get_rate(&cadence->clk);
+
+ ret = reset_get_by_index(dev, 1, &cadence->softphy_reset);
+ if (ret) {
+ if (ret != -ENOMEM)
+ dev_warn(dev, "Can't get softphy_reset: %d\n", ret);
+ } else {
+ reset_deassert(&cadence->softphy_reset);
+ }
+
+ ret = reset_get_by_index(dev, 0, &cadence->nand_reset);
+ if (ret) {
+ if (ret != -ENOMEM)
+ dev_warn(dev, "Can't get nand_reset: %d\n", ret);
+ } else {
+ reset_deassert(&cadence->nand_reset);
+ }
+
+ ret = dev_read_resource_byname(dev, "reg", &res);
+ if (ret)
+ return ret;
+ cadence->reg = devm_ioremap(dev, res.start, resource_size(&res));
+
+ ret = dev_read_resource_byname(dev, "sdma", &res);
+ if (ret)
+ return ret;
+ cadence->io.dma = res.start;
+ cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res));
+
+ ret = ofnode_read_u32(dev_ofnode(dev->parent),
+ "cdns,board-delay-ps", &val);
+ if (ret) {
+ val = 4830;
+ dev_info(cadence->dev,
+ "missing cdns,board-delay-ps property, %d was set\n",
+ val);
+ }
+ cadence->board_delay = val;
+
+ ret = cadence_nand_init(cadence);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+U_BOOT_DRIVER(cadence_nand_dt) = {
+ .name = "cadence-nand-dt",
+ .id = UCLASS_MTD,
+ .of_match = cadence_nand_dt_ids,
+ .probe = cadence_nand_dt_probe,
+ .priv_auto = sizeof(struct cadence_nand_info),
+};
+
+void board_nand_init(void)
+{
+ struct udevice *dev;
+ int ret;
+
+ ret = uclass_get_device_by_driver(UCLASS_MTD,
+ DM_DRIVER_GET(cadence_nand_dt),
+ &dev);
+ if (ret && ret != -ENODEV)
+ pr_err("Failed to initialize Cadence NAND controller. (error %d)\n",
+ ret);
+}
diff --git a/include/cadence-nand.h b/include/cadence-nand.h
new file mode 100644
index 0000000000..101f60ce0e
--- /dev/null
+++ b/include/cadence-nand.h
@@ -0,0 +1,526 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ *
+ * Author: Piotr Sroka <piotrs at cadence.com>
+ *
+ */
+
+#ifndef _CADENCE_NAND_H_
+#define _CADENCE_NAND_H_
+#include <clk.h>
+#include <reset.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+
+/*
+ * HPNFC can work in 3 modes:
+ * - PIO - can work in master or slave DMA
+ * - CDMA - needs Master DMA for accessing command descriptors.
+ * - Generic mode - can use only slave DMA.
+ * CDMA and PIO modes can be used to execute only base commands.
+ * CDMA and PIO modes can be used to execute only base commands.
+ * Generic mode can be used to execute any command
+ * on NAND flash memory. Driver uses CDMA mode for
+ * block erasing, page reading, page programing.
+ * Generic mode is used for executing rest of commands.
+ */
+
+#define DMA_DATA_SIZE_ALIGN 8
+
+/* Register definition. */
+/*
+ * Command register 0.
+ * Writing data to this register will initiate a new transaction
+ * of the NF controller.
+ */
+#define CMD_REG0 0x0000
+/* Command type field mask. */
+#define CMD_REG0_CT GENMASK(31, 30)
+/* Command type CDMA. */
+#define CMD_REG0_CT_CDMA 0uL
+/* Command type generic. */
+#define CMD_REG0_CT_GEN 3uL
+/* Command thread number field mask. */
+#define CMD_REG0_TN GENMASK(27, 24)
+
+/* Command register 2. */
+#define CMD_REG2 0x0008
+/* Command register 3. */
+#define CMD_REG3 0x000C
+/* Pointer register to select which thread status will be selected. */
+#define CMD_STATUS_PTR 0x0010
+/* Command status register for selected thread. */
+#define CMD_STATUS 0x0014
+
+/* Interrupt status register. */
+#define INTR_STATUS 0x0110
+#define INTR_STATUS_SDMA_ERR BIT(22)
+#define INTR_STATUS_SDMA_TRIGG BIT(21)
+#define INTR_STATUS_UNSUPP_CMD BIT(19)
+#define INTR_STATUS_DDMA_TERR BIT(18)
+#define INTR_STATUS_CDMA_TERR BIT(17)
+#define INTR_STATUS_CDMA_IDL BIT(16)
+
+/* Interrupt enable register. */
+#define INTR_ENABLE 0x0114
+#define INTR_ENABLE_INTR_EN BIT(31)
+
+/* Controller internal state. */
+#define CTRL_STATUS 0x0118
+#define CTRL_STATUS_INIT_COMP BIT(9)
+#define CTRL_STATUS_CTRL_BUSY BIT(8)
+
+/* Command Engine threads state. */
+#define TRD_STATUS 0x0120
+
+/* Command Engine interrupt thread error status. */
+#define TRD_ERR_INT_STATUS 0x0128
+/* Command Engine interrupt thread error enable. */
+#define TRD_ERR_INT_STATUS_EN 0x0130
+/* Command Engine interrupt thread complete status. */
+#define TRD_COMP_INT_STATUS 0x0138
+
+/*
+ * Transfer config 0 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_0 0x0400
+/* Offset value from the beginning of the page. */
+#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
+/* Numbers of sectors to transfer within singlNF device's page. */
+#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
+
+/*
+ * Transfer config 1 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_1 0x0404
+/* Size of last data sector. */
+#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
+/* Size of not-last data sector. */
+#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
+
+/* ECC engine configuration register 0. */
+#define ECC_CONFIG_0 0x0428
+/* Correction strength. */
+#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
+/* Enable erased pages detection mechanism. */
+#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
+/* Enable controller ECC check bits generation and correction. */
+#define ECC_CONFIG_0_ECC_EN BIT(0)
+
+/* ECC engine configuration register 1. */
+#define ECC_CONFIG_1 0x042C
+
+/* Multiplane settings register. */
+#define MULTIPLANE_CFG 0x0434
+/* Cache operation settings. */
+#define CACHE_CFG 0x0438
+
+/* Transferred data block size for the slave DMA module. */
+#define SDMA_SIZE 0x0440
+
+/* Thread number associated with transferred data block
+ * for the slave DMA module.
+ */
+#define SDMA_TRD_NUM 0x0444
+/* Thread number mask. */
+#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
+
+#define CONTROL_DATA_CTRL 0x0494
+/* Thread number mask. */
+#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
+
+#define CTRL_VERSION 0x800
+#define CTRL_VERSION_REV GENMASK(7, 0)
+
+/* Available hardware features of the controller. */
+#define CTRL_FEATURES 0x804
+/* Support for NV-DDR2/3 work mode. */
+#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
+/* Support for NV-DDR work mode. */
+#define CTRL_FEATURES_NVDDR BIT(27)
+/* Support for asynchronous work mode. */
+#define CTRL_FEATURES_ASYNC BIT(26)
+/* Support for asynchronous work mode. */
+#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
+/* Slave and Master DMA data width. */
+#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
+/* Availability of Control Data feature.*/
+#define CTRL_FEATURES_CONTROL_DATA BIT(10)
+
+/* BCH Engine identification register 0 - correction strengths. */
+#define BCH_CFG_0 0x838
+#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
+#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
+#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
+#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
+
+/* BCH Engine identification register 1 - correction strengths. */
+#define BCH_CFG_1 0x83C
+#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
+#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
+#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
+#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
+
+/* BCH Engine identification register 2 - sector sizes. */
+#define BCH_CFG_2 0x840
+#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
+#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
+
+/* BCH Engine identification register 3. */
+#define BCH_CFG_3 0x844
+#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
+
+/* Ready/Busy# line status. */
+#define RBN_SETINGS 0x1004
+
+/* Common settings. */
+#define COMMON_SET 0x1008
+/* 16 bit device connected to the NAND Flash interface. */
+#define COMMON_SET_DEVICE_16BIT BIT(8)
+
+/* Skip_bytes registers. */
+#define SKIP_BYTES_CONF 0x100C
+#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
+#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
+
+#define SKIP_BYTES_OFFSET 0x1010
+#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
+
+/* Timings configuration. */
+#define ASYNC_TOGGLE_TIMINGS 0x101c
+#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
+#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
+#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
+#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
+
+#define TIMINGS0 0x1024
+#define TIMINGS0_TADL GENMASK(31, 24)
+#define TIMINGS0_TCCS GENMASK(23, 16)
+#define TIMINGS0_TWHR GENMASK(15, 8)
+#define TIMINGS0_TRHW GENMASK(7, 0)
+
+#define TIMINGS1 0x1028
+#define TIMINGS1_TRHZ GENMASK(31, 24)
+#define TIMINGS1_TWB GENMASK(23, 16)
+#define TIMINGS1_TVDLY GENMASK(7, 0)
+
+#define TIMINGS2 0x102c
+#define TIMINGS2_TFEAT GENMASK(25, 16)
+#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
+#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
+
+/* Configuration of the resynchronization of slave DLL of PHY. */
+#define DLL_PHY_CTRL 0x1034
+#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
+#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
+#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
+#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
+#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
+
+/* TODO: - Identify better way to handle PHY address */
+#define PHY_OFFSET 0x10000
+
+/* Register controlling DQ related timing. */
+#define PHY_DQ_TIMING PHY_OFFSET + 0x2000
+/* Register controlling DSQ related timing. */
+#define PHY_DQS_TIMING PHY_OFFSET + 0x2004
+#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
+#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
+#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
+
+/* Register controlling the gate and loopback control related timing. */
+#define PHY_GATE_LPBK_CTRL PHY_OFFSET + 0x2008
+#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
+
+/* Register holds the control for the master DLL logic. */
+#define PHY_DLL_MASTER_CTRL PHY_OFFSET + 0x200C
+#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
+
+/* Register holds the control for the slave DLL logic. */
+#define PHY_DLL_SLAVE_CTRL PHY_OFFSET + 0x2010
+
+/* This register handles the global control settings for the PHY. */
+#define PHY_CTRL PHY_OFFSET + 0x2080
+#define PHY_CTRL_SDR_DQS BIT(14)
+#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
+
+/*
+ * This register handles the global control settings
+ * for the termination selects for reads.
+ */
+#define PHY_TSEL PHY_OFFSET + 0x2084
+
+/* Generic command layout. */
+#define GCMD_LAY_CS GENMASK_ULL(11, 8)
+/*
+ * This bit informs the minicotroller if it has to wait for tWB
+ * after sending the last CMD/ADDR/DATA in the sequence.
+ */
+#define GCMD_LAY_TWB BIT_ULL(6)
+/* Type of generic instruction. */
+#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
+
+/* Generic CMD sequence type. */
+#define GCMD_LAY_INSTR_CMD 0
+/* Generic ADDR sequence type. */
+#define GCMD_LAY_INSTR_ADDR 1
+/* Generic data transfer sequence type. */
+#define GCMD_LAY_INSTR_DATA 2
+
+/* Input part of generic command type of input is command. */
+#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
+
+/* Generic command address sequence - address fields. */
+#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
+/* Generic command address sequence - address size. */
+#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
+
+/* Transfer direction field of generic command data sequence. */
+#define GCMD_DIR BIT_ULL(11)
+/* Read transfer direction of generic command data sequence. */
+#define GCMD_DIR_READ 0
+/* Write transfer direction of generic command data sequence. */
+#define GCMD_DIR_WRITE 1
+
+/* ECC enabled flag of generic command data sequence - ECC enabled. */
+#define GCMD_ECC_EN BIT_ULL(12)
+/* Generic command data sequence - sector size. */
+#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
+/* Generic command data sequence - sector count. */
+#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
+/* Generic command data sequence - last sector size. */
+#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
+
+/* CDMA descriptor fields. */
+/* Erase command type of CDMA descriptor. */
+#define CDMA_CT_ERASE 0x1000
+/* Program page command type of CDMA descriptor. */
+#define CDMA_CT_WR 0x2100
+/* Read page command type of CDMA descriptor. */
+#define CDMA_CT_RD 0x2200
+
+/* Flash pointer memory shift. */
+#define CDMA_CFPTR_MEM_SHIFT 24
+/* Flash pointer memory mask. */
+#define CDMA_CFPTR_MEM GENMASK(26, 24)
+
+/*
+ * Command DMA descriptor flags. If set causes issue interrupt after
+ * the completion of descriptor processing.
+ */
+#define CDMA_CF_INT BIT(8)
+/*
+ * Command DMA descriptor flags - the next descriptor
+ * address field is valid and descriptor processing should continue.
+ */
+#define CDMA_CF_CONT BIT(9)
+/* DMA master flag of command DMA descriptor. */
+#define CDMA_CF_DMA_MASTER BIT(10)
+
+/* Operation complete status of command descriptor. */
+#define CDMA_CS_COMP BIT(15)
+/* Operation complete status of command descriptor. */
+/* Command descriptor status - operation fail. */
+#define CDMA_CS_FAIL BIT(14)
+/* Command descriptor status - page erased. */
+#define CDMA_CS_ERP BIT(11)
+/* Command descriptor status - timeout occurred. */
+#define CDMA_CS_TOUT BIT(10)
+/*
+ * Maximum amount of correction applied to one ECC sector.
+ * It is part of command descriptor status.
+ */
+#define CDMA_CS_MAXERR GENMASK(9, 2)
+/* Command descriptor status - uncorrectable ECC error. */
+#define CDMA_CS_UNCE BIT(1)
+/* Command descriptor status - descriptor error. */
+#define CDMA_CS_ERR BIT(0)
+
+/* Status of operation - OK. */
+#define STAT_OK 0
+/* Status of operation - FAIL. */
+#define STAT_FAIL 2
+/* Status of operation - uncorrectable ECC error. */
+#define STAT_ECC_UNCORR 3
+/* Status of operation - page erased. */
+#define STAT_ERASED 5
+/* Status of operation - correctable ECC error. */
+#define STAT_ECC_CORR 6
+/* Status of operation - unsuspected state. */
+#define STAT_UNKNOWN 7
+/* Status of operation - operation is not completed yet. */
+#define STAT_BUSY 0xFF
+
+#define BCH_MAX_NUM_CORR_CAPS 8
+#define BCH_MAX_NUM_SECTOR_SIZES 2
+
+#define ONE_CYCLE 1
+#define TIMEOUT_US 1000000
+
+struct cadence_nand_timings {
+ u32 async_toggle_timings;
+ u32 timings0;
+ u32 timings1;
+ u32 timings2;
+ u32 dll_phy_ctrl;
+ u32 phy_ctrl;
+ u32 phy_dqs_timing;
+ u32 phy_gate_lpbk_ctrl;
+};
+
+/* Command DMA descriptor. */
+struct cadence_nand_cdma_desc {
+ /* Next descriptor address. */
+ u64 next_pointer;
+
+ /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
+ u32 flash_pointer;
+ /*field appears in HPNFC version 13*/
+ u16 bank;
+ u16 rsvd0;
+
+ /* Operation the controller needs to perform. */
+ u16 command_type;
+ u16 rsvd1;
+ /* Flags for operation of this command. */
+ u16 command_flags;
+ u16 rsvd2;
+
+ /* System/host memory address required for data DMA commands. */
+ u64 memory_pointer;
+
+ /* Status of operation. */
+ u32 status;
+ u32 rsvd3;
+
+ /* Address pointer to sync buffer location. */
+ u64 sync_flag_pointer;
+
+ /* Controls the buffer sync mechanism. */
+ u32 sync_arguments;
+ u32 rsvd4;
+
+ /* Control data pointer. */
+ u64 ctrl_data_ptr;
+};
+
+/* Interrupt status. */
+struct cadence_nand_irq_status {
+ /* Thread operation complete status. */
+ u32 trd_status;
+ /* Thread operation error. */
+ u32 trd_error;
+ /* Controller status. */
+ u32 status;
+};
+
+/* Cadence NAND flash controller capabilities get from driver data. */
+struct cadence_nand_dt_devdata {
+ /* Skew value of the output signals of the NAND Flash interface. */
+ u32 if_skew;
+ /* It informs if slave DMA interface is connected to DMA engine. */
+ unsigned int has_dma:1;
+};
+
+/* Cadence NAND flash controller capabilities read from registers. */
+struct cdns_nand_caps {
+ /* Maximum number of banks supported by hardware. */
+ u8 max_banks;
+ /* Slave and Master DMA data width in bytes (4 or 8). */
+ u8 data_dma_width;
+ /* Control Data feature supported. */
+ bool data_control_supp;
+ /* Is PHY type DLL. */
+ bool is_phy_type_dll;
+};
+
+struct cadence_nand_info {
+ struct udevice *dev;
+ struct reset_ctl softphy_reset;
+ struct reset_ctl nand_reset;
+ struct cadence_nand_cdma_desc *cdma_desc;
+ /* IP capability. */
+ const struct cadence_nand_dt_devdata *caps1;
+ struct cdns_nand_caps caps2;
+ u8 ctrl_rev;
+ dma_addr_t dma_cdma_desc;
+ /* command interface buffers */
+ u8 *buf;
+ u32 buf_size;
+ u8 *stat;
+
+ u8 curr_corr_str_idx;
+
+ /* Register interface. */
+ void __iomem *reg;
+
+ struct {
+ void __iomem *virt;
+ dma_addr_t dma;
+ } io;
+
+ int irq;
+ /* Interrupts that have happened. */
+ struct cadence_nand_irq_status irq_status;
+ /* Interrupts we are waiting for. */
+ struct cadence_nand_irq_status irq_mask;
+
+ int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
+ struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
+ struct nand_ecc_caps ecc_caps;
+
+ int curr_trans_type;
+
+ struct clk clk;
+ u32 nf_clk_rate;
+ /*
+ * Estimated Board delay. The value includes the total
+ * round trip delay for the signals and is used for deciding on values
+ * associated with data read capture.
+ */
+ u32 board_delay;
+
+ struct nand_chip selected_chip;
+
+ unsigned long assigned_cs;
+ struct list_head chips;
+ u8 bch_metadata_size;
+};
+
+struct cdns_nand_chip {
+ struct cadence_nand_timings timings;
+ struct nand_chip chip;
+ u8 nsels;
+ struct list_head node;
+
+ /*
+ * part of oob area of NAND flash memory page.
+ * This part is available for user to read or write.
+ */
+ u32 avail_oob_size;
+
+ /* Sector size. There are few sectors per mtd->writesize */
+ u32 sector_size;
+ u32 sector_count;
+
+ /* Offset of BBM. */
+ u8 bbm_offs;
+ /* Number of bytes reserved for BBM. */
+ u8 bbm_len;
+ /* ECC strength index. */
+ u8 corr_str_idx;
+
+ u8 cs[];
+};
+
+struct ecc_info {
+ int (*calc_ecc_bytes)(int step_size, int strength);
+ int max_step_size;
+};
+
+#endif /*_CADENCE_NAND_H_*/
--
2.26.2
More information about the U-Boot
mailing list