[U-Boot] [PATCH v6 03/12] nand: add Faraday FTNANDC021 NAND controller support

Kuo-Jung Su dantesu at gmail.com
Thu Jul 4 05:40:35 CEST 2013


From: Kuo-Jung Su <dantesu at faraday-tech.com>

Faraday FTNANDC021 is a integrated NAND flash controller.
It use a build-in command table to abstract the underlying
NAND flash control logic.

For example:

Issuing a command 0x10 to FTNANDC021 would result in
a page write + a read status operation.

Signed-off-by: Kuo-Jung Su <dantesu at faraday-tech.com>
CC: Albert ARIBAUD <albert.u.boot at aribaud.net>
CC: Scott Wood <scottwood at freescale.com>
---
Changes for v6:
   - Update README for CONFIG_SYS_FTNANDC021_TIMING
   - Remove illegal type-punning by introducing
     put_unaligned() & get_unaligned().

Changes for v5 (Part of A360/A369 patch series):
   - Coding Style cleanup:
     struct chip_regs __iomem *regs -> struct chip_regs *regs
   - For there is a strong dependancy between this and A360/A369 patch
     series, it had been chained back to A360/A369 patch series.
   - The latest nand_base requires the ecc.strength to be set properlly,
     so this patch adds ecc.strength setting accroding to ECC algorithm.

Changes for v5 (Standalone):
   - Update README for the description of CONFIG_SYS_FTNANDC021_TIMING.
   - Drop redundant white space. (i.e. if (mtd->writesize >= ' '4096))

Changes for v4:
   - Make it a separate patch, rather then a part of
     Faraday A36x patch series
   - Drop the faraday/nand.h to remove dependency to
     Faraday A36x patch series.
   - CONFIG_SYS_NAND_TIMING -> CONFIG_SYS_FTNANDC021_TIMING
   - Remove non-ECC code.
   - Implement private hwecc read/write_page functions
     to get rid of .eccpos & .eccbytes.
   - Use macro constants for timeout control

Changes for v3:
   - Coding Style cleanup.
   - Drop macros for wirtel()/readl(), call them directly.
   - Always insert a blank line between declarations and code.
   - Replace all the infinite wait loop with a timeout.
   - Add '__iomem' to all the declaration of HW register pointers.
   - Re-write this driver with ECC enabled and correct column address
     handling for OOB read/write,
   - Fix issuses addressed by Scott.

Changes for v2:
   - Coding Style cleanup.
   - Use readl(), writel(), clrsetbits_le32() to replace REG() macros.
   - Use structure based hardware registers to replace the macro constants.
   - Replace BIT() with BIT_MASK().

 README                        |   10 +
 drivers/mtd/nand/Makefile     |    1 +
 drivers/mtd/nand/ftnandc021.c |  626 +++++++++++++++++++++++++++++++++++++++++
 include/faraday/ftnandc021.h  |  153 ++++++++++
 4 files changed, 790 insertions(+)
 create mode 100644 drivers/mtd/nand/ftnandc021.c
 create mode 100644 include/faraday/ftnandc021.h

diff --git a/README b/README
index 85e5a8d..538ba85 100644
--- a/README
+++ b/README
@@ -4036,6 +4036,16 @@ Low Level (hardware related) configuration options:
 		- drivers/mtd/nand/ndfc.c
 		- drivers/mtd/nand/mxc_nand.c

+- CONFIG_SYS_FTNANDC021_TIMING
+		This option specifies an array of customized timing parameters
+		for Faraday FTNANDC021 NAND flash controller.
+		e.g.
+		#define CONFIG_SYS_FTNANDC021_TIMING \
+			{ CONFIG_NAND_K9F4G08U0B_AC1, CONFIG_NAND_K9F4G08U0B_AC2 }
+		where CONFIG_NAND_K9F4G08U0B_AC[1/2] are the optimized AC
+		timing parameters for register AC_TIMING1 and AC_TIMING2 which
+		control the timing for CLE, ALE, WE and RE signals.
+
 - CONFIG_SYS_NDFC_EBC0_CFG
 		Sets the EBC0_CFG register for the NDFC. If not defined
 		a default value will be used.
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index bb81e84..765171a 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -64,6 +64,7 @@ COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
 COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
 COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
 COBJS-$(CONFIG_NAND_FSMC) += fsmc_nand.o
+COBJS-$(CONFIG_NAND_FTNANDC021) += ftnandc021.o
 COBJS-$(CONFIG_NAND_JZ4740) += jz4740_nand.o
 COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
 COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
diff --git a/drivers/mtd/nand/ftnandc021.c b/drivers/mtd/nand/ftnandc021.c
new file mode 100644
index 0000000..a24eae6
--- /dev/null
+++ b/drivers/mtd/nand/ftnandc021.c
@@ -0,0 +1,626 @@
+/*
+ * Faraday NAND Flash Controller
+ *
+ * (C) Copyright 2013 Faraday Technology
+ * Dante Su <dantesu at faraday-tech.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <common.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/unaligned.h>
+#include <nand.h>
+#include <malloc.h>
+
+#include <faraday/ftnandc021.h>
+
+#define CFG_CMD_TIMEOUT (CONFIG_SYS_HZ >> 2) /* 250 ms */
+#define CFG_PIO_TIMEOUT (CONFIG_SYS_HZ >> 3) /* 125 ms */
+
+struct ftnandc021_chip {
+	void __iomem *regs;
+	int alen;
+	int pgsz;
+	int bksz;
+
+	int col;    /* current column address */
+	int page;   /* current row address/page index */
+	int cmd;    /* current NAND command code */
+	int cmd_hc; /* current FTNANDC021 command code */
+};
+
+static struct nand_ecclayout ftnandc021_ecclayout[] = {
+	{ /* page size = 512 (oob size = 16) */
+		.oobfree = {
+			{ 9, 3 },
+		}
+	},
+	{ /* page size = 2048 (oob size = 64) */
+		.oobfree = {
+			{ 9, 3 },
+		},
+	},
+	{ /* page size = 4096 (oob size = 128) */
+		.oobfree = {
+			{ 9, 7 },
+		},
+	},
+};
+
+static inline int ftnandc021_ckst(struct ftnandc021_chip *priv)
+{
+	struct ftnandc021_regs *regs = priv->regs;
+	uint32_t st = readl(&regs->idr[1]);
+
+	if (st & NAND_STATUS_FAIL)
+		return -EIO;
+
+	if (!(st & NAND_STATUS_READY))
+		return -EBUSY;
+
+	if (!(st & NAND_STATUS_WP))
+		return -EIO;
+
+	return 0;
+}
+
+static inline int ftnandc021_wait(struct ftnandc021_chip *priv)
+{
+	struct ftnandc021_regs *regs = priv->regs;
+	char rc = 'c';
+	ulong ts;
+
+	for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
+		if (readl(&regs->sr) & SR_ECC) {
+			rc = 'e';
+			break;
+		}
+		if (!(readl(&regs->acr) & ACR_START)) {
+			rc = 0;
+			break;
+		}
+	}
+
+	switch (rc) {
+	case 'e':
+		printf("ftnandc021: ecc timeout, cmd_hc=%d\n",
+			priv->cmd_hc);
+		break;
+	case 'c':
+		printf("ftnandc021: cmd timeout, cmd_hc=%d\n",
+			priv->cmd_hc);
+		break;
+	default:
+		break;
+	}
+
+	return rc ? -ETIMEDOUT : 0;
+}
+
+static int ftnandc021_read_page(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int page)
+{
+	/*
+	 * OOB has been read at ftnandc021_cmdfunc(),
+	 * so we don't have to handle it right here.
+	 */
+	chip->read_buf(mtd, buf, mtd->writesize);
+	return 0;
+}
+
+static void ftnandc021_write_page(struct mtd_info *mtd,
+	struct nand_chip *chip, const uint8_t *buf)
+{
+	/*
+	 * OOB has been written at ftnandc021_cmdfunc(),
+	 * so we don't have to handle it right here.
+	 */
+	chip->write_buf(mtd, buf, mtd->writesize);
+}
+
+static int ftnandc021_read_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int page)
+{
+	printf("ftnandc021: read_page_raw is not supported\n");
+	return -EIO;
+}
+
+static void ftnandc021_write_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, const uint8_t *buf)
+{
+	printf("ftnandc021: write_page_raw is not supported\n");
+}
+
+static int ftnandc021_command(struct ftnandc021_chip *priv, uint32_t cmd)
+{
+	struct ftnandc021_regs *regs = priv->regs;
+	int ret = 0;
+
+	priv->cmd_hc = cmd;
+
+	writel(ACR_START | ACR_CMD(cmd), &regs->acr);
+
+	/*
+	 * pgread    : (We have queued data at the IO port)
+	 * pgwrite   : (We have queued data at the IO port)
+	 * bkerase   : nand_wait + nand_ckst
+	 * oobwr     : nand_wait + nand_ckst
+	 * otherwise : nand_wait
+	 */
+	switch (cmd) {
+	case FTNANDC021_CMD_RDPG:
+	case FTNANDC021_CMD_WRPG:
+		break;
+	case FTNANDC021_CMD_ERBLK:
+	case FTNANDC021_CMD_WROOB:
+		ret = ftnandc021_wait(priv) || ftnandc021_ckst(priv);
+		break;
+	default:
+		ret = ftnandc021_wait(priv);
+	}
+
+	return ret;
+}
+
+static int ftnandc021_reset(struct nand_chip *chip)
+{
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	uint32_t ts, bk, pg, ac, mask;
+#ifdef CONFIG_SYS_FTNANDC021_TIMING
+	uint32_t timing[] = CONFIG_SYS_FTNANDC021_TIMING;
+
+	writel(timing[0], &regs->atr[0]);
+	writel(timing[1], &regs->atr[1]);
+#endif
+
+	writel(0, &regs->ier);
+	writel(0, &regs->pir);
+	writel(0xff, &regs->bbiwr);
+	writel(0xffffffff, &regs->lsnwr);
+	writel(0xffffffff, &regs->crcwr);
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		writel(FCR_SWCRC | FCR_IGNCRC | FCR_16BIT, &regs->fcr);
+	else
+		writel(FCR_SWCRC | FCR_IGNCRC, &regs->fcr);
+
+	/* chip reset */
+	mask = SRR_CHIP_RESET | SRR_ECC_EN;
+	writel(mask, &regs->srr);
+	mdelay(200);
+	if (readl(&regs->srr) & SRR_CHIP_RESET) {
+		printf("ftnandc021: reset failed\n");
+		return -ENXIO;
+	}
+
+	/* sanity check on page size */
+	if (priv->pgsz != 512 && priv->pgsz != 2048 && priv->pgsz != 4096) {
+		printf("ftnandc021: invalid page size=%d\n", priv->pgsz);
+		return -EINVAL;
+	}
+
+	bk = ffs(priv->bksz / priv->pgsz) - 5;
+	pg = (priv->pgsz < 2048) ? 0 : (ffs(priv->pgsz) - 11);
+	ac = priv->alen - 3;
+
+	writel(MCR_ME(0) | MCR_32GB | (bk << 16) | (pg << 8) | (ac << 10),
+		&regs->mcr);
+
+	/* IO mode = PIO */
+	writel(0, &regs->bcr);
+
+	/* ECC mode */
+	chip->ecc.layout         = ftnandc021_ecclayout + pg;
+	chip->ecc.size           = priv->pgsz;
+	chip->ecc.steps          = 1;
+	chip->ecc.read_page      = ftnandc021_read_page;
+	chip->ecc.write_page     = ftnandc021_write_page;
+	chip->ecc.read_page_raw  = ftnandc021_read_page_raw;
+	chip->ecc.write_page_raw = ftnandc021_write_page_raw;
+	chip->ecc.mode           = NAND_ECC_HW;
+	if (CFGR_ECC_TYPE(readl(&regs->cfgr)) == CFGR_ECC_BCH)
+		chip->ecc.strength = 8;
+	else
+		chip->ecc.strength = 4;
+
+	/* reset the attached flash */
+	if (ftnandc021_command(priv, FTNANDC021_CMD_RESET))
+		return -ENXIO;
+
+	return 0;
+}
+
+/*
+ * Check hardware register for wait status. Returns 1 if device is ready,
+ * 0 if it is still busy.
+ */
+static int ftnandc021_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	int ret = 1;
+
+	if (ftnandc021_wait(priv))
+		ret = 0;
+	else if (!(readl(&regs->sr) & SR_READY))
+		ret = 0;
+
+	return ret;
+}
+
+static int ftnandc021_pio_wait(struct ftnandc021_chip *priv)
+{
+	struct ftnandc021_regs *regs = priv->regs;
+	int ret = -ETIMEDOUT;
+	uint32_t ts;
+
+	for (ts = get_timer(0); get_timer(ts) < CFG_PIO_TIMEOUT; ) {
+		if (!(readl(&regs->ior) & IOR_READY))
+			continue;
+		ret = 0;
+		break;
+	}
+
+	if (ret)
+		printf("ftnandc021: pio timeout\n");
+
+	return ret;
+}
+
+static void ftnandc021_read_oob(struct mtd_info *mtd,
+	uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	uint32_t tmp;
+
+	memset(buf, 0xff, len);
+
+	/* bad block */
+	buf[chip->badblockpos] = readl(&regs->bbird) & 0xff;
+
+	/* data */
+	tmp = readl(&regs->crcrd);
+	buf[8] = (tmp >> 0) & 0xff;
+	buf[9] = (tmp >> 8) & 0xff;
+	if (mtd->writesize >= 4096) {
+		buf[12] = (tmp >> 16) & 0xff;
+		buf[13] = (tmp >> 24) & 0xff;
+	}
+
+	tmp = readl(&regs->lsnrd);
+	buf[10] = (tmp >> 0) & 0xff;
+	buf[11] = (tmp >> 8) & 0xff;
+	if (mtd->writesize >= 4096) {
+		buf[14] = (tmp >> 16) & 0xff;
+		buf[15] = (tmp >> 24) & 0xff;
+	}
+}
+
+static void ftnandc021_write_oob(struct mtd_info *mtd,
+	const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	uint32_t tmp;
+
+	/* bad block */
+	tmp = buf[chip->badblockpos];
+	writel(tmp, &regs->bbiwr);
+
+	/* mark it as 'not blank' */
+	tmp = 'W' | (buf[9] << 8);
+	if (mtd->writesize >= 4096)
+		tmp |= (buf[12] << 16) | (buf[13] << 24);
+	writel(tmp, &regs->crcwr);
+
+	tmp = buf[10] | (buf[11] << 8);
+	if (mtd->writesize >= 4096)
+		tmp |= (buf[14] << 16) | (buf[15] << 24);
+	writel(tmp, &regs->lsnwr);
+}
+
+static uint8_t ftnandc021_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	uint8_t ret = 0xff;
+
+	switch (priv->cmd) {
+	case NAND_CMD_READID:
+		if (priv->col < 8) {
+			uint32_t idx = priv->col >> 2;
+			uint32_t pos = priv->col & 0x3;
+			uint32_t tmp = readl(&regs->idr[idx]);
+
+			ret = (uint8_t)(tmp >> (pos << 3));
+			priv->col += 1;
+		}
+		break;
+	case NAND_CMD_STATUS:
+		ret = (uint8_t)(readl(&regs->idr[1]) & 0xff);
+		break;
+	default:
+		printf("ftnandc021: unknown cmd=0x%x in read_byte\n",
+			priv->cmd);
+		break;
+	}
+
+	return ret;
+}
+
+static uint16_t ftnandc021_read_word(struct mtd_info *mtd)
+{
+	uint16_t ret = 0xffff;
+	uint8_t *buf = (uint8_t *)&ret;
+
+	/* LSB format */
+	buf[0] = ftnandc021_read_byte(mtd);
+	buf[1] = ftnandc021_read_byte(mtd);
+
+	return ret;
+}
+
+/**
+ * Read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void ftnandc021_read_buf(struct mtd_info *mtd,
+	uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	int off;
+
+	if (priv->col >= mtd->writesize)
+		return;
+
+	if (priv->cmd == NAND_CMD_READOOB)
+		BUG();	/* should never happen */
+
+	/* skip if it's a blank page */
+	if (chip->oob_poi[8] != 'W') {
+		memset(buf, 0xff, len);
+		return;
+	}
+
+	off = 0;
+	while (off < len && priv->col < mtd->writesize) {
+		ftnandc021_pio_wait(priv);
+#ifndef __ARMEB__
+		put_unaligned_le32(readl(&regs->dr), buf + off);
+#else
+		put_unaligned_be32(readl(&regs->dr), buf + off);
+#endif
+		priv->col += 4;
+		off += 4;
+	}
+
+	ftnandc021_wait(priv);
+}
+
+/**
+ * Write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void ftnandc021_write_buf(struct mtd_info *mtd,
+	const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+	uint32_t off, val;
+
+	/*
+	 * FTNANDC021 HW design issues:
+	 *
+	 * 1. OOB data must be set before issuing write command,
+	 *    so it's too late to do it right here
+	 * 2. Only after command issued, the data register
+	 *    could accept data.
+	 */
+	if (priv->col >= mtd->writesize)
+		return;
+
+	for (off = 0; off < len && priv->col < mtd->writesize; ) {
+		ftnandc021_pio_wait(priv);
+#ifndef __ARMEB__
+		val = get_unaligned_le32(buf + off);
+#else
+		val = get_unaligned_be32(buf + off);
+#endif
+		writel(val, &regs->dr);
+		priv->col += 4;
+		off += 4;
+	}
+
+	ftnandc021_wait(priv);
+}
+
+/**
+ * Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ */
+static int ftnandc021_verify_buf(struct mtd_info *mtd,
+	const uint8_t *buf, int len)
+{
+	int ret = 0;
+	uint8_t *tmp;
+
+	len = min_t(int, len, mtd->writesize);
+	tmp = malloc(mtd->writesize);
+
+	if (!tmp) {
+		printf("ftnandc021: out of memory\n");
+		return -ENOMEM;
+	} else {
+		ftnandc021_read_buf(mtd, tmp, len);
+		if (memcmp(tmp, buf, len))
+			ret = -EINVAL;
+	}
+
+	free(tmp);
+	return ret;
+}
+
+static void ftnandc021_cmdfunc(struct mtd_info *mtd,
+	unsigned cmd, int col, int page)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct ftnandc021_chip *priv = chip->priv;
+	struct ftnandc021_regs *regs = priv->regs;
+
+	priv->cmd = cmd;
+	priv->col = col;
+	priv->page = page;
+
+	switch (cmd) {
+	case NAND_CMD_READID:	/* 0x90 */
+		priv->col = 0;
+		if (ftnandc021_command(priv, FTNANDC021_CMD_RDID))
+			printf("ftnandc021: RDID failed.\n");
+		break;
+
+	case NAND_CMD_READOOB:	/* 0x50 */
+		priv->col = mtd->writesize;
+		/* fall-through */
+	case NAND_CMD_READ0:	/* 0x00 */
+		writel(page, &regs->pir);
+		writel(1, &regs->pcr);
+		/* fetch oob to check if it's a blank page */
+		if (ftnandc021_command(priv, FTNANDC021_CMD_RDOOB)) {
+			printf("ftnandc021: RDOOB failed.\n");
+			break;
+		}
+		ftnandc021_read_oob(mtd, chip->oob_poi, mtd->oobsize);
+		/* skip if we don't need page data */
+		if (priv->col >= mtd->writesize)
+			break;
+		/* skip if it's a blank page */
+		if (chip->oob_poi[8] != 'W') {
+			debug("ftnandc021: skip page %d\n", page);
+			break;
+		}
+		if (ftnandc021_command(priv, FTNANDC021_CMD_RDPG))
+			printf("ftnandc021: RDPG failed.\n");
+		break;
+
+	case NAND_CMD_ERASE1:	/* 0x60 */
+		writel(page, &regs->pir);
+		writel(1, &regs->pcr);
+		break;
+
+	case NAND_CMD_ERASE2:	/* 0xD0 */
+		if (ftnandc021_command(priv, FTNANDC021_CMD_ERBLK))
+			printf("ftnandc021: ERBLK failed\n");
+		break;
+
+	case NAND_CMD_STATUS:	/* 0x70 */
+		if (ftnandc021_command(priv, FTNANDC021_CMD_RDST))
+			printf("ftnandc021: RDST failed\n");
+		break;
+
+	case NAND_CMD_SEQIN:	/* 0x80 (Write Stage 1.) */
+		writel(page, &regs->pir);
+		writel(1, &regs->pcr);
+		/* OOB data must be set before issuing command */
+		ftnandc021_write_oob(mtd, chip->oob_poi, mtd->oobsize);
+		priv->cmd_hc = (priv->col >= mtd->writesize)
+			? FTNANDC021_CMD_WROOB : FTNANDC021_CMD_WRPG;
+		if (ftnandc021_command(priv, priv->cmd_hc))
+			printf("ftnandc021: CMD_HC=%d failed\n", priv->cmd_hc);
+		break;
+
+	case NAND_CMD_PAGEPROG:	/* 0x10 (Write Stage 2.) */
+		/* nothing needs to be done */
+		break;
+
+	case NAND_CMD_RESET:	/* 0xFF */
+		if (ftnandc021_command(priv, FTNANDC021_CMD_RESET))
+			printf("ftnandc021: RESET failed.\n");
+		break;
+
+	default:
+		printf("ftnandc021: unknown cmd=0x%x\n", cmd);
+	}
+}
+
+/**
+ * hardware specific access to control-lines
+ * @mtd: MTD device structure
+ * @cmd: command to device
+ * @ctrl:
+ * NAND_NCE: bit 0 -> don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ *
+ * NOTE: boards may use different bits for these!!
+ */
+static void ftnandc021_hwcontrol(struct mtd_info *mtd,
+	int cmd, unsigned int ctrl)
+{
+	/* nothing needs to be done */
+}
+
+int ftnandc021_init(struct nand_chip *chip, uint32_t iobase, int alen)
+{
+	struct ftnandc021_chip *priv;
+
+	priv = calloc(1, sizeof(struct ftnandc021_chip));
+	if (!priv)
+		return -ENOMEM;
+
+	priv->regs = (void __iomem *)iobase;
+	priv->pgsz = 1 << chip->page_shift;
+	priv->bksz = 1 << chip->phys_erase_shift;
+	priv->alen = alen;
+
+	chip->priv = priv;
+
+	debug("ftnandc021: pg=%dK, bk=%dK, alen=%d\n",
+		   priv->pgsz, priv->bksz, priv->alen);
+
+	/* hardware reset */
+	if (ftnandc021_reset(chip))
+		return -EINVAL;
+
+	/* hwcontrol always must be implemented */
+	chip->cmd_ctrl   = ftnandc021_hwcontrol;
+	chip->cmdfunc    = ftnandc021_cmdfunc;
+	chip->dev_ready  = ftnandc021_dev_ready;
+	chip->chip_delay = 0;
+
+	chip->read_byte  = ftnandc021_read_byte;
+	chip->read_word  = ftnandc021_read_word;
+	chip->read_buf   = ftnandc021_read_buf;
+	chip->write_buf  = ftnandc021_write_buf;
+	chip->verify_buf = ftnandc021_verify_buf;
+
+	return 0;
+}
diff --git a/include/faraday/ftnandc021.h b/include/faraday/ftnandc021.h
new file mode 100644
index 0000000..64af806
--- /dev/null
+++ b/include/faraday/ftnandc021.h
@@ -0,0 +1,153 @@
+/*
+ * Faraday NAND Flash Controller
+ *
+ * (C) Copyright 2010 Faraday Technology
+ * Dante Su <dantesu at faraday-tech.com>
+ *
+ * This file is released under the terms of GPL v2 and any later version.
+ * See the file COPYING in the root directory of the source tree for details.
+ */
+
+#ifndef __FTNANDC021_H
+#define __FTNANDC021_H
+
+/* NANDC control registers */
+struct ftnandc021_regs {
+	/* 0x000 ~ 0x0fc */
+	uint32_t ecc_pr[4];/* ECC Parity Register */
+	uint32_t ecc_sr;   /* ECC Status Register */
+	uint32_t rsvd0[59];
+
+	/* 0x100 ~ 0x1fc */
+	uint32_t sr;	 /* Status Register */
+	uint32_t acr;	 /* Access Control Register */
+	uint32_t fcr;	 /* Flow Control Register */
+	uint32_t pir;	 /* Page Index Register */
+	uint32_t mcr;	 /* Memory Configuration Register */
+	uint32_t atr[2]; /* AC Timing Register */
+	uint32_t rsvd1[1];
+	uint32_t idr[2]; /* Device ID Register */
+	uint32_t ier;	 /* Interrupt Enable Register */
+	uint32_t iscr;	 /* Interrupt Status Clear Register */
+	uint32_t rsvd2[4];
+	uint32_t bbiwr;	 /* Bad Block Info Write */
+	uint32_t lsn;	 /* LSN Initialize */
+	uint32_t crcwr;	 /* LSN CRC Write */
+	uint32_t lsnwr;	 /* LSN Write */
+	uint32_t bbird;	 /* Bad Block Info Read */
+	uint32_t lsnrd;	 /* LSN Read */
+	uint32_t crcrd;	 /* CRC Read */
+	uint32_t rsvd3[41];
+
+	/* 0x200 ~ 0x2fc */
+	uint32_t rsvd4[1];
+	uint32_t icr;	 /* BMC Interrupt Control Register */
+	uint32_t ior;	 /* BMC PIO Status Register */
+	uint32_t bcr;	 /* BMC Burst Control Register */
+	uint32_t rsvd5[60];
+
+	/* 0x300 ~ 0x3fc */
+	uint32_t dr;	 /* MLC Data Register */
+	uint32_t isr;	 /* MLC Interrupt Status Register */
+	uint32_t pcr;	 /* Page Count Register */
+	uint32_t srr;	 /* MLC Software Reset Register */
+	uint32_t rsvd7[58];
+	uint32_t revr;	 /* Revision Register */
+	uint32_t cfgr;	 /* Configuration Register */
+};
+
+/* ECC Status Register */
+#define ECC_SR_CERR      (1 << 3)  /* correction error */
+#define ECC_SR_ERR       (1 << 2)  /* ecc error */
+#define ECC_SR_DEC       (1 << 1)  /* ecc decode finished */
+#define ECC_SR_ENC       (1 << 0)  /* ecc encode finished */
+
+/* Status Register */
+#define SR_BLANK         (1 << 7)  /* blanking check failed */
+#define SR_ECC           (1 << 6)  /* ecc timeout */
+#define SR_STS           (1 << 4)  /* status error */
+#define SR_CRC           (1 << 3)  /* crc error */
+#define SR_CMD           (1 << 2)  /* command finished */
+#define SR_READY         (1 << 1)  /* chip ready/busy */
+#define SR_ENA           (1 << 0)  /* chip enabled */
+
+/* Access Control Register */
+#define ACR_CMD(x)       (((x) & 0x1f) << 8) /* command code */
+#define ACR_START        (1 << 7)  /* command start */
+
+/* Flow Control Register */
+#define FCR_SWCRC        (1 << 8)  /* CRC controlled by Software */
+#define FCR_IGNCRC       (1 << 7)  /* Bypass/Ignore CRC checking */
+#define FCR_16BIT        (1 << 4)  /* 16 bit data bus */
+#define FCR_WPROT        (1 << 3)  /* write protected */
+#define FCR_NOSC         (1 << 2)  /* bypass status check error */
+#define FCR_MICRON       (1 << 1)  /* Micron 2-plane command */
+#define FCR_NOBC         (1 << 0)  /* skip blanking check error */
+
+/* Interrupt Enable Register */
+#define IER_ENA          (1 << 7)  /* interrupt enabled */
+#define IER_ECC          (1 << 3)  /* ecc error timeout */
+#define IER_STS          (1 << 2)  /* status error */
+#define IER_CRC          (1 << 1)  /* crc error */
+#define IER_CMD          (1 << 0)  /* command finished */
+
+/* BMC PIO Status Register */
+#define IOR_READY        (1 << 0)  /* PIO ready */
+
+/* MLC Software Reset Register */
+#define SRR_ECC_EN       (1 << 8)  /* ECC enabled */
+#define SRR_NANDC_RESET  (1 << 2)  /* NANDC reset */
+#define SRR_BMC_RESET    (1 << 1)  /* BMC reset */
+#define SRR_ECC_RESET    (1 << 0)  /* ECC reset */
+#define SRR_CHIP_RESET   (SRR_NANDC_RESET | SRR_BMC_RESET | SRR_ECC_RESET)
+
+/* Memory Configuration Register */
+#define MCR_BS16P        (0 << 16) /* page count per block */
+#define MCR_BS32P        (1 << 16)
+#define MCR_BS64P        (2 << 16)
+#define MCR_BS128P       (3 << 16)
+#define MCR_1PLANE       (0 << 14) /* memory architecture */
+#define MCR_2PLANE       (1 << 14)
+#define MCR_SERIAL       (0 << 12) /* interleaving: off, 2 flash, 4 flash */
+#define MCR_IL2          (1 << 12)
+#define MCR_IL4          (2 << 12)
+#define MCR_ALEN3        (0 << 10) /* address length */
+#define MCR_ALEN4        (1 << 10)
+#define MCR_ALEN5        (2 << 10)
+#define MCR_PS512        (0 << 8)  /* size per page (bytes) */
+#define MCR_PS2048       (1 << 8)
+#define MCR_PS4096       (2 << 8)
+#define MCR_16MB         (0 << 4)  /* flash size */
+#define MCR_32MB         (1 << 4)
+#define MCR_64MB         (2 << 4)
+#define MCR_128MB        (3 << 4)
+#define MCR_256MB        (4 << 4)
+#define MCR_512MB        (5 << 4)
+#define MCR_1GB          (6 << 4)
+#define MCR_2GB          (7 << 4)
+#define MCR_4GB          (8 << 4)
+#define MCR_8GB          (9 << 4)
+#define MCR_16GB         (10 << 4)
+#define MCR_32GB         (11 << 4)
+#define MCR_ME(n)        (1 << (n)) /* module enable, 0 <= n <= 3 */
+
+/* Configuration Register */
+#define CFGR_ECC_TYPE(x) (((x) >> 16) & 0xf)
+#define CFGR_ECC_RS      4
+#define CFGR_ECC_BCH     8
+#define CFGR_IOBITS(x)   (((x) >> 8) & 0xff) /* Max. data width */
+#define CFGR_MAXFLS(x)   ((x) & 0xf) /* Max. flash chips */
+
+/* FTNANDC021 built-in command set */
+#define FTNANDC021_CMD_RDID  0x01   /* read id */
+#define FTNANDC021_CMD_RESET 0x02   /* reset flash */
+#define FTNANDC021_CMD_RDST  0x04   /* read status */
+#define FTNANDC021_CMD_RDPG  0x05   /* read page (data + oob) */
+#define FTNANDC021_CMD_RDOOB 0x06   /* read oob */
+#define FTNANDC021_CMD_WRPG  0x10   /* write page (data + oob) */
+#define FTNANDC021_CMD_ERBLK 0x11   /* erase block */
+#define FTNANDC021_CMD_WROOB 0x13   /* write oob */
+
+int ftnandc021_init(struct nand_chip *chip, uint32_t iobase, int alen);
+
+#endif /* EOF */
--
1.7.9.5



More information about the U-Boot mailing list