[U-Boot] [PATCH 2/2] mtd: denali: recover the same function prototypes as Linux Kernel
Masahiro Yamada
yamada.m at jp.panasonic.com
Fri Apr 18 13:30:46 CEST 2014
This patch is a review feedback against Denali NAND controller driver.
http://patchwork.ozlabs.org/patch/333077/
This is not applicable to the mainline.
--
This driver code has diverged too much from that of Linux Kernel.
The main cause was to drop "struct denali_nand_info *denali"
from the most of functions and to replace "denali->foo" with "denali.foo".
But is it necessary?
I think it just resulted in the difficulty of diffing and re-use of
the Linux code.
This patch revives "struct denali_nand_info *denali" and "denali->foo".
Signed-off-by: Masahiro Yamada <yamada.m at jp.panasonic.com>
Cc: Chin Liang See <clsee at altera.com>
Cc: Artem Bityutskiy <artem.bityutskiy at linux.intel.com>
Cc: David Woodhouse <David.Woodhouse at intel.com>
Cc: Brian Norris <computersforpeace at gmail.com>
Cc: Scott Wood <scottwood at freescale.com>
---
drivers/mtd/nand/denali.c | 608 +++++++++++++++++++++++++---------------------
1 file changed, 327 insertions(+), 281 deletions(-)
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index dcde3e6..565ca9e 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -7,6 +7,7 @@
*/
#include <common.h>
+#include <malloc.h>
#include <nand.h>
#include <asm/errno.h>
#include <asm/io.h>
@@ -15,7 +16,6 @@
#define NAND_DEFAULT_TIMINGS -1
-static struct denali_nand_info denali;
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
/* We define a macro here that combines all interrupts this driver uses into
@@ -40,6 +40,12 @@ static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
#define SUPPORT_8BITECC 1
+/*
+ * this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) (((struct nand_chip *)mtd->priv)->priv)
+
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
@@ -66,44 +72,53 @@ static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
#define BANK(x) ((x) << 24)
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(uint32_t irq_mask)
+static inline void clear_interrupt(struct denali_nand_info *denali,
+ uint32_t irq_mask)
{
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali.flash_bank);
- writel(irq_mask, denali.flash_reg + intr_status_reg);
+ uint32_t intr_status_reg;
+
+ intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+ writel(irq_mask, denali->flash_reg + intr_status_reg);
}
-static uint32_t read_interrupt_status(void)
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali.flash_bank);
- return readl(denali.flash_reg + intr_status_reg);
+ uint32_t intr_status_reg;
+
+ intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+ return readl(denali->flash_reg + intr_status_reg);
}
-static void clear_interrupts(void)
+static void clear_interrupts(struct denali_nand_info *denali)
{
- uint32_t status = 0;
- status = read_interrupt_status();
- clear_interrupt(status);
- denali.irq_status = 0;
+ uint32_t status;
+
+ status = read_interrupt_status(denali);
+ clear_interrupt(denali, status);
+
+ denali->irq_status = 0;
}
-static void denali_irq_enable(uint32_t int_mask)
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask)
{
int i;
- for (i = 0; i < denali.max_banks; ++i)
- writel(int_mask, denali.flash_reg + INTR_EN(i));
+
+ for (i = 0; i < denali->max_banks; ++i)
+ writel(int_mask, denali->flash_reg + INTR_EN(i));
}
-static uint32_t wait_for_irq(uint32_t irq_mask)
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long timeout = 1000000;
uint32_t intr_status;
do {
- intr_status = read_interrupt_status() & DENALI_IRQ_ALL;
+ intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
if (intr_status & irq_mask) {
- denali.irq_status &= ~irq_mask;
+ denali->irq_status &= ~irq_mask;
/* our interrupt was detected */
break;
}
@@ -114,7 +129,7 @@ static uint32_t wait_for_irq(uint32_t irq_mask)
if (timeout == 0) {
/* timeout */
printf("Denali timeout with interrupt status %08x\n",
- read_interrupt_status());
+ read_interrupt_status(denali));
intr_status = 0;
}
return intr_status;
@@ -126,80 +141,82 @@ static uint32_t wait_for_irq(uint32_t irq_mask)
* of the command to the device memory followed by the data. This function
* abstracts this common operation.
*/
-static void index_addr(uint32_t address, uint32_t data)
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
{
- writel(address, denali.flash_mem + INDEX_CTRL_REG);
- writel(data, denali.flash_mem + INDEX_DATA_REG);
+ writel(address, denali->flash_mem + INDEX_CTRL_REG);
+ writel(data, denali->flash_mem + INDEX_DATA_REG);
}
/* Perform an indexed read of the device */
-static void index_addr_read_data(uint32_t address, uint32_t *pdata)
+static void index_addr_read_data(struct denali_nand_info *denali,
+ uint32_t address, uint32_t *pdata)
{
- writel(address, denali.flash_mem + INDEX_CTRL_REG);
- *pdata = readl(denali.flash_mem + INDEX_DATA_REG);
+ writel(address, denali->flash_mem + INDEX_CTRL_REG);
+ *pdata = readl(denali->flash_mem + INDEX_DATA_REG);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
-static void reset_buf(void)
+static void reset_buf(struct denali_nand_info *denali)
{
- denali.buf.head = 0;
- denali.buf.tail = 0;
+ denali->buf.head = denali->buf.tail = 0;
}
-static void write_byte_to_buf(uint8_t byte)
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
- BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf));
- denali.buf.buf[denali.buf.tail++] = byte;
+ denali->buf.buf[denali->buf.tail++] = byte;
}
/* resets a specific device connected to the core */
-static void reset_bank(void)
+static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status;
uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
- clear_interrupts();
+ clear_interrupts(denali);
- writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET);
+ writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
- irq_status = wait_for_irq(irq_mask);
+ irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & INTR_STATUS__TIME_OUT)
debug(KERN_ERR "reset bank failed.\n");
}
/* Reset the flash controller */
-static uint32_t denali_nand_reset(void)
+static uint32_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
- for (i = 0; i < denali.max_banks; i++)
+ for (i = 0; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali.flash_reg + INTR_STATUS(i));
+ denali->flash_reg + INTR_STATUS(i));
- for (i = 0; i < denali.max_banks; i++) {
- writel(1 << i, denali.flash_reg + DEVICE_RESET);
- while (!(readl(denali.flash_reg + INTR_STATUS(i)) &
+ for (i = 0; i < denali->max_banks; i++) {
+ writel(1 << i, denali->flash_reg + DEVICE_RESET);
+ while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
- if (readl(denali.flash_reg + INTR_STATUS(i)) &
+ if (readl(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
debug(KERN_DEBUG "NAND Reset operation "
"timed out on bank %d\n", i);
}
- for (i = 0; i < denali.max_banks; i++)
+ for (i = 0; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali.flash_reg + INTR_STATUS(i));
+ denali->flash_reg + INTR_STATUS(i));
return 0;
}
-/* this routine calculates the ONFI timing values for a given mode and
+/*
+ * this routine calculates the ONFI timing values for a given mode and
* programs the clocking register accordingly. The mode is determined by
* the get_onfi_nand_para routine.
*/
-static void nand_onfi_timing_set(uint32_t mode)
+static void nand_onfi_timing_set(struct denali_nand_info *denali,
+ uint16_t mode)
{
uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
@@ -280,91 +297,93 @@ static void nand_onfi_timing_set(uint32_t mode)
#endif
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
- if ((readl(denali.flash_reg + MANUFACTURER_ID) == 0) &&
- (readl(denali.flash_reg + DEVICE_ID) == 0x88))
+ if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) &&
+ (readl(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
- writel(acc_clks, denali.flash_reg + ACC_CLKS);
- writel(re_2_we, denali.flash_reg + RE_2_WE);
- writel(re_2_re, denali.flash_reg + RE_2_RE);
- writel(we_2_re, denali.flash_reg + WE_2_RE);
- writel(addr_2_data, denali.flash_reg + ADDR_2_DATA);
- writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT);
- writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT);
- writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT);
+ writel(acc_clks, denali->flash_reg + ACC_CLKS);
+ writel(re_2_we, denali->flash_reg + RE_2_WE);
+ writel(re_2_re, denali->flash_reg + RE_2_RE);
+ writel(we_2_re, denali->flash_reg + WE_2_RE);
+ writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+ writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+ writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+ writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
/* queries the NAND device to see what ONFI modes it supports. */
-static uint32_t get_onfi_nand_para(void)
+static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
- /* we needn't to do a reset here because driver has already
+ /*
+ * we needn't to do a reset here because driver has already
* reset all the banks before
- * */
- if (!(readl(denali.flash_reg + ONFI_TIMING_MODE) &
+ */
+ if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return -EIO;
for (i = 5; i > 0; i--) {
- if (readl(denali.flash_reg + ONFI_TIMING_MODE) &
+ if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
(0x01 << i))
break;
}
- nand_onfi_timing_set(i);
+ nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
return 0;
}
-static void get_samsung_nand_para(uint8_t device_id)
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
{
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
- writel(5, denali.flash_reg + ACC_CLKS);
- writel(20, denali.flash_reg + RE_2_WE);
- writel(12, denali.flash_reg + WE_2_RE);
- writel(14, denali.flash_reg + ADDR_2_DATA);
- writel(3, denali.flash_reg + RDWR_EN_LO_CNT);
- writel(2, denali.flash_reg + RDWR_EN_HI_CNT);
- writel(2, denali.flash_reg + CS_SETUP_CNT);
+ writel(5, denali->flash_reg + ACC_CLKS);
+ writel(20, denali->flash_reg + RE_2_WE);
+ writel(12, denali->flash_reg + WE_2_RE);
+ writel(14, denali->flash_reg + ADDR_2_DATA);
+ writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
+ writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
+ writel(2, denali->flash_reg + CS_SETUP_CNT);
}
}
-static void get_toshiba_nand_para(void)
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
- if ((readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
- (readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE)
- == 64)){
- writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
- tmp = readl(denali.flash_reg + DEVICES_CONNECTED) *
- readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
- writel(tmp, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+ (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+ writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
+ readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
}
}
-static void get_hynix_nand_para(uint8_t device_id)
+static void get_hynix_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
{
uint32_t main_size, spare_size;
switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
- writel(128, denali.flash_reg + PAGES_PER_BLOCK);
- writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE);
- writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+ writel(128, denali->flash_reg + PAGES_PER_BLOCK);
+ writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+ writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 *
- readl(denali.flash_reg + DEVICES_CONNECTED);
+ readl(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 *
- readl(denali.flash_reg + DEVICES_CONNECTED);
- writel(main_size, denali.flash_reg + LOGICAL_PAGE_DATA_SIZE);
- writel(spare_size, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- writel(0, denali.flash_reg + DEVICE_WIDTH);
+ readl(denali->flash_reg + DEVICES_CONNECTED);
+ writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ writel(0, denali->flash_reg + DEVICE_WIDTH);
break;
default:
debug(KERN_WARNING
@@ -374,27 +393,28 @@ static void get_hynix_nand_para(uint8_t device_id)
}
}
-/* determines how many NAND chips are connected to the controller. Note for
+/*
+ * determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
-static void find_valid_banks(void)
+static void find_valid_banks(struct denali_nand_info *denali)
{
- uint32_t id[denali.max_banks];
+ uint32_t id[denali->max_banks];
int i;
- denali.total_used_banks = 1;
- for (i = 0; i < denali.max_banks; i++) {
- index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
- index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2),
- &id[i]);
+ denali->total_used_banks = 1;
+ for (i = 0; i < denali->max_banks; i++) {
+ index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+ index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+ index_addr_read_data(denali,
+ (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break;
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
- denali.total_used_banks++;
+ denali->total_used_banks++;
else
break;
}
@@ -405,39 +425,40 @@ static void find_valid_banks(void)
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
-static void detect_max_banks(void)
+static void detect_max_banks(struct denali_nand_info *denali)
{
- uint32_t features = readl(denali.flash_reg + FEATURES);
- denali.max_banks = 2 << (features & FEATURES__N_BANKS);
+ uint32_t features = readl(denali->flash_reg + FEATURES);
+ denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}
-static void detect_partition_feature(void)
+static void detect_partition_feature(struct denali_nand_info *denali)
{
- /* For MRST platform, denali.fwblks represent the
+ /*
+ * For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
- * */
- if (readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) {
- if ((readl(denali.flash_reg + PERM_SRC_ID(1)) &
+ */
+ if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+ if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
- denali.fwblks =
- ((readl(denali.flash_reg + MIN_MAX_BANK(1)) &
+ denali->fwblks =
+ ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
- denali.blksperchip)
+ denali->blksperchip)
+
- (readl(denali.flash_reg + MIN_BLK_ADDR(1)) &
+ (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else {
- denali.fwblks = SPECTRA_START_BLOCK;
+ denali->fwblks = SPECTRA_START_BLOCK;
}
} else {
- denali.fwblks = SPECTRA_START_BLOCK;
+ denali->fwblks = SPECTRA_START_BLOCK;
}
}
-static uint32_t denali_nand_timing_set(void)
+static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id;
@@ -447,35 +468,35 @@ static uint32_t denali_nand_timing_set(void)
* report the correct device ID by reading from
* DEVICE_ID register
* */
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
- index_addr((uint32_t)addr | 0, 0x90);
- index_addr((uint32_t)addr | 1, 0);
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, (uint32_t)addr | 0, 0x90);
+ index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
- index_addr_read_data(addr | 2, &id_bytes[i]);
+ index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
- if (readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+ if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
- if (get_onfi_nand_para())
+ if (get_onfi_nand_para(denali))
return -EIO;
} else if (maf_id == 0xEC) { /* Samsung NAND */
- get_samsung_nand_para(device_id);
+ get_samsung_nand_para(denali, device_id);
} else if (maf_id == 0x98) { /* Toshiba NAND */
- get_toshiba_nand_para();
+ get_toshiba_nand_para(denali);
} else if (maf_id == 0xAD) { /* Hynix NAND */
- get_hynix_nand_para(device_id);
+ get_hynix_nand_para(denali, device_id);
}
- find_valid_banks();
+ find_valid_banks(denali);
- detect_partition_feature();
+ detect_partition_feature(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
- nand_onfi_timing_set(onfi_timing_mode);
+ nand_onfi_timing_set(denali, onfi_timing_mode);
return 0;
}
@@ -488,26 +509,27 @@ static inline bool is_flash_bank_valid(int flash_bank)
return (flash_bank >= 0 && flash_bank < 4);
}
-static void denali_irq_init(void)
+static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
- writel(0, denali.flash_reg + GLOBAL_INT_ENABLE);
+ writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
- for (i = 0; i < denali.max_banks; ++i)
- writel(0xFFFF, denali.flash_reg + INTR_STATUS(i));
+ for (i = 0; i < denali->max_banks; ++i)
+ writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
- denali_irq_enable(int_mask);
+ denali_irq_enable(denali, int_mask);
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
-static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare)
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+ bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
@@ -516,40 +538,41 @@ static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare)
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
- writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE);
+ writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
/* applicable for MAP01 only */
- writel(transfer_spare_flag, denali.flash_reg + TRANSFER_SPARE_REG);
+ writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
-static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+ bool ecc_en, bool transfer_spare,
int access_type, int op)
{
- uint32_t addr = 0x0, cmd = 0x0, irq_status;
+ uint32_t addr, cmd, irq_status;
static uint32_t page_count = 1;
- setup_ecc_for_xfer(ecc_en, transfer_spare);
+ setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
/* clear interrupts */
- clear_interrupts();
+ clear_interrupts(denali);
- addr = BANK(denali.flash_bank) | denali.page;
+ addr = BANK(denali->flash_bank) | denali->page;
/* setup the acccess type */
cmd = MODE_10 | addr;
- index_addr(cmd, access_type);
+ index_addr(denali, cmd, access_type);
/* setup the pipeline command */
- index_addr(cmd, 0x2000 | op | page_count);
+ index_addr(denali, cmd, 0x2000 | op | page_count);
cmd = MODE_01 | addr;
- writel(cmd, denali.flash_mem + INDEX_CTRL_REG);
+ writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
if (op == DENALI_READ) {
/* wait for command to be accepted */
- irq_status = wait_for_irq(INTR_STATUS__LOAD_COMP);
+ irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
if (irq_status == 0)
return -EIO;
@@ -559,7 +582,8 @@ static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
}
/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(const void *buf, int len)
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+ const uint8_t *buf, int len)
{
uint32_t i = 0, *buf32;
@@ -570,12 +594,13 @@ static int write_data_to_flash_mem(const void *buf, int len)
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
- writel(*buf32++, denali.flash_mem + INDEX_DATA_REG);
+ writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
return i * 4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(uint8_t *buf, int len)
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+ uint8_t *buf, int len)
{
uint32_t i, *buf32;
@@ -593,42 +618,46 @@ static int read_data_from_flash_mem(uint8_t *buf, int len)
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
- *buf32++ = readl(denali.flash_mem + INDEX_DATA_REG);
+ *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
+
return i * 4; /* intent is to return the number of bytes read */
}
-static void denali_mode_main_access(void)
+static void denali_mode_main_access(struct denali_nand_info *denali)
{
uint32_t addr, cmd;
- addr = BANK(denali.flash_bank) | denali.page;
+
+ addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
- index_addr(cmd, MAIN_ACCESS);
+ index_addr(denali, cmd, MAIN_ACCESS);
}
-static void denali_mode_main_spare_access(void)
+static void denali_mode_main_spare_access(struct denali_nand_info *denali)
{
uint32_t addr, cmd;
- addr = BANK(denali.flash_bank) | denali.page;
+
+ addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
- index_addr(cmd, MAIN_SPARE_ACCESS);
+ index_addr(denali, cmd, MAIN_SPARE_ACCESS);
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status;
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0;
- denali.page = page;
+ denali->page = page;
- if (denali_send_pipeline_cmd(false, true, SPARE_ACCESS,
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_WRITE) == 0) {
- write_data_to_flash_mem(buf, mtd->oobsize);
+ write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
- irq_status = wait_for_irq(irq_mask);
+ irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev, "OOB write failed\n");
@@ -644,22 +673,23 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
irq_status = 0, addr = 0x0, cmd = 0x0;
- denali.page = page;
+ denali->page = page;
- if (denali_send_pipeline_cmd(false, true, SPARE_ACCESS,
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == 0) {
- read_data_from_flash_mem(buf, mtd->oobsize);
+ read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
- irq_status = wait_for_irq(irq_mask);
+ irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
- printf("page on OOB timeout %d\n", denali.page);
+ printf("page on OOB timeout %d\n", denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
@@ -667,16 +697,16 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
- addr = BANK(denali.flash_bank) | denali.page;
+ addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
- index_addr(cmd, MAIN_ACCESS);
+ index_addr(denali, cmd, MAIN_ACCESS);
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
-bool is_erased(uint8_t *buf, int len)
+static bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
@@ -685,80 +715,80 @@ bool is_erased(uint8_t *buf, int len)
return true;
}
-
/* programs the controller to either enable/disable DMA transfers */
-static void denali_enable_dma(bool en)
+static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
- writel(reg_val, denali.flash_reg + DMA_ENABLE);
- readl(denali.flash_reg + DMA_ENABLE);
+ writel(reg_val, denali->flash_reg + DMA_ENABLE);
+ readl(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
-static void denali_setup_dma(int op)
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
- const int page_count = 1;
uint32_t mode;
- uint32_t addr = (uint32_t)denali.buf.dma_buf;
+ const int page_count = 1;
+ uint32_t addr = (uint32_t)denali->buf.dma_buf;
- flush_dcache_range(addr, addr + sizeof(denali.buf.dma_buf));
+ flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
#ifdef CONFIG_NAND_DENALI_64BIT
- mode = MODE_10 | BANK(denali.flash_bank) | denali.page;
+ mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
/* DMA is a three step process */
/* 1. setup transfer type, interrupt when complete,
burst len = 64 bytes, the number of pages */
- index_addr(mode, 0x01002000 | (64 << 16) | op | page_count);
+ index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
/* 2. set memory low address bits 31:0 */
- index_addr(mode, addr);
+ index_addr(denali, mode, addr);
/* 3. set memory high address bits 64:32 */
- index_addr(mode, 0);
+ index_addr(denali, mode, 0);
#else
- mode = MODE_10 | BANK(denali.flash_bank);
+ mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
- index_addr(mode | denali.page, 0x2000 | op | page_count);
+ index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
- index_addr(mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
+ index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
- index_addr(mode | ((uint32_t)addr << 8), 0x2300);
+ index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
- index_addr(mode | 0x14000, 0x2400);
+ index_addr(denali, mode | 0x14000, 0x2400);
#endif
}
/* Common DMA function */
-static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
+static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
+ uint32_t ops, bool raw_xfer,
uint32_t irq_mask, int oob_required)
{
uint32_t irq_status = 0;
/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
- setup_ecc_for_xfer(!raw_xfer, oob_required);
+ setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
/* clear any previous interrupt flags */
- clear_interrupts();
+ clear_interrupts(denali);
/* enable the DMA */
- denali_enable_dma(true);
+ denali_enable_dma(denali, true);
/* setup the DMA */
- denali_setup_dma(ops);
+ denali_setup_dma(denali, ops);
/* wait for operation to complete */
- irq_status = wait_for_irq(irq_mask);
+ irq_status = wait_for_irq(denali, irq_mask);
/* if ECC fault happen, seems we need delay before turning off DMA.
* If not, the controller will go into non responsive condition */
@@ -766,7 +796,7 @@ static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
udelay(100);
/* disable the DMA */
- denali_enable_dma(false);
+ denali_enable_dma(denali, false);
return irq_status;
}
@@ -774,33 +804,35 @@ static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer, int oob_required)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
- denali.status = 0;
+ denali->status = 0;
/* copy buffer into DMA buffer */
- memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize);
+ memcpy((void *)denali->buf.dma_buf, buf, mtd->writesize);
/* need extra memcpoy for raw transfer */
if (raw_xfer)
- memcpy((void *)denali.buf.dma_buf + mtd->writesize,
+ memcpy((void *)denali->buf.dma_buf + mtd->writesize,
chip->oob_poi, mtd->oobsize);
/* setting up DMA */
- irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask,
- oob_required);
+ irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
+ irq_mask, oob_required);
/* if timeout happen, error out */
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
debug("DMA timeout for denali write_page\n");
- denali.status = NAND_STATUS_FAIL;
+ denali->status = NAND_STATUS_FAIL;
return -EIO;
}
if (irq_status & INTR_STATUS__LOCKED_BLK) {
debug("Failed as write to locked block\n");
- denali.status = NAND_STATUS_FAIL;
+ denali->status = NAND_STATUS_FAIL;
return -EIO;
}
return 0;
@@ -816,18 +848,18 @@ static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
/*
* for regular page writes, we let HW handle all the ECC
* data written to the device.
*/
- debug("denali_write_page at page %08x\n", denali.page);
-
if (oob_required)
/* switch to main + spare access */
- denali_mode_main_spare_access();
+ denali_mode_main_spare_access(denali);
else
/* switch to main access only */
- denali_mode_main_access();
+ denali_mode_main_access(denali);
return write_page(mtd, chip, buf, false, oob_required);
}
@@ -840,18 +872,19 @@ static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
/*
* for raw page writes, we want to disable ECC and simply write
* whatever data is in the buffer.
*/
- debug("denali_write_page_raw at page %08x\n", denali.page);
if (oob_required)
/* switch to main + spare access */
- denali_mode_main_spare_access();
+ denali_mode_main_spare_access(denali);
else
/* switch to main access only */
- denali_mode_main_access();
+ denali_mode_main_access(denali);
return write_page(mtd, chip, buf, true, oob_required);
}
@@ -866,24 +899,25 @@ static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
- debug("denali_read_page_raw at page %08x\n", page);
- if (denali.page != page) {
+ if (denali->page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
}
if (oob_required)
/* switch to main + spare access */
- denali_mode_main_spare_access();
+ denali_mode_main_spare_access(denali);
else
/* switch to main access only */
- denali_mode_main_access();
+ denali_mode_main_access(denali);
/* setting up the DMA where ecc_enable is false */
- irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask,
- oob_required);
+ irq_status = denali_dma_configuration(denali, DENALI_READ, true,
+ irq_mask, oob_required);
/* if timeout happen, error out */
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
@@ -892,44 +926,42 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
}
/* splitting the content to destination buffer holder */
- memcpy(chip->oob_poi, (denali.buf.dma_buf + mtd->writesize),
+ memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
mtd->oobsize);
- memcpy(buf, denali.buf.dma_buf, mtd->writesize);
- debug("buf %02x %02x\n", buf[0], buf[1]);
- debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]);
+ memcpy(buf, denali->buf.dma_buf, mtd->writesize);
+
return 0;
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
- debug("denali_read_page at page %08x\n", page);
- if (denali.page != page) {
+ if (denali->page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
}
if (oob_required)
/* switch to main + spare access */
- denali_mode_main_spare_access();
+ denali_mode_main_spare_access(denali);
else
/* switch to main access only */
- denali_mode_main_access();
+ denali_mode_main_access(denali);
/* setting up the DMA where ecc_enable is true */
- irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask,
- oob_required);
+ irq_status = denali_dma_configuration(denali, DENALI_READ, false,
+ irq_mask, oob_required);
- memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
- debug("buf %02x %02x\n", buf[0], buf[1]);
+ memcpy(buf, (const void *)denali->buf.dma_buf, mtd->writesize);
/* check whether any ECC error */
if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
/* is the ECC cause by erase page, check using read_page_raw */
debug(" Uncorrected ECC detected\n");
- denali_read_page_raw(mtd, chip, buf, oob_required, denali.page);
+ denali_read_page_raw(mtd, chip, buf, oob_required, denali->page);
if (is_erased(buf, mtd->writesize) == true &&
is_erased(chip->oob_poi, mtd->oobsize) == true) {
@@ -939,18 +971,10 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
return -EIO;
}
}
- memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
+ memcpy(buf, (const void *)denali->buf.dma_buf, mtd->writesize);
return 0;
}
-static uint8_t denali_read_byte(struct mtd_info *mtd)
-{
- uint32_t addr, result;
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
- index_addr_read_data((uint32_t)addr | 2, &result);
- return (uint8_t)result & 0xFF;
-}
-
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
@@ -959,91 +983,105 @@ static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
return 0;
}
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t addr, result;
+
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+ index_addr_read_data(denali, addr | 2, &result);
+ return (uint8_t)result & 0xFF;
+}
+
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t i, addr, result;
/* delay for tR (data transfer from Flash array to data register) */
udelay(25);
/* ensure device completed else additional delay and polling */
- wait_for_irq(INTR_STATUS__INT_ACT);
+ wait_for_irq(denali, INTR_STATUS__INT_ACT);
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
for (i = 0; i < len; i++) {
- index_addr_read_data((uint32_t)addr | 2, &result);
- write_byte_to_buf(result);
+ index_addr_read_data(denali, (uint32_t)addr | 2, &result);
+ write_byte_to_buf(denali, result);
}
- memcpy(buf, denali.buf.buf, len);
+ memcpy(buf, denali->buf.buf, len);
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
- denali.flash_bank = chip;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+ denali->flash_bank = chip;
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
- int status = denali.status;
- denali.status = 0;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ int status = denali->status;
+ denali->status = 0;
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
- uint32_t cmd = 0x0, irq_status = 0;
-
- debug("denali_erase at page %08x\n", page);
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t cmd, irq_status;
/* clear interrupts */
- clear_interrupts();
+ clear_interrupts(denali);
/* setup page read request for access type */
- cmd = MODE_10 | BANK(denali.flash_bank) | page;
- index_addr((uint32_t)cmd, 0x1);
+ cmd = MODE_10 | BANK(denali->flash_bank) | page;
+ index_addr(denali, cmd, 0x1);
/* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP |
- INTR_STATUS__ERASE_FAIL);
+ irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
+ INTR_STATUS__ERASE_FAIL);
if (irq_status & INTR_STATUS__ERASE_FAIL ||
irq_status & INTR_STATUS__LOCKED_BLK)
- denali.status = NAND_STATUS_FAIL;
+ denali->status = NAND_STATUS_FAIL;
else
- denali.status = 0;
+ denali->status = 0;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
- addr = MODE_11 | BANK(denali.flash_bank);
- index_addr(addr | 0, cmd);
+ addr = MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, cmd);
break;
case NAND_CMD_PARAM:
- clear_interrupts();
+ clear_interrupts(denali);
case NAND_CMD_READID:
- reset_buf();
+ reset_buf(denali);
/* sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
- addr = MODE_11 | BANK(denali.flash_bank);
- index_addr(addr | 0, cmd);
- index_addr(addr | 1, col & 0xFF);
+ addr = MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, cmd);
+ index_addr(denali, addr | 1, col & 0xFF);
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
- denali.page = page;
+ denali->page = page;
break;
case NAND_CMD_RESET:
- reset_bank();
+ reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
@@ -1060,20 +1098,20 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
/* nothing to do here as it was done during NAND_CMD_ERASE1 */
break;
case NAND_CMD_UNLOCK1:
- addr = MODE_10 | BANK(denali.flash_bank) | page;
- index_addr(addr | 0, DENALI_UNLOCK_START);
+ addr = MODE_10 | BANK(denali->flash_bank) | page;
+ index_addr(denali, addr | 0, DENALI_UNLOCK_START);
break;
case NAND_CMD_UNLOCK2:
- addr = MODE_10 | BANK(denali.flash_bank) | page;
- index_addr(addr | 0, DENALI_UNLOCK_END);
+ addr = MODE_10 | BANK(denali->flash_bank) | page;
+ index_addr(denali, addr | 0, DENALI_UNLOCK_END);
break;
case NAND_CMD_LOCK:
- addr = MODE_10 | BANK(denali.flash_bank);
- index_addr(addr | 0, DENALI_LOCK);
+ addr = MODE_10 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, DENALI_LOCK);
break;
case NAND_CMD_LOCK_TIGHT:
- addr = MODE_10 | BANK(denali.flash_bank);
- index_addr(addr | 0, DENALI_LOCK_TIGHT);
+ addr = MODE_10 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, DENALI_LOCK_TIGHT);
break;
default:
printf(": unsupported command received 0x%x\n", cmd);
@@ -1083,34 +1121,42 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
-static void denali_hw_init(void)
+static void denali_hw_init(struct denali_nand_info *denali)
{
/*
* tell driver how many bit controller will skip before writing
* ECC code in OOB. This is normally used for bad block marker
*/
writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
- denali.flash_reg + SPARE_AREA_SKIP_BYTES);
- detect_max_banks();
- denali_nand_reset();
- writel(0x0F, denali.flash_reg + RB_PIN_ENABLED);
+ denali->flash_reg + SPARE_AREA_SKIP_BYTES);
+ detect_max_banks(denali);
+ denali_nand_reset(denali);
+ writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
writel(CHIP_EN_DONT_CARE__FLAG,
- denali.flash_reg + CHIP_ENABLE_DONT_CARE);
- writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER);
+ denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+ writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
- writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES);
- writel(1, denali.flash_reg + ECC_ENABLE);
- denali_nand_timing_set();
- denali_irq_init();
+ writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+ writel(1, denali->flash_reg + ECC_ENABLE);
+ denali_nand_timing_set(denali);
+ denali_irq_init(denali);
}
static struct nand_ecclayout nand_oob;
static int denali_nand_init(struct nand_chip *nand)
{
- denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
- denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+ struct denali_nand_info *denali;
+
+ denali = malloc(sizeof(*denali));
+ if (!denali)
+ return -ENOMEM;
+
+ nand->priv = denali;
+
+ denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+ denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
/* check whether flash got BBT table (located at end of flash). As we
@@ -1137,7 +1183,7 @@ static int denali_nand_init(struct nand_chip *nand)
* Tell driver the ecc strength. This register may be already set
* correctly. So we read this value out.
*/
- nand->ecc.strength = readl(denali.flash_reg + ECC_CORRECTION);
+ nand->ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
switch (nand->ecc.size) {
case 512:
nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2;
@@ -1158,7 +1204,7 @@ static int denali_nand_init(struct nand_chip *nand)
nand->read_buf = denali_read_buf;
nand->select_chip = denali_select_chip;
nand->waitfunc = denali_waitfunc;
- denali_hw_init();
+ denali_hw_init(denali);
return 0;
}
--
1.8.3.2
More information about the U-Boot
mailing list