[U-Boot] [PATCH 22/31] iMX28: Add GPMI NAND driver

Marek Vasut marek.vasut at gmail.com
Thu Sep 8 22:42:50 CEST 2011


Signed-off-by: Marek Vasut <marek.vasut at gmail.com>
Cc: Scott Wood <scottwood at freescale.com>
Cc: Stefano Babic <sbabic at denx.de>
Cc: Wolfgang Denk <wd at denx.de>
Cc: Detlev Zundel <dzu at denx.de>
---
 drivers/mtd/nand/Makefile   |    1 +
 drivers/mtd/nand/mxs_nand.c | 1163 +++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 1164 insertions(+), 0 deletions(-)
 create mode 100644 drivers/mtd/nand/mxs_nand.c

diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8b598f6..8b6e8bf 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -43,6 +43,7 @@ COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
 COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
 COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
 COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o
+COBJS-$(CONFIG_NAND_MXS) += mxs_nand.o
 COBJS-$(CONFIG_NAND_NDFC) += ndfc.o
 COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o
 COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
diff --git a/drivers/mtd/nand/mxs_nand.c b/drivers/mtd/nand/mxs_nand.c
new file mode 100644
index 0000000..4995e0b
--- /dev/null
+++ b/drivers/mtd/nand/mxs_nand.c
@@ -0,0 +1,1163 @@
+/*
+ * Freescale i.MX28 NAND flash driver
+ *
+ * Copyright (C) 2011 Marek Vasut <marek.vasut at gmail.com>
+ * on behalf of DENX Software Engineering GmbH
+ *
+ * Based on code from LTIB:
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/types.h>
+#include <common.h>
+#include <malloc.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/regs-common.h>
+#include <asm/arch/regs-base.h>
+#include <asm/arch/regs-apbh.h>
+#include <asm/arch/regs-bch.h>
+#include <asm/arch/regs-gpmi.h>
+#include <asm/arch/mx28.h>
+#include <asm/arch/dma.h>
+
+#define	MXS_NAND_DMA_DESCRIPTOR_COUNT		4
+
+#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE		512
+#define	MXS_NAND_METADATA_SIZE			10
+
+#define	MXS_NAND_COMMAND_BUFFER_SIZE		32
+
+#define	MXS_NAND_BCH_TIMEOUT			10000
+
+struct mxs_nand_info {
+	int		cur_chip;
+
+	uint32_t	cmd_queue_len;
+
+	uint8_t		*cmd_buf;
+	uint8_t		*data_buf;
+	uint8_t		*oob_buf;
+
+	uint8_t		marking_block_bad;
+	uint8_t		raw_oob_mode;
+
+	/* Functions with altered behaviour */
+	int		(*hooked_read_oob)(struct mtd_info *mtd,
+				loff_t from, struct mtd_oob_ops *ops);
+	int		(*hooked_write_oob)(struct mtd_info *mtd,
+				loff_t to, struct mtd_oob_ops *ops);
+	int		(*hooked_block_markbad)(struct mtd_info *mtd,
+				loff_t ofs);
+
+	/* DMA descriptors */
+	struct mxs_dma_desc	**desc;
+	uint32_t		desc_index;
+};
+
+struct nand_ecclayout fake_ecc_layout;
+
+static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
+{
+	struct mxs_dma_desc *desc;
+
+	if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
+		printf("MXS NAND: Too many DMA descriptors requested\n");
+		return NULL;
+	}
+
+	desc = info->desc[info->desc_index];
+	info->desc_index++;
+
+	return desc;
+}
+
+static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
+{
+	int i = info->desc_index;
+	struct mxs_dma_desc *desc;
+
+	for (--i; i >= 0; i--) {
+		desc = info->desc[i];
+		memset(desc, 0, sizeof(struct mxs_dma_desc));
+		desc->address = (dma_addr_t)desc;
+	}
+
+	info->desc_index = 0;
+}
+
+static inline uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
+{
+	return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+}
+
+static inline uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
+{
+	return ecc_strength * 13;
+}
+
+static inline uint32_t mxs_nand_aux_status_offset(void)
+{
+	return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
+}
+
+static inline uint32_t mxs_nand_aux_size(uint32_t page_size)
+{
+	uint32_t aux_status_off = mxs_nand_aux_status_offset();
+	uint32_t ecc_chunk_cnt =
+		(mxs_nand_ecc_chunk_cnt(page_size) + 0x3) & ~0x3;
+
+	return ecc_chunk_cnt + aux_status_off;
+}
+
+static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
+						uint32_t page_oob_size)
+{
+	if (page_data_size == 2048)
+		return 8;
+
+	if (page_data_size == 4096) {
+		if (page_oob_size == 128)
+			return 8;
+
+		if (page_oob_size == 218)
+			return 16;
+	}
+
+	return 0;
+}
+
+static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
+						uint32_t ecc_strength)
+{
+	uint32_t chunk_data_size_in_bits;
+	uint32_t chunk_ecc_size_in_bits;
+	uint32_t chunk_total_size_in_bits;
+	uint32_t block_mark_chunk_number;
+	uint32_t block_mark_chunk_bit_offset;
+	uint32_t block_mark_bit_offset;
+
+	chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
+	chunk_ecc_size_in_bits  = mxs_nand_ecc_size_in_bits(ecc_strength);
+
+	chunk_total_size_in_bits =
+			chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+	/* Compute the bit offset of the block mark within the physical page. */
+	block_mark_bit_offset = page_data_size * 8;
+
+	/* Subtract the metadata bits. */
+	block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
+
+	/*
+	 * Compute the chunk number (starting at zero) in which the block mark
+	 * appears.
+	 */
+	block_mark_chunk_number =
+			block_mark_bit_offset / chunk_total_size_in_bits;
+
+	/*
+	 * Compute the bit offset of the block mark within its chunk, and
+	 * validate it.
+	 */
+	block_mark_chunk_bit_offset = block_mark_bit_offset -
+			(block_mark_chunk_number * chunk_total_size_in_bits);
+
+	if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
+		return 1;
+
+	/*
+	 * Now that we know the chunk number in which the block mark appears,
+	 * we can subtract all the ECC bits that appear before it.
+	 */
+	block_mark_bit_offset -=
+		block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+	return block_mark_bit_offset;
+}
+
+static inline uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
+{
+	uint32_t ecc_strength;
+	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
+}
+
+static inline uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
+{
+	uint32_t ecc_strength;
+	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
+}
+
+/*
+ * Wait for BCH complete IRQ and clear the IRQ
+ */
+static int mxs_nand_wait_for_bch_complete(void)
+{
+	struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
+	int timeout = MXS_NAND_BCH_TIMEOUT;
+	int ret;
+
+	ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
+		BCH_CTRL_COMPLETE_IRQ, timeout);
+
+	writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
+
+	return ret;
+}
+
+/*
+ * This is the function that we install in the cmd_ctrl function pointer of the
+ * owning struct nand_chip. The only functions in the reference implementation
+ * that use these functions pointers are cmdfunc and select_chip.
+ *
+ * In this driver, we implement our own select_chip, so this function will only
+ * be called by the reference implementation's cmdfunc. For this reason, we can
+ * ignore the chip enable bit and concentrate only on sending bytes to the
+ * NAND Flash.
+ */
+static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+	struct nand_chip *nand = mtd->priv;
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	/*
+	 * If this condition is true, something is _VERY_ wrong in MTD
+	 * subsystem!
+	 */
+	if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
+		printf("MXS NAND: Command queue too long\n");
+		return;
+	}
+
+	/*
+	 * Every operation begins with a command byte and a series of zero or
+	 * more address bytes. These are distinguished by either the Address
+	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+	 * asserted. When MTD is ready to execute the command, it will
+	 * deasert both latch enables.
+	 *
+	 * Rather than run a separate DMA operation for every single byte, we
+	 * queue them up and run a single DMA operation for the entire series
+	 * of command and data bytes.
+	 */
+	if (ctrl & (NAND_ALE | NAND_CLE)) {
+		if (data != NAND_CMD_NONE)
+			nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
+		return;
+	}
+
+	/*
+	 * If control arrives here, MTD has deasserted both the ALE and CLE,
+	 * which means it's ready to run an operation. Check if we have any
+	 * bytes to send.
+	 */
+	if (nand_info->cmd_queue_len == 0)
+		return;
+
+	/* Compile the DMA descriptor -- a descriptor that sends command. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
+		MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_CLE |
+		GPMI_CTRL0_ADDRESS_INCREMENT |
+		nand_info->cmd_queue_len;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret)
+		printf("MXS NAND: Error sending command\n");
+
+	mxs_nand_return_dma_descs(nand_info);
+
+	/* Reset the command queue. */
+	nand_info->cmd_queue_len = 0;
+}
+
+/*
+ * Test if the NAND flash is ready.
+ */
+static int mxs_nand_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct mxs_nand_info *nand_info = chip->priv;
+	struct mx28_gpmi_regs *gpmi_regs =
+		(struct mx28_gpmi_regs *)MXS_GPMI_BASE;
+	uint32_t tmp;
+
+	tmp = readl(&gpmi_regs->hw_gpmi_stat);
+	tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
+
+	return tmp & 1;
+}
+
+/*
+ * Select the NAND chip.
+ */
+static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd->priv;
+	struct mxs_nand_info *nand_info = nand->priv;
+
+	nand_info->cur_chip = chip;
+}
+
+/*
+ * Handle block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ */
+static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
+					uint8_t *data_buf, uint8_t *oob_buf)
+{
+	uint32_t bit_offset;
+	uint32_t buf_offset;
+
+	uint32_t src;
+	uint32_t dst;
+
+	bit_offset = mxs_nand_mark_bit_offset(mtd);
+	buf_offset = mxs_nand_mark_byte_offset(mtd);
+
+	/*
+	 * Get the byte from the data area that overlays the block mark. Since
+	 * the ECC engine applies its own view to the bits in the page, the
+	 * physical block mark won't (in general) appear on a byte boundary in
+	 * the data.
+	 */
+	src = data_buf[buf_offset] >> bit_offset;
+	src |= data_buf[buf_offset + 1] << (8 - bit_offset);
+
+	dst = oob_buf[0];
+
+	oob_buf[0] = src;
+
+	data_buf[buf_offset] &= ~(0xff << bit_offset);
+	data_buf[buf_offset + 1] &= 0xff << bit_offset;
+
+	data_buf[buf_offset] |= dst << bit_offset;
+	data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
+}
+
+/*
+ * Read data from NAND.
+ */
+static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
+{
+	struct nand_chip *nand = mtd->priv;
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	if (length > NAND_MAX_PAGESIZE) {
+		printf("MXS NAND: DMA buffer too big\n");
+		return;
+	}
+
+	if (!buf) {
+		printf("MXS NAND: DMA buffer is NULL\n");
+		return;
+	}
+
+	/* Compile the DMA descriptor - a descriptor that reads data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(length << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_READ |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		length;
+
+	mxs_dma_desc_append(channel, d);
+
+	/*
+	 * A DMA descriptor that waits for the command to end and the chip to
+	 * become ready.
+	 *
+	 * I think we actually should *not* be waiting for the chip to become
+	 * ready because, after all, we don't care. I think the original code
+	 * did that and no one has re-thought it yet.
+	 */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
+		MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA read error\n");
+		goto rtn;
+	}
+
+	memcpy(buf, nand_info->data_buf, length);
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Write data to NAND.
+ */
+static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int length)
+{
+	struct nand_chip *nand = mtd->priv;
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	if (length > NAND_MAX_PAGESIZE) {
+		printf("MXS NAND: DMA buffer too big\n");
+		return;
+	}
+
+	if (!buf) {
+		printf("MXS NAND: DMA buffer is NULL\n");
+		return;
+	}
+
+	memcpy(nand_info->data_buf, buf, length);
+
+	/* Compile the DMA descriptor - a descriptor that writes data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(length << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		length;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret)
+		printf("MXS NAND: DMA write error\n");
+
+	mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read a single byte from NAND.
+ */
+static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
+{
+	uint8_t buf;
+	mxs_nand_read_buf(mtd, &buf, 1);
+	return buf;
+}
+
+/*
+ * Read a page from NAND.
+ */
+static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+					uint8_t *buf, int page)
+{
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	uint32_t corrected = 0, failed = 0;
+	uint8_t	*status;
+	int i, ret;
+
+	/* Compile the DMA descriptor - wait for ready. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - enable the BCH block and read. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_WAIT4END |	(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_READ |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		(mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] =
+		GPMI_ECCCTRL_ENABLE_ECC |
+		GPMI_ECCCTRL_ECC_CMD_DECODE |
+		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+	d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
+	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - disable the BCH block. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+		(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		(mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] = 0;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM;
+
+	d->cmd.address = 0;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA read error\n");
+		goto rtn;
+	}
+
+	ret = mxs_nand_wait_for_bch_complete();
+	if (ret) {
+		printf("MXS NAND: BCH read timeout\n");
+		goto rtn;
+	}
+
+	/* Read DMA completed, now do the mark swapping. */
+	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+	/* Loop over status bytes, accumulating ECC status. */
+	status = nand_info->oob_buf + mxs_nand_aux_status_offset();
+	for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
+		if (status[i] == 0x00)
+			continue;
+
+		if (status[i] == 0xff)
+			continue;
+
+		if (status[i] == 0xfe) {
+			failed++;
+			continue;
+		}
+
+		corrected += status[i];
+	}
+
+	/* Propagate ECC status to the owning MTD. */
+	mtd->ecc_stats.failed += failed;
+	mtd->ecc_stats.corrected += corrected;
+
+	/*
+	 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
+	 * details about our policy for delivering the OOB.
+	 *
+	 * We fill the caller's buffer with set bits, and then copy the block
+	 * mark to th caller's buffer. Note that, if block mark swapping was
+	 * necessary, it has already been done, so we can rely on the first
+	 * byte of the auxiliary buffer to contain the block mark.
+	 */
+	memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+	nand->oob_poi[0] = nand_info->oob_buf[0];
+
+	memcpy(buf, nand_info->data_buf, mtd->writesize);
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+
+	return ret;
+}
+
+/*
+ * Write a page to NAND.
+ */
+static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
+				struct nand_chip *nand, const uint8_t *buf)
+{
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	memcpy(nand_info->data_buf, buf, mtd->writesize);
+	memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
+
+	/* Handle block mark swapping. */
+	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+	/* Compile the DMA descriptor - write data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] =
+		GPMI_ECCCTRL_ENABLE_ECC |
+		GPMI_ECCCTRL_ECC_CMD_ENCODE |
+		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+	d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA write error\n");
+		goto rtn;
+	}
+
+	ret = mxs_nand_wait_for_bch_complete();
+	if (ret) {
+		printf("MXS NAND: BCH write timeout\n");
+		goto rtn;
+	}
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read OOB from NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
+					struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct mxs_nand_info *nand_info = chip->priv;
+	int ret;
+
+	if (ops->mode == MTD_OOB_RAW)
+		nand_info->raw_oob_mode = 1;
+	else
+		nand_info->raw_oob_mode = 0;
+
+	ret = nand_info->hooked_read_oob(mtd, from, ops);
+
+	nand_info->raw_oob_mode = 0;
+
+	return ret;
+}
+
+/*
+ * Write OOB to NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
+					struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct mxs_nand_info *nand_info = chip->priv;
+	int ret;
+
+	if (ops->mode == MTD_OOB_RAW)
+		nand_info->raw_oob_mode = 1;
+	else
+		nand_info->raw_oob_mode = 0;
+
+	ret = nand_info->hooked_write_oob(mtd, to, ops);
+
+	nand_info->raw_oob_mode = 0;
+
+	return ret;
+}
+
+/*
+ * Mark a block bad in NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct mxs_nand_info *nand_info = chip->priv;
+	int ret;
+
+	nand_info->marking_block_bad = 1;
+
+	ret = nand_info->hooked_block_markbad(mtd, ofs);
+
+	nand_info->marking_block_bad = 0;
+
+	return ret;
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ *    write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ *    true state of the block mark, no matter where that block mark appears in
+ *    the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ *    return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ *    page, using the conventional definition of which bytes are data and which
+ *    are OOB. This gives the caller a way to see the actual, physical bytes
+ *    in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ *                    |           Raw           |         ECC-based       |
+ *       -------------+-------------------------+-------------------------+
+ *                    | Read the conventional   |                         |
+ *                    | OOB at the end of the   |                         |
+ *       Swapping     | page and return it. It  |                         |
+ *                    | contains exactly what   |                         |
+ *                    | we want.                | Read the block mark and |
+ *       -------------+-------------------------+ return it in a buffer   |
+ *                    | Read the conventional   | full of set bits.       |
+ *                    | OOB at the end of the   |                         |
+ *                    | page and also the block |                         |
+ *       Transcribing | mark in the metadata.   |                         |
+ *                    | Copy the block mark     |                         |
+ *                    | into the first byte of  |                         |
+ *                    | the OOB.                |                         |
+ *       -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * Since our OOB *is* covered by ECC, we need this information. So, we hook the
+ * ecc.read_oob and ecc.write_oob function pointers in the owning
+ * struct mtd_info with our own functions. These hook functions set the
+ * raw_oob_mode field so that, when control finally arrives here, we'll know
+ * what to do.
+ */
+static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+				int page, int cmd)
+{
+	struct mxs_nand_info *nand_info = nand->priv;
+
+	/*
+	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
+	 * get the bytes from the physical page. If we're not doing a raw read,
+	 * we need to fill the buffer with set bits.
+	 */
+	if (nand_info->raw_oob_mode) {
+		/*
+		 * If control arrives here, we're doing a "raw" read. Send the
+		 * command to read the conventional OOB and read it.
+		 */
+		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+	} else {
+		/*
+		 * If control arrives here, we're not doing a "raw" read. Fill
+		 * the OOB buffer with set bits and correct the block mark.
+		 */
+		memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+		mxs_nand_read_buf(mtd, nand->oob_poi, 1);
+	}
+
+	return 0;
+
+}
+
+/*
+ * Write OOB data to NAND.
+ */
+static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+					int page)
+{
+	struct mxs_nand_info *nand_info = nand->priv;
+	uint8_t block_mark = 0;
+
+	/*
+	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
+	 * the NAND Flash MTD model that make it essentially impossible to write
+	 * the out-of-band bytes.
+	 *
+	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
+	 * mark a block bad, we can do that.
+	 */
+
+	if (nand_info->marking_block_bad) {
+		printf("NXS NAND: Writing OOB isn't supported\n");
+		return -EIO;
+	}
+
+	/* Write the block mark. */
+	nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	nand->write_buf(mtd, &block_mark, 1);
+	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+	/* Check if it worked. */
+	if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+
+/*
+ * Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * We take away the in-memory BBT when the user sets the "ignorebad" parameter,
+ * which indicates that all blocks should be reported good.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ */
+static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+	return 0;
+}
+
+/*
+ * Nominally, the purpose of this function is to look for or create the bad
+ * block table. In fact, since the HIL calls this function at the very end of
+ * the initialization process started by nand_scan(), and the HIL doesn't have a
+ * more formal mechanism, everyone "hooks" this function to continue the
+ * initialization process.
+ *
+ * At this point, the physical NAND Flash chips have been identified and
+ * counted, so we know the physical geometry. This enables us to make some
+ * important configuration decisions.
+ *
+ * The return value of this function propogates directly back to this driver's
+ * call to nand_scan(). Anything other than zero will cause this driver to
+ * tear everything down and declare failure.
+ */
+static int mxs_nand_scan_bbt(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd->priv;
+	struct mxs_nand_info *nand_info = nand->priv;
+	struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
+	uint32_t tmp;
+
+	/* Configure BCH and set NFC geometry */
+	mx28_reset_block(&bch_regs->hw_bch_ctrl_reg);
+
+	/* Configure layout 0 */
+	tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
+		<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
+	tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
+	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+		<< BCH_FLASHLAYOUT0_ECC0_OFFSET;
+	tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+	writel(tmp, &bch_regs->hw_bch_flash0layout0);
+
+	tmp = (mtd->writesize + mtd->oobsize)
+		<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
+	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+		<< BCH_FLASHLAYOUT1_ECCN_OFFSET;
+	tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+	writel(tmp, &bch_regs->hw_bch_flash0layout1);
+
+	/* Set *all* chip selects to use layout 0 */
+	writel(0, &bch_regs->hw_bch_layoutselect);
+
+	/* Enable BCH complete interrupt */
+	writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
+
+	/* Hook some operations at the MTD level. */
+	if (mtd->read_oob != mxs_nand_hook_read_oob) {
+		nand_info->hooked_read_oob = mtd->read_oob;
+		mtd->read_oob = mxs_nand_hook_read_oob;
+	}
+
+	if (mtd->write_oob != mxs_nand_hook_write_oob) {
+		nand_info->hooked_write_oob = mtd->write_oob;
+		mtd->write_oob = mxs_nand_hook_write_oob;
+	}
+
+	if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
+		nand_info->hooked_block_markbad = mtd->block_markbad;
+		mtd->block_markbad = mxs_nand_hook_block_markbad;
+	}
+
+	/* We use the reference implementation for bad block management. */
+	return nand_default_bbt(mtd);
+}
+
+/*
+ * Allocate DMA buffers
+ */
+int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
+{
+	uint8_t *buf;
+	const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
+
+	/* DMA buffers */
+	buf = memalign(MXS_DMA_ALIGNMENT, size);
+	if (!buf) {
+		printf("MXS NAND: Error allocating DMA buffers\n");
+		return -ENOMEM;
+	}
+
+	memset(buf, 0, size);
+
+	nand_info->data_buf = buf;
+	nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
+
+	/* Command buffers */
+	nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
+				MXS_NAND_COMMAND_BUFFER_SIZE);
+	if (!nand_info->cmd_buf) {
+		free(buf);
+		printf("MXS NAND: Error allocating command buffers\n");
+		return -ENOMEM;
+	}
+	memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
+	nand_info->cmd_queue_len = 0;
+
+	return 0;
+}
+
+/*
+ * Initializes the NFC hardware.
+ */
+int mxs_nand_init(struct mxs_nand_info *info)
+{
+	struct mx28_gpmi_regs *gpmi_regs =
+		(struct mx28_gpmi_regs *)MXS_GPMI_BASE;
+	int i = 0;
+
+	info->desc = malloc(sizeof(struct mxs_dma_desc *) *
+				MXS_NAND_DMA_DESCRIPTOR_COUNT);
+	if (!info->desc)
+		goto err1;
+
+	/* Allocate the DMA descriptors. */
+	for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
+		info->desc[i] = mxs_dma_desc_alloc();
+		if (!info->desc[i])
+			goto err2;
+	}
+
+	/* Init the DMA controller. */
+	mxs_dma_init();
+
+	/* Reset the GPMI block. */
+	mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
+
+	/*
+	 * Choose NAND mode, set IRQ polarity, disable write protection and
+	 * select BCH ECC.
+	 */
+	clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
+			GPMI_CTRL1_GPMI_MODE,
+			GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
+			GPMI_CTRL1_BCH_MODE);
+
+	return 0;
+
+err2:
+	free(info->desc);
+err1:
+	for (--i; i >= 0; i--)
+		mxs_dma_desc_free(info->desc[i]);
+	printf("MXS NAND: Unable to allocate DMA descriptors\n");
+	return -ENOMEM;
+}
+
+/*!
+ * This function is called during the driver binding process.
+ *
+ * @param   pdev  the device structure used to store device specific
+ *                information that is used by the suspend, resume and
+ *                remove functions
+ *
+ * @return  The function always returns 0.
+ */
+int board_nand_init(struct nand_chip *nand)
+{
+	struct mxs_nand_info *nand_info;
+	int err;
+
+	nand_info = malloc(sizeof(struct mxs_nand_info));
+	if (!nand_info) {
+		printf("MXS NAND: Failed to allocate private data\n");
+		return -ENOMEM;
+	}
+	memset(nand_info, 0, sizeof(struct mxs_nand_info));
+
+	err = mxs_nand_alloc_buffers(nand_info);
+	if (err)
+		goto err1;
+
+	err = mxs_nand_init(nand_info);
+	if (err)
+		goto err2;
+
+	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
+
+	nand->priv = nand_info;
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
+
+	nand->dev_ready		= mxs_nand_device_ready;
+	nand->select_chip	= mxs_nand_select_chip;
+	nand->block_bad		= mxs_nand_block_bad;
+	nand->scan_bbt		= mxs_nand_scan_bbt;
+
+	nand->read_byte		= mxs_nand_read_byte;
+
+	nand->read_buf		= mxs_nand_read_buf;
+	nand->write_buf		= mxs_nand_write_buf;
+
+	nand->ecc.read_page	= mxs_nand_ecc_read_page;
+	nand->ecc.write_page	= mxs_nand_ecc_write_page;
+	nand->ecc.read_oob	= mxs_nand_ecc_read_oob;
+	nand->ecc.write_oob	= mxs_nand_ecc_write_oob;
+
+	nand->ecc.layout	= &fake_ecc_layout;
+	nand->ecc.mode		= NAND_ECC_HW;
+	nand->ecc.bytes		= 9;
+	nand->ecc.size		= 512;
+
+	return 0;
+
+err2:
+	free(nand_info->data_buf);
+	free(nand_info->cmd_buf);
+err1:
+	free(nand_info);
+	return err;
+}
-- 
1.7.5.4



More information about the U-Boot mailing list