[U-Boot] [PATCH] nand/denali: Adding Denali NAND driver support
Chin Liang See
clsee at altera.com
Thu Jan 9 15:47:09 CET 2014
Hi guys,
Wonder any comments for this patch?
Thanks
Chin Liang
On Wed, 2013-12-18 at 15:18 -0600, Chin Liang See wrote:
> To add the Denali NAND driver support into U-Boot. It required
> information such as register base address from configuration
> header file within include/configs folder.
>
> Signed-off-by: Chin Liang See <clsee at altera.com>
> Cc: Artem Bityutskiy <artem.bityutskiy at linux.intel.com>
> Cc: David Woodhouse <David.Woodhouse at intel.com>
> Cc: Brian Norris <computersforpeace at gmail.com>
> Cc: Scott Wood <scottwood at freescale.com>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/denali_nand.c | 1166 ++++++++++++++++++++++++++++++++++++++++
> drivers/mtd/nand/denali_nand.h | 501 +++++++++++++++++
> 3 files changed, 1668 insertions(+)
> create mode 100644 drivers/mtd/nand/denali_nand.c
> create mode 100644 drivers/mtd/nand/denali_nand.h
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 02b149c..24e8218 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -39,6 +39,7 @@ obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o
> obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
> obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
> obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
> +obj-$(CONFIG_NAND_DENALI) += denali_nand.o
> obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
> obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
> obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
> diff --git a/drivers/mtd/nand/denali_nand.c b/drivers/mtd/nand/denali_nand.c
> new file mode 100644
> index 0000000..55246c9
> --- /dev/null
> +++ b/drivers/mtd/nand/denali_nand.c
> @@ -0,0 +1,1166 @@
> +/*
> + * Copyright (C) 2013 Altera Corporation <www.altera.com>
> + * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
> + *
> + * SPDX-License-Identifier: GPL-2.0+
> + */
> +
> +#include <common.h>
> +#include <nand.h>
> +#include <asm/errno.h>
> +#include <asm/io.h>
> +
> +#include "denali_nand.h"
> +
> +/* We define a module parameter that allows the user to override
> + * the hardware and decide what timing mode should be used.
> + */
> +#define NAND_DEFAULT_TIMINGS -1
> +
> +static struct denali_nand_info denali;
> +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
> +
> +/* We define a macro here that combines all interrupts this driver uses into
> + * a single constant value, for convenience. */
> +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
> + INTR_STATUS__ECC_TRANSACTION_DONE | \
> + INTR_STATUS__ECC_ERR | \
> + INTR_STATUS__PROGRAM_FAIL | \
> + INTR_STATUS__LOAD_COMP | \
> + INTR_STATUS__PROGRAM_COMP | \
> + INTR_STATUS__TIME_OUT | \
> + INTR_STATUS__ERASE_FAIL | \
> + INTR_STATUS__RST_COMP | \
> + INTR_STATUS__ERASE_COMP | \
> + INTR_STATUS__ECC_UNCOR_ERR | \
> + INTR_STATUS__INT_ACT | \
> + INTR_STATUS__LOCKED_BLK)
> +
> +/* indicates whether or not the internal value for the flash bank is
> + * valid or not */
> +#define CHIP_SELECT_INVALID -1
> +
> +#define SUPPORT_8BITECC 1
> +
> +/* This macro divides two integers and rounds fractional values up
> + * to the nearest integer value. */
> +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
> +
> +/* These constants are defined by the driver to enable common driver
> + * configuration options. */
> +#define SPARE_ACCESS 0x41
> +#define MAIN_ACCESS 0x42
> +#define MAIN_SPARE_ACCESS 0x43
> +
> +#define DENALI_UNLOCK_START 0x10
> +#define DENALI_UNLOCK_END 0x11
> +#define DENALI_LOCK 0x21
> +#define DENALI_LOCK_TIGHT 0x31
> +#define DENALI_BUFFER_LOAD 0x60
> +#define DENALI_BUFFER_WRITE 0x62
> +
> +#define DENALI_READ 0
> +#define DENALI_WRITE 0x100
> +
> +/* types of device accesses. We can issue commands and get status */
> +#define COMMAND_CYCLE 0
> +#define ADDR_CYCLE 1
> +#define STATUS_CYCLE 2
> +
> +/* this is a helper macro that allows us to
> + * format the bank into the proper bits for the controller */
> +#define BANK(x) ((x) << 24)
> +
> +/* Interrupts are cleared by writing a 1 to the appropriate status bit */
> +static inline void clear_interrupt(uint32_t irq_mask)
> +{
> + uint32_t intr_status_reg = 0;
> + intr_status_reg = INTR_STATUS(denali.flash_bank);
> + __raw_writel(irq_mask, denali.flash_reg + intr_status_reg);
> +}
> +
> +static uint32_t read_interrupt_status(void)
> +{
> + uint32_t intr_status_reg = 0;
> + intr_status_reg = INTR_STATUS(denali.flash_bank);
> + return __raw_readl(denali.flash_reg + intr_status_reg);
> +}
> +
> +static void clear_interrupts(void)
> +{
> + uint32_t status = 0x0;
> + status = read_interrupt_status();
> + clear_interrupt(status);
> + denali.irq_status = 0x0;
> +}
> +
> +static void denali_irq_enable(uint32_t int_mask)
> +{
> + int i;
> + for (i = 0; i < denali.max_banks; ++i)
> + __raw_writel(int_mask, denali.flash_reg + INTR_EN(i));
> +}
> +
> +static uint32_t wait_for_irq(uint32_t irq_mask)
> +{
> + unsigned long comp_res = 1000;
> + uint32_t intr_status = 0;
> +
> + do {
> + intr_status = read_interrupt_status() & DENALI_IRQ_ALL;
> + if (intr_status & irq_mask) {
> + denali.irq_status &= ~irq_mask;
> + /* our interrupt was detected */
> + break;
> + }
> + udelay(1);
> + comp_res--;
> + } while (comp_res != 0);
> +
> + if (comp_res == 0) {
> + /* timeout */
> + printf("Denali timeout with interrupt status %08x\n",
> + read_interrupt_status());
> + intr_status = 0;
> + }
> + return intr_status;
> +}
> +
> +/* Certain operations for the denali NAND controller use
> + * an indexed mode to read/write data. The operation is
> + * performed by writing the address value of the command
> + * to the device memory followed by the data. This function
> + * abstracts this common operation.
> +*/
> +static void index_addr(uint32_t address, uint32_t data)
> +{
> + __raw_writel(address, denali.flash_mem);
> + __raw_writel(data, denali.flash_mem + 0x10);
> +}
> +
> +/* Perform an indexed read of the device */
> +static void index_addr_read_data(uint32_t address, uint32_t *pdata)
> +{
> + __raw_writel(address, denali.flash_mem);
> + *pdata = __raw_readl(denali.flash_mem + 0x10);
> +}
> +
> +/* We need to buffer some data for some of the NAND core routines.
> + * The operations manage buffering that data. */
> +static void reset_buf(void)
> +{
> + denali.buf.head = denali.buf.tail = 0;
> +}
> +
> +static void write_byte_to_buf(uint8_t byte)
> +{
> + BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf));
> + denali.buf.buf[denali.buf.tail++] = byte;
> +}
> +
> +/* resets a specific device connected to the core */
> +static void reset_bank(void)
> +{
> + uint32_t irq_status = 0;
> + uint32_t irq_mask = INTR_STATUS__RST_COMP |
> + INTR_STATUS__TIME_OUT;
> +
> + clear_interrupts();
> +
> + __raw_writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET);
> +
> + irq_status = wait_for_irq(irq_mask);
> + if (irq_status & INTR_STATUS__TIME_OUT)
> + debug(KERN_ERR "reset bank failed.\n");
> +}
> +
> +/* Reset the flash controller */
> +static uint16_t denali_nand_reset(void)
> +{
> + uint32_t i;
> +
> + for (i = 0 ; i < denali.max_banks; i++)
> + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
> + denali.flash_reg + INTR_STATUS(i));
> +
> + for (i = 0 ; i < denali.max_banks; i++) {
> + __raw_writel(1 << i, denali.flash_reg + DEVICE_RESET);
> + while (!(__raw_readl(denali.flash_reg + INTR_STATUS(i)) &
> + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
> + if (__raw_readl(denali.flash_reg + INTR_STATUS(i)) &
> + INTR_STATUS__TIME_OUT)
> + debug(KERN_DEBUG "NAND Reset operation "
> + "timed out on bank %d\n", i);
> + }
> +
> + for (i = 0; i < denali.max_banks; i++)
> + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
> + denali.flash_reg + INTR_STATUS(i));
> +
> + return PASS;
> +}
> +
> +/* this routine calculates the ONFI timing values for a given mode and
> + * programs the clocking register accordingly. The mode is determined by
> + * the get_onfi_nand_para routine.
> + */
> +static void nand_onfi_timing_set(uint16_t mode)
> +{
> + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
> + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
> + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
> + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
> + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
> + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
> + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
> + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
> + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
> + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
> + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
> + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
> +
> + uint16_t TclsRising = 1;
> + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
> + uint16_t dv_window = 0;
> + uint16_t en_lo, en_hi;
> + uint16_t acc_clks;
> + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
> +
> + en_lo = CEIL_DIV(Trp[mode], CLK_X);
> + en_hi = CEIL_DIV(Treh[mode], CLK_X);
> +#if ONFI_BLOOM_TIME
> + if ((en_hi * CLK_X) < (Treh[mode] + 2))
> + en_hi++;
> +#endif
> +
> + if ((en_lo + en_hi) * CLK_X < Trc[mode])
> + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
> +
> + if ((en_lo + en_hi) < CLK_MULTI)
> + en_lo += CLK_MULTI - en_lo - en_hi;
> +
> + while (dv_window < 8) {
> + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
> +
> + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
> +
> + data_invalid =
> + data_invalid_rhoh <
> + data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
> +
> + dv_window = data_invalid - Trea[mode];
> +
> + if (dv_window < 8)
> + en_lo++;
> + }
> +
> + acc_clks = CEIL_DIV(Trea[mode], CLK_X);
> +
> + while (((acc_clks * CLK_X) - Trea[mode]) < 3)
> + acc_clks++;
> +
> + if ((data_invalid - acc_clks * CLK_X) < 2)
> + debug(KERN_WARNING "%s, Line %d: Warning!\n",
> + __FILE__, __LINE__);
> +
> + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
> + re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
> + re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
> + we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
> + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
> + if (!TclsRising)
> + cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
> + if (cs_cnt == 0)
> + cs_cnt = 1;
> +
> + if (Tcea[mode]) {
> + while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
> + cs_cnt++;
> + }
> +
> +#if MODE5_WORKAROUND
> + if (mode == 5)
> + acc_clks = 5;
> +#endif
> +
> + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
> + if ((__raw_readl(denali.flash_reg + MANUFACTURER_ID) == 0) &&
> + (__raw_readl(denali.flash_reg + DEVICE_ID) == 0x88))
> + acc_clks = 6;
> +
> + __raw_writel(acc_clks, denali.flash_reg + ACC_CLKS);
> + __raw_writel(re_2_we, denali.flash_reg + RE_2_WE);
> + __raw_writel(re_2_re, denali.flash_reg + RE_2_RE);
> + __raw_writel(we_2_re, denali.flash_reg + WE_2_RE);
> + __raw_writel(addr_2_data, denali.flash_reg + ADDR_2_DATA);
> + __raw_writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT);
> + __raw_writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT);
> + __raw_writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT);
> +}
> +
> +/* queries the NAND device to see what ONFI modes it supports. */
> +static uint16_t get_onfi_nand_para(void)
> +{
> + int i;
> + /* we needn't to do a reset here because driver has already
> + * reset all the banks before
> + * */
> + if (!(__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) &
> + ONFI_TIMING_MODE__VALUE))
> + return FAIL;
> +
> + for (i = 5; i > 0; i--) {
> + if (__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) &
> + (0x01 << i))
> + break;
> + }
> +
> + nand_onfi_timing_set(i);
> +
> + /* By now, all the ONFI devices we know support the page cache */
> + /* rw feature. So here we enable the pipeline_rw_ahead feature */
> + /* __raw_writel(1, denali.flash_reg + CACHE_WRITE_ENABLE); */
> + /* __raw_writel(1, denali.flash_reg + CACHE_READ_ENABLE); */
> +
> + return PASS;
> +}
> +
> +static void get_samsung_nand_para(uint8_t device_id)
> +{
> + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
> + /* Set timing register values according to datasheet */
> + __raw_writel(5, denali.flash_reg + ACC_CLKS);
> + __raw_writel(20, denali.flash_reg + RE_2_WE);
> + __raw_writel(12, denali.flash_reg + WE_2_RE);
> + __raw_writel(14, denali.flash_reg + ADDR_2_DATA);
> + __raw_writel(3, denali.flash_reg + RDWR_EN_LO_CNT);
> + __raw_writel(2, denali.flash_reg + RDWR_EN_HI_CNT);
> + __raw_writel(2, denali.flash_reg + CS_SETUP_CNT);
> + }
> +}
> +
> +static void get_toshiba_nand_para(void)
> +{
> + uint32_t tmp;
> +
> + /* Workaround to fix a controller bug which reports a wrong */
> + /* spare area size for some kind of Toshiba NAND device */
> + if ((__raw_readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
> + (__raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE)
> + == 64)){
> + __raw_writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
> + tmp = __raw_readl(denali.flash_reg + DEVICES_CONNECTED) *
> + __raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
> + __raw_writel(tmp,
> + denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
> +#if SUPPORT_15BITECC
> + __raw_writel(15, denali.flash_reg + ECC_CORRECTION);
> +#elif SUPPORT_8BITECC
> + __raw_writel(8, denali.flash_reg + ECC_CORRECTION);
> +#endif
> + }
> +}
> +
> +static void get_hynix_nand_para(uint8_t device_id)
> +{
> + uint32_t main_size, spare_size;
> +
> + switch (device_id) {
> + case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
> + case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
> + __raw_writel(128, denali.flash_reg + PAGES_PER_BLOCK);
> + __raw_writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE);
> + __raw_writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
> + main_size = 4096 *
> + __raw_readl(denali.flash_reg + DEVICES_CONNECTED);
> + spare_size = 224 *
> + __raw_readl(denali.flash_reg + DEVICES_CONNECTED);
> + __raw_writel(main_size,
> + denali.flash_reg + LOGICAL_PAGE_DATA_SIZE);
> + __raw_writel(spare_size,
> + denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
> + __raw_writel(0, denali.flash_reg + DEVICE_WIDTH);
> +#if SUPPORT_15BITECC
> + __raw_writel(15, denali.flash_reg + ECC_CORRECTION);
> +#elif SUPPORT_8BITECC
> + __raw_writel(8, denali.flash_reg + ECC_CORRECTION);
> +#endif
> + break;
> + default:
> + debug(KERN_WARNING
> + "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
> + "Will use default parameter values instead.\n",
> + device_id);
> + }
> +}
> +
> +/* determines how many NAND chips are connected to the controller. Note for
> + * Intel CE4100 devices we don't support more than one device.
> + */
> +static void find_valid_banks(void)
> +{
> + uint32_t id[denali.max_banks];
> + int i;
> +
> + denali.total_used_banks = 1;
> + for (i = 0; i < denali.max_banks; i++) {
> + index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
> + index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0);
> + index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2),
> + &id[i]);
> +
> + if (i == 0) {
> + if (!(id[i] & 0x0ff))
> + break; /* WTF? */
> + } else {
> + if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
> + denali.total_used_banks++;
> + else
> + break;
> + }
> + }
> +}
> +
> +/*
> + * Use the configuration feature register to determine the maximum number of
> + * banks that the hardware supports.
> + */
> +static void detect_max_banks(void)
> +{
> + uint32_t features = __raw_readl(denali.flash_reg + FEATURES);
> + denali.max_banks = 2 << (features & FEATURES__N_BANKS);
> +}
> +
> +static void detect_partition_feature(void)
> +{
> + /* For MRST platform, denali.fwblks represent the
> + * number of blocks firmware is taken,
> + * FW is in protect partition and MTD driver has no
> + * permission to access it. So let driver know how many
> + * blocks it can't touch.
> + * */
> + if (__raw_readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) {
> + if ((__raw_readl(denali.flash_reg + PERM_SRC_ID(1)) &
> + PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
> + denali.fwblks =
> + ((__raw_readl(denali.flash_reg + MIN_MAX_BANK(1)) &
> + MIN_MAX_BANK__MIN_VALUE) *
> + denali.blksperchip)
> + +
> + (__raw_readl(denali.flash_reg + MIN_BLK_ADDR(1)) &
> + MIN_BLK_ADDR__VALUE);
> + } else
> + denali.fwblks = SPECTRA_START_BLOCK;
> + } else
> + denali.fwblks = SPECTRA_START_BLOCK;
> +}
> +
> +static uint16_t denali_nand_timing_set(void)
> +{
> + uint16_t status = PASS;
> + uint32_t id_bytes[5], addr;
> + uint8_t i, maf_id, device_id;
> +
> + /* Use read id method to get device ID and other
> + * params. For some NAND chips, controller can't
> + * report the correct device ID by reading from
> + * DEVICE_ID register
> + * */
> + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
> + index_addr((uint32_t)addr | 0, 0x90);
> + index_addr((uint32_t)addr | 1, 0);
> + for (i = 0; i < 5; i++)
> + index_addr_read_data(addr | 2, &id_bytes[i]);
> + maf_id = id_bytes[0];
> + device_id = id_bytes[1];
> +
> + if (__raw_readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
> + ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
> + if (FAIL == get_onfi_nand_para())
> + return FAIL;
> + } else if (maf_id == 0xEC) { /* Samsung NAND */
> + get_samsung_nand_para(device_id);
> + } else if (maf_id == 0x98) { /* Toshiba NAND */
> + get_toshiba_nand_para();
> + } else if (maf_id == 0xAD) { /* Hynix NAND */
> + get_hynix_nand_para(device_id);
> + }
> +
> + find_valid_banks();
> +
> + detect_partition_feature();
> +
> + /* If the user specified to override the default timings
> + * with a specific ONFI mode, we apply those changes here.
> + */
> + if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
> + nand_onfi_timing_set(onfi_timing_mode);
> +
> + return status;
> +}
> +
> +static void denali_set_intr_modes(uint16_t INT_ENABLE)
> +{
> + if (INT_ENABLE)
> + __raw_writel(1, denali.flash_reg + GLOBAL_INT_ENABLE);
> + else
> + __raw_writel(0, denali.flash_reg + GLOBAL_INT_ENABLE);
> +}
> +
> +/* validation function to verify that the controlling software is making
> + * a valid request
> + */
> +static inline bool is_flash_bank_valid(int flash_bank)
> +{
> + return (flash_bank >= 0 && flash_bank < 4);
> +}
> +
> +static void denali_irq_init(void)
> +{
> + uint32_t int_mask = 0;
> + int i;
> +
> + /* Disable global interrupts */
> + denali_set_intr_modes(false);
> +
> + int_mask = DENALI_IRQ_ALL;
> +
> + /* Clear all status bits */
> + for (i = 0; i < denali.max_banks; ++i)
> + __raw_writel(0xFFFF, denali.flash_reg + INTR_STATUS(i));
> +
> + denali_irq_enable(int_mask);
> +}
> +
> +/* This helper function setups the registers for ECC and whether or not
> + * the spare area will be transferred. */
> +static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare)
> +{
> + int ecc_en_flag = 0, transfer_spare_flag = 0;
> +
> + /* set ECC, transfer spare bits if needed */
> + ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
> + transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
> +
> + /* Enable spare area/ECC per user's request. */
> + __raw_writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE);
> + /* applicable for MAP01 only */
> + __raw_writel(transfer_spare_flag,
> + denali.flash_reg + TRANSFER_SPARE_REG);
> +}
> +
> +/* sends a pipeline command operation to the controller. See the Denali NAND
> + * controller's user guide for more information (section 4.2.3.6).
> + */
> +static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
> + int access_type, int op)
> +{
> + uint32_t addr = 0x0, cmd = 0x0, irq_status = 0, irq_mask = 0;
> + uint32_t page_count = 1; /* always read a page */
> +
> + if (op == DENALI_READ)
> + irq_mask = INTR_STATUS__LOAD_COMP;
> + else if (op == DENALI_WRITE)
> + irq_mask = INTR_STATUS__PROGRAM_COMP |
> + INTR_STATUS__PROGRAM_FAIL;
> + else
> + BUG();
> +
> + /* clear interrupts */
> + clear_interrupts();
> +
> + /* setup ECC and transfer spare reg */
> + setup_ecc_for_xfer(ecc_en, transfer_spare);
> +
> + addr = BANK(denali.flash_bank) | denali.page;
> +
> + /* setup the acccess type */
> + cmd = MODE_10 | addr;
> + index_addr((uint32_t)cmd, access_type);
> +
> + /* setup the pipeline command */
> + if (access_type == SPARE_ACCESS && op == DENALI_WRITE)
> + index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE);
> + else if (access_type == SPARE_ACCESS && op == DENALI_READ)
> + index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD);
> + else
> + index_addr((uint32_t)cmd, 0x2000 | op | page_count);
> +
> + /* wait for command to be accepted */
> + irq_status = wait_for_irq(irq_mask);
> + if ((irq_status & irq_mask) != irq_mask)
> + return FAIL;
> +
> + if (access_type != SPARE_ACCESS) {
> + cmd = MODE_01 | addr;
> + __raw_writel(cmd, denali.flash_mem);
> + }
> + return PASS;
> +}
> +
> +/* helper function that simply writes a buffer to the flash */
> +static int write_data_to_flash_mem(const uint8_t *buf,
> + int len)
> +{
> + uint32_t i = 0, *buf32;
> +
> + /* verify that the len is a multiple of 4. see comment in
> + * read_data_from_flash_mem() */
> + BUG_ON((len % 4) != 0);
> +
> + /* write the data to the flash memory */
> + buf32 = (uint32_t *)buf;
> + for (i = 0; i < len / 4; i++)
> + __raw_writel(*buf32++, denali.flash_mem + 0x10);
> + return i*4; /* intent is to return the number of bytes read */
> +}
> +
> +static void denali_mode_main_access(void)
> +{
> + uint32_t addr, cmd;
> + addr = BANK(denali.flash_bank) | denali.page;
> + cmd = MODE_10 | addr;
> + index_addr((uint32_t)cmd, MAIN_ACCESS);
> +}
> +
> +static void denali_mode_main_spare_access(void)
> +{
> + uint32_t addr, cmd;
> + addr = BANK(denali.flash_bank) | denali.page;
> + cmd = MODE_10 | addr;
> + index_addr((uint32_t)cmd, MAIN_SPARE_ACCESS);
> +}
> +
> +/* Writes OOB data to the device.
> + * This code unused under normal U-Boot console as normally page write raw
> + * to be used for write oob data with main data.
> + */
> +static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
> +{
> + uint32_t cmd;
> +
> + denali.page = page;
> + debug("* write_oob_data *\n");
> +
> + /* We need to write to buffer first through MAP00 command */
> + cmd = MODE_00 | BANK(denali.flash_bank);
> + __raw_writel(cmd, denali.flash_mem);
> +
> + /* send the data into flash buffer */
> + write_data_to_flash_mem(buf, mtd->oobsize);
> +
> + /* activate the write through MAP10 commands */
> + if (denali_send_pipeline_cmd(false, false,
> + SPARE_ACCESS, DENALI_WRITE) != PASS)
> + return -EIO;
> +
> + return 0;
> +}
> +
> +/* this function examines buffers to see if they contain data that
> + * indicate that the buffer is part of an erased region of flash.
> + */
> +bool is_erased(uint8_t *buf, int len)
> +{
> + int i = 0;
> + for (i = 0; i < len; i++)
> + if (buf[i] != 0xFF)
> + return false;
> + return true;
> +}
> +
> +
> +/* programs the controller to either enable/disable DMA transfers */
> +static void denali_enable_dma(bool en)
> +{
> + uint32_t reg_val = 0x0;
> +
> + if (en)
> + reg_val = DMA_ENABLE__FLAG;
> +
> + __raw_writel(reg_val, denali.flash_reg + DMA_ENABLE);
> + __raw_readl(denali.flash_reg + DMA_ENABLE);
> +}
> +
> +/* setups the HW to perform the data DMA */
> +static void denali_setup_dma_sequence(int op)
> +{
> + const int page_count = 1;
> + uint32_t mode;
> + uint32_t addr = (uint32_t)denali.buf.dma_buf;
> +
> + mode = MODE_10 | BANK(denali.flash_bank);
> +
> + /* DMA is a four step process */
> +
> + /* 1. setup transfer type and # of pages */
> + index_addr(mode | denali.page, 0x2000 | op | page_count);
> +
> + /* 2. set memory high address bits 23:8 */
> + index_addr(mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
> +
> + /* 3. set memory low address bits 23:8 */
> + index_addr(mode | ((uint16_t)addr << 8), 0x2300);
> +
> + /* 4. interrupt when complete, burst len = 64 bytes*/
> + index_addr(mode | 0x14000, 0x2400);
> +}
> +
> +/* Common DMA function */
> +static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
> + uint32_t irq_mask, int oob_required)
> +{
> + uint32_t irq_status = 0;
> + /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
> + setup_ecc_for_xfer(!raw_xfer, oob_required);
> +
> + /* clear any previous interrupt flags */
> + clear_interrupts();
> +
> + /* enable the DMA */
> + denali_enable_dma(true);
> +
> + /* setup the DMA */
> + denali_setup_dma_sequence(ops);
> +
> + /* wait for operation to complete */
> + irq_status = wait_for_irq(irq_mask);
> +
> + /* if ECC fault happen, seems we need delay before turning off DMA.
> + * If not, the controller will go into non responsive condition */
> + if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
> + udelay(100);
> +
> + /* disable the DMA */
> + denali_enable_dma(false);
> +
> + return irq_status;
> +}
> +
> +static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
> + const uint8_t *buf, bool raw_xfer, int oob_required)
> +{
> + uint32_t irq_status = 0;
> + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
> +
> + denali.status = PASS;
> +
> + /* copy buffer into DMA buffer */
> + memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize);
> +
> + /* need extra memcpoy for raw transfer */
> + if (raw_xfer)
> + memcpy((void *)denali.buf.dma_buf + mtd->writesize,
> + chip->oob_poi, mtd->oobsize);
> +
> + /* setting up DMA */
> + irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask,
> + oob_required);
> +
> + /* if timeout happen, error out */
> + if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
> + debug("DMA timeout for denali write_page\n");
> + denali.status = NAND_STATUS_FAIL;
> + return -EIO;
> + }
> +
> + if (irq_status & INTR_STATUS__LOCKED_BLK) {
> + debug("Failed as write to locked block\n");
> + denali.status = NAND_STATUS_FAIL;
> + return -EIO;
> + }
> + return 0;
> +}
> +
> +/* NAND core entry points */
> +
> +/*
> + * this is the callback that the NAND core calls to write a page. Since
> + * writing a page with ECC or without is similar, all the work is done
> + * by write_page above.
> + */
> +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
> + const uint8_t *buf, int oob_required)
> +{
> + /*
> + * for regular page writes, we let HW handle all the ECC
> + * data written to the device.
> + */
> + debug("denali_write_page at page %08x\n", denali.page);
> +
> + if (oob_required)
> + /* switch to main + spare access */
> + denali_mode_main_spare_access();
> + else
> + /* switch to main access only */
> + denali_mode_main_access();
> +
> + return write_page(mtd, chip, buf, false, oob_required);
> +}
> +
> +/*
> + * This is the callback that the NAND core calls to write a page without ECC.
> + * raw access is similar to ECC page writes, so all the work is done in the
> + * write_page() function above.
> + */
> +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + const uint8_t *buf, int oob_required)
> +{
> + /*
> + * for raw page writes, we want to disable ECC and simply write
> + * whatever data is in the buffer.
> + */
> + debug("denali_write_page_raw at page %08x\n", denali.page);
> +
> + if (oob_required)
> + /* switch to main + spare access */
> + denali_mode_main_spare_access();
> + else
> + /* switch to main access only */
> + denali_mode_main_access();
> +
> + return write_page(mtd, chip, buf, true, oob_required);
> +}
> +
> +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + return write_oob_data(mtd, chip->oob_poi, page);
> +}
> +
> +/* raw include ECC value and all the spare area */
> +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + uint8_t *buf, int oob_required, int page)
> +{
> + uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
> +
> + debug("denali_read_page_raw at page %08x\n", page);
> + if (denali.page != page) {
> + debug("Missing NAND_CMD_READ0 command\n");
> + return -EIO;
> + }
> +
> + if (oob_required)
> + /* switch to main + spare access */
> + denali_mode_main_spare_access();
> + else
> + /* switch to main access only */
> + denali_mode_main_access();
> +
> + /* setting up the DMA where ecc_enable is false */
> + irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask,
> + oob_required);
> +
> + /* if timeout happen, error out */
> + if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
> + debug("DMA timeout for denali_read_page_raw\n");
> + return -EIO;
> + }
> +
> + /* splitting the content to destination buffer holder */
> + memcpy(chip->oob_poi, (const void *)(denali.buf.dma_buf +
> + mtd->writesize), mtd->oobsize);
> + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
> + debug("buf %02x %02x\n", buf[0], buf[1]);
> + debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]);
> + return 0;
> +}
> +
> +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
> + uint8_t *buf, int oob_required, int page)
> +{
> + uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
> +
> + debug("denali_read_page at page %08x\n", page);
> + if (denali.page != page) {
> + debug("Missing NAND_CMD_READ0 command\n");
> + return -EIO;
> + }
> +
> + if (oob_required)
> + /* switch to main + spare access */
> + denali_mode_main_spare_access();
> + else
> + /* switch to main access only */
> + denali_mode_main_access();
> +
> + /* setting up the DMA where ecc_enable is true */
> + irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask,
> + oob_required);
> +
> + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
> + debug("buf %02x %02x\n", buf[0], buf[1]);
> +
> + /* check whether any ECC error */
> + if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
> +
> + /* is the ECC cause by erase page, check using read_page_raw */
> + debug(" Uncorrected ECC detected\n");
> + denali_read_page_raw(mtd, chip, buf, oob_required, denali.page);
> +
> + if (is_erased(buf, mtd->writesize) == true &&
> + is_erased(chip->oob_poi, mtd->oobsize) == true) {
> + debug(" ECC error cause by erased block\n");
> + /* false alarm, return the 0xFF */
> + } else
> + return -EIO;
> + }
> + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
> + return 0;
> +}
> +
> +static uint8_t denali_read_byte(struct mtd_info *mtd)
> +{
> + uint32_t addr, result;
> + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
> + index_addr_read_data((uint32_t)addr | 2, &result);
> + return (uint8_t)result & 0xFF;
> +}
> +
> +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + debug("denali_read_oob at page %08x\n", page);
> + denali.page = page;
> + return denali_read_page_raw(mtd, chip, denali.buf.buf, 1, page);
> +}
> +
> +static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> + uint32_t i, addr, result;
> +
> + /* delay for tR (data transfer from Flash array to data register) */
> + udelay(25);
> +
> + /* ensure device completed else additional delay and polling */
> + wait_for_irq(INTR_STATUS__INT_ACT);
> +
> + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
> + for (i = 0; i < len; i++) {
> + index_addr_read_data((uint32_t)addr | 2, &result);
> + write_byte_to_buf(result);
> + }
> + memcpy(buf, denali.buf.buf, len);
> +}
> +
> +static void denali_select_chip(struct mtd_info *mtd, int chip)
> +{
> + denali.flash_bank = chip;
> +}
> +
> +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
> +{
> + int status = denali.status;
> + denali.status = 0;
> +
> + return status;
> +}
> +
> +static void denali_erase(struct mtd_info *mtd, int page)
> +{
> + uint32_t cmd = 0x0, irq_status = 0;
> +
> + debug("denali_erase at page %08x\n", page);
> +
> + /* clear interrupts */
> + clear_interrupts();
> +
> + /* setup page read request for access type */
> + cmd = MODE_10 | BANK(denali.flash_bank) | page;
> + index_addr((uint32_t)cmd, 0x1);
> +
> + /* wait for erase to complete or failure to occur */
> + irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP |
> + INTR_STATUS__ERASE_FAIL);
> +
> + if (irq_status & INTR_STATUS__ERASE_FAIL ||
> + irq_status & INTR_STATUS__LOCKED_BLK)
> + denali.status = NAND_STATUS_FAIL;
> + else
> + denali.status = PASS;
> +}
> +
> +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
> + int page)
> +{
> + uint32_t addr;
> +
> + switch (cmd) {
> + case NAND_CMD_PAGEPROG:
> + break;
> + case NAND_CMD_STATUS:
> + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
> + index_addr((uint32_t)addr | 0, cmd);
> + break;
> + case NAND_CMD_PARAM:
> + clear_interrupts();
> + case NAND_CMD_READID:
> + reset_buf();
> + /* sometimes ManufactureId read from register is not right
> + * e.g. some of Micron MT29F32G08QAA MLC NAND chips
> + * So here we send READID cmd to NAND insteand
> + * */
> + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
> + index_addr((uint32_t)addr | 0, cmd);
> + index_addr((uint32_t)addr | 1, col & 0xFF);
> + break;
> + case NAND_CMD_READ0:
> + case NAND_CMD_SEQIN:
> + denali.page = page;
> + break;
> + case NAND_CMD_RESET:
> + reset_bank();
> + break;
> + case NAND_CMD_READOOB:
> + /* TODO: Read OOB data */
> + break;
> + case NAND_CMD_ERASE1:
> + /*
> + * supporting block erase only, not multiblock erase as
> + * it will cross plane and software need complex calculation
> + * to identify the block count for the cross plane
> + */
> + denali_erase(mtd, page);
> + break;
> + case NAND_CMD_ERASE2:
> + /* nothing to do here as it was done during NAND_CMD_ERASE1 */
> + break;
> + case NAND_CMD_UNLOCK1:
> + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page;
> + index_addr((uint32_t)addr | 0, DENALI_UNLOCK_START);
> + break;
> + case NAND_CMD_UNLOCK2:
> + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page;
> + index_addr((uint32_t)addr | 0, DENALI_UNLOCK_END);
> + break;
> + case NAND_CMD_LOCK:
> + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank);
> + index_addr((uint32_t)addr | 0, DENALI_LOCK);
> + break;
> + case NAND_CMD_LOCK_TIGHT:
> + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank);
> + index_addr((uint32_t)addr | 0, DENALI_LOCK_TIGHT);
> + break;
> + default:
> + printf(": unsupported command received 0x%x\n", cmd);
> + break;
> + }
> +}
> +
> +/* stubs for ECC functions not used by the NAND core */
> +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
> + uint8_t *ecc_code)
> +{
> + debug("Should not be called as ECC handled by hardware\n");
> + BUG();
> + return -EIO;
> +}
> +
> +static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
> + uint8_t *read_ecc, uint8_t *calc_ecc)
> +{
> + debug("Should not be called as ECC handled by hardware\n");
> + BUG();
> + return -EIO;
> +}
> +
> +static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
> +{
> + debug("Should not be called as ECC handled by hardware\n");
> + BUG();
> +}
> +/* end NAND core entry points */
> +
> +/* Initialization code to bring the device up to a known good state */
> +static void denali_hw_init(void)
> +{
> + /*
> + * tell driver how many bit controller will skip before writing
> + * ECC code in OOB. This is normally used for bad block marker
> + */
> + __raw_writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
> + denali.flash_reg + SPARE_AREA_SKIP_BYTES);
> + detect_max_banks();
> + denali_nand_reset();
> + __raw_writel(0x0F, denali.flash_reg + RB_PIN_ENABLED);
> + __raw_writel(CHIP_EN_DONT_CARE__FLAG,
> + denali.flash_reg + CHIP_ENABLE_DONT_CARE);
> + __raw_writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER);
> +
> + /* Should set value for these registers when init */
> + __raw_writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES);
> + __raw_writel(1, denali.flash_reg + ECC_ENABLE);
> + denali_nand_timing_set();
> + denali_irq_init();
> +}
> +
> +/*
> + * Although controller spec said SLC ECC is forceb to be 4bit, but denali
> + * controller in MRST only support 15bit and 8bit ECC correction
> + */
> +#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST
> +#define ECC_15BITS 26
> +static struct nand_ecclayout nand_15bit_oob = {
> + .eccbytes = ECC_15BITS,
> +};
> +#else
> +#define ECC_8BITS 14
> +static struct nand_ecclayout nand_8bit_oob = {
> + .eccbytes = ECC_8BITS,
> +};
> +#endif /* CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST */
> +
> +void denali_nand_init(struct nand_chip *nand)
> +{
> + denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
> + denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
> +
> + nand->chip_delay = 0;
> +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
> + /* check whether flash got BBT table (located at end of flash). As we
> + * use NAND_BBT_NO_OOB, the BBT page will start with
> + * bbt_pattern. We will have mirror pattern too */
> + nand->options |= NAND_BBT_USE_FLASH;
> + /*
> + * We are using main + spare with ECC support. As BBT need ECC support,
> + * we need to ensure BBT code don't write to OOB for the BBT pattern.
> + * All BBT info will be stored into data area with ECC support.
> + */
> + nand->options |= NAND_BBT_NO_OOB;
> +#endif
> +
> + nand->ecc.mode = NAND_ECC_HW;
> + nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
> + nand->ecc.read_oob = denali_read_oob;
> + nand->ecc.write_oob = denali_write_oob;
> + nand->ecc.read_page = denali_read_page;
> + nand->ecc.read_page_raw = denali_read_page_raw;
> + nand->ecc.write_page = denali_write_page;
> + nand->ecc.write_page_raw = denali_write_page_raw;
> +#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST
> + /* 15bit ECC */
> + nand->ecc.bytes = 26;
> + nand->ecc.layout = &nand_15bit_oob;
> +#else /* 8bit ECC */
> + nand->ecc.bytes = 14;
> + nand->ecc.layout = &nand_8bit_oob;
> +#endif
> + nand->ecc.calculate = denali_ecc_calculate;
> + nand->ecc.correct = denali_ecc_correct;
> + nand->ecc.hwctl = denali_ecc_hwctl;
> +
> + /* Set address of hardware control function */
> + nand->cmdfunc = denali_cmdfunc;
> + nand->read_byte = denali_read_byte;
> + nand->read_buf = denali_read_buf;
> + nand->select_chip = denali_select_chip;
> + nand->waitfunc = denali_waitfunc;
> + denali_hw_init();
> +}
> +
> +int board_nand_init(struct nand_chip *chip)
> +{
> + puts("NAND: Denali NAND controller\n");
> + denali_nand_init(chip);
> + return 0;
> +}
> diff --git a/drivers/mtd/nand/denali_nand.h b/drivers/mtd/nand/denali_nand.h
> new file mode 100644
> index 0000000..fd91c64
> --- /dev/null
> +++ b/drivers/mtd/nand/denali_nand.h
> @@ -0,0 +1,501 @@
> +/*
> + * Copyright (C) 2013 Altera Corporation <www.altera.com>
> + * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
> + *
> + * SPDX-License-Identifier: GPL-2.0+
> + */
> +
> +typedef int irqreturn_t;
> +
> +#define IRQ_HANDLED 1
> +#define IRQ_NONE 0
> +
> +#define DEVICE_RESET 0x0
> +#define DEVICE_RESET__BANK0 0x0001
> +#define DEVICE_RESET__BANK1 0x0002
> +#define DEVICE_RESET__BANK2 0x0004
> +#define DEVICE_RESET__BANK3 0x0008
> +
> +#define TRANSFER_SPARE_REG 0x10
> +#define TRANSFER_SPARE_REG__FLAG 0x0001
> +
> +#define LOAD_WAIT_CNT 0x20
> +#define LOAD_WAIT_CNT__VALUE 0xffff
> +
> +#define PROGRAM_WAIT_CNT 0x30
> +#define PROGRAM_WAIT_CNT__VALUE 0xffff
> +
> +#define ERASE_WAIT_CNT 0x40
> +#define ERASE_WAIT_CNT__VALUE 0xffff
> +
> +#define INT_MON_CYCCNT 0x50
> +#define INT_MON_CYCCNT__VALUE 0xffff
> +
> +#define RB_PIN_ENABLED 0x60
> +#define RB_PIN_ENABLED__BANK0 0x0001
> +#define RB_PIN_ENABLED__BANK1 0x0002
> +#define RB_PIN_ENABLED__BANK2 0x0004
> +#define RB_PIN_ENABLED__BANK3 0x0008
> +
> +#define MULTIPLANE_OPERATION 0x70
> +#define MULTIPLANE_OPERATION__FLAG 0x0001
> +
> +#define MULTIPLANE_READ_ENABLE 0x80
> +#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
> +
> +#define COPYBACK_DISABLE 0x90
> +#define COPYBACK_DISABLE__FLAG 0x0001
> +
> +#define CACHE_WRITE_ENABLE 0xa0
> +#define CACHE_WRITE_ENABLE__FLAG 0x0001
> +
> +#define CACHE_READ_ENABLE 0xb0
> +#define CACHE_READ_ENABLE__FLAG 0x0001
> +
> +#define PREFETCH_MODE 0xc0
> +#define PREFETCH_MODE__PREFETCH_EN 0x0001
> +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
> +
> +#define CHIP_ENABLE_DONT_CARE 0xd0
> +#define CHIP_EN_DONT_CARE__FLAG 0x01
> +
> +#define ECC_ENABLE 0xe0
> +#define ECC_ENABLE__FLAG 0x0001
> +
> +#define GLOBAL_INT_ENABLE 0xf0
> +#define GLOBAL_INT_EN_FLAG 0x01
> +
> +#define WE_2_RE 0x100
> +#define WE_2_RE__VALUE 0x003f
> +
> +#define ADDR_2_DATA 0x110
> +#define ADDR_2_DATA__VALUE 0x003f
> +
> +#define RE_2_WE 0x120
> +#define RE_2_WE__VALUE 0x003f
> +
> +#define ACC_CLKS 0x130
> +#define ACC_CLKS__VALUE 0x000f
> +
> +#define NUMBER_OF_PLANES 0x140
> +#define NUMBER_OF_PLANES__VALUE 0x0007
> +
> +#define PAGES_PER_BLOCK 0x150
> +#define PAGES_PER_BLOCK__VALUE 0xffff
> +
> +#define DEVICE_WIDTH 0x160
> +#define DEVICE_WIDTH__VALUE 0x0003
> +
> +#define DEVICE_MAIN_AREA_SIZE 0x170
> +#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
> +
> +#define DEVICE_SPARE_AREA_SIZE 0x180
> +#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
> +
> +#define TWO_ROW_ADDR_CYCLES 0x190
> +#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
> +
> +#define MULTIPLANE_ADDR_RESTRICT 0x1a0
> +#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
> +
> +#define ECC_CORRECTION 0x1b0
> +#define ECC_CORRECTION__VALUE 0x001f
> +
> +#define READ_MODE 0x1c0
> +#define READ_MODE__VALUE 0x000f
> +
> +#define WRITE_MODE 0x1d0
> +#define WRITE_MODE__VALUE 0x000f
> +
> +#define COPYBACK_MODE 0x1e0
> +#define COPYBACK_MODE__VALUE 0x000f
> +
> +#define RDWR_EN_LO_CNT 0x1f0
> +#define RDWR_EN_LO_CNT__VALUE 0x001f
> +
> +#define RDWR_EN_HI_CNT 0x200
> +#define RDWR_EN_HI_CNT__VALUE 0x001f
> +
> +#define MAX_RD_DELAY 0x210
> +#define MAX_RD_DELAY__VALUE 0x000f
> +
> +#define CS_SETUP_CNT 0x220
> +#define CS_SETUP_CNT__VALUE 0x001f
> +
> +#define SPARE_AREA_SKIP_BYTES 0x230
> +#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
> +
> +#define SPARE_AREA_MARKER 0x240
> +#define SPARE_AREA_MARKER__VALUE 0xffff
> +
> +#define DEVICES_CONNECTED 0x250
> +#define DEVICES_CONNECTED__VALUE 0x0007
> +
> +#define DIE_MASK 0x260
> +#define DIE_MASK__VALUE 0x00ff
> +
> +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270
> +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
> +
> +#define WRITE_PROTECT 0x280
> +#define WRITE_PROTECT__FLAG 0x0001
> +
> +#define RE_2_RE 0x290
> +#define RE_2_RE__VALUE 0x003f
> +
> +#define MANUFACTURER_ID 0x300
> +#define MANUFACTURER_ID__VALUE 0x00ff
> +
> +#define DEVICE_ID 0x310
> +#define DEVICE_ID__VALUE 0x00ff
> +
> +#define DEVICE_PARAM_0 0x320
> +#define DEVICE_PARAM_0__VALUE 0x00ff
> +
> +#define DEVICE_PARAM_1 0x330
> +#define DEVICE_PARAM_1__VALUE 0x00ff
> +
> +#define DEVICE_PARAM_2 0x340
> +#define DEVICE_PARAM_2__VALUE 0x00ff
> +
> +#define LOGICAL_PAGE_DATA_SIZE 0x350
> +#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
> +
> +#define LOGICAL_PAGE_SPARE_SIZE 0x360
> +#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
> +
> +#define REVISION 0x370
> +#define REVISION__VALUE 0xffff
> +
> +#define ONFI_DEVICE_FEATURES 0x380
> +#define ONFI_DEVICE_FEATURES__VALUE 0x003f
> +
> +#define ONFI_OPTIONAL_COMMANDS 0x390
> +#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
> +
> +#define ONFI_TIMING_MODE 0x3a0
> +#define ONFI_TIMING_MODE__VALUE 0x003f
> +
> +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0
> +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
> +
> +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0
> +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff
> +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
> +
> +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0
> +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
> +
> +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0
> +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
> +
> +#define FEATURES 0x3f0
> +#define FEATURES__N_BANKS 0x0003
> +#define FEATURES__ECC_MAX_ERR 0x003c
> +#define FEATURES__DMA 0x0040
> +#define FEATURES__CMD_DMA 0x0080
> +#define FEATURES__PARTITION 0x0100
> +#define FEATURES__XDMA_SIDEBAND 0x0200
> +#define FEATURES__GPREG 0x0400
> +#define FEATURES__INDEX_ADDR 0x0800
> +
> +#define TRANSFER_MODE 0x400
> +#define TRANSFER_MODE__VALUE 0x0003
> +
> +#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50))
> +#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
> +
> +/*
> + * Some versions of the IP have the ECC fixup handled in hardware. In this
> + * configuration we only get interrupted when the error is uncorrectable.
> + * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
> + * old IP.
> + */
> +#define INTR_STATUS__ECC_UNCOR_ERR 0x0001
> +#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001
> +#define INTR_STATUS__ECC_ERR 0x0002
> +#define INTR_STATUS__DMA_CMD_COMP 0x0004
> +#define INTR_STATUS__TIME_OUT 0x0008
> +#define INTR_STATUS__PROGRAM_FAIL 0x0010
> +#define INTR_STATUS__ERASE_FAIL 0x0020
> +#define INTR_STATUS__LOAD_COMP 0x0040
> +#define INTR_STATUS__PROGRAM_COMP 0x0080
> +#define INTR_STATUS__ERASE_COMP 0x0100
> +#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200
> +#define INTR_STATUS__LOCKED_BLK 0x0400
> +#define INTR_STATUS__UNSUP_CMD 0x0800
> +#define INTR_STATUS__INT_ACT 0x1000
> +#define INTR_STATUS__RST_COMP 0x2000
> +#define INTR_STATUS__PIPE_CMD_ERR 0x4000
> +#define INTR_STATUS__PAGE_XFER_INC 0x8000
> +
> +#define INTR_EN__ECC_TRANSACTION_DONE 0x0001
> +#define INTR_EN__ECC_ERR 0x0002
> +#define INTR_EN__DMA_CMD_COMP 0x0004
> +#define INTR_EN__TIME_OUT 0x0008
> +#define INTR_EN__PROGRAM_FAIL 0x0010
> +#define INTR_EN__ERASE_FAIL 0x0020
> +#define INTR_EN__LOAD_COMP 0x0040
> +#define INTR_EN__PROGRAM_COMP 0x0080
> +#define INTR_EN__ERASE_COMP 0x0100
> +#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200
> +#define INTR_EN__LOCKED_BLK 0x0400
> +#define INTR_EN__UNSUP_CMD 0x0800
> +#define INTR_EN__INT_ACT 0x1000
> +#define INTR_EN__RST_COMP 0x2000
> +#define INTR_EN__PIPE_CMD_ERR 0x4000
> +#define INTR_EN__PAGE_XFER_INC 0x8000
> +
> +#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50))
> +#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50))
> +#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
> +
> +#define DATA_INTR 0x550
> +#define DATA_INTR__WRITE_SPACE_AV 0x0001
> +#define DATA_INTR__READ_DATA_AV 0x0002
> +
> +#define DATA_INTR_EN 0x560
> +#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
> +#define DATA_INTR_EN__READ_DATA_AV 0x0002
> +
> +#define GPREG_0 0x570
> +#define GPREG_0__VALUE 0xffff
> +
> +#define GPREG_1 0x580
> +#define GPREG_1__VALUE 0xffff
> +
> +#define GPREG_2 0x590
> +#define GPREG_2__VALUE 0xffff
> +
> +#define GPREG_3 0x5a0
> +#define GPREG_3__VALUE 0xffff
> +
> +#define ECC_THRESHOLD 0x600
> +#define ECC_THRESHOLD__VALUE 0x03ff
> +
> +#define ECC_ERROR_BLOCK_ADDRESS 0x610
> +#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
> +
> +#define ECC_ERROR_PAGE_ADDRESS 0x620
> +#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff
> +#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
> +
> +#define ECC_ERROR_ADDRESS 0x630
> +#define ECC_ERROR_ADDRESS__OFFSET 0x0fff
> +#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
> +
> +#define ERR_CORRECTION_INFO 0x640
> +#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff
> +#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00
> +#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
> +#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
> +
> +#define DMA_ENABLE 0x700
> +#define DMA_ENABLE__FLAG 0x0001
> +
> +#define IGNORE_ECC_DONE 0x710
> +#define IGNORE_ECC_DONE__FLAG 0x0001
> +
> +#define DMA_INTR 0x720
> +#define DMA_INTR__TARGET_ERROR 0x0001
> +#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
> +#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
> +#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
> +#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
> +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
> +
> +#define DMA_INTR_EN 0x730
> +#define DMA_INTR_EN__TARGET_ERROR 0x0001
> +#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
> +#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
> +#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
> +#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
> +#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
> +
> +#define TARGET_ERR_ADDR_LO 0x740
> +#define TARGET_ERR_ADDR_LO__VALUE 0xffff
> +
> +#define TARGET_ERR_ADDR_HI 0x750
> +#define TARGET_ERR_ADDR_HI__VALUE 0xffff
> +
> +#define CHNL_ACTIVE 0x760
> +#define CHNL_ACTIVE__CHANNEL0 0x0001
> +#define CHNL_ACTIVE__CHANNEL1 0x0002
> +#define CHNL_ACTIVE__CHANNEL2 0x0004
> +#define CHNL_ACTIVE__CHANNEL3 0x0008
> +
> +#define ACTIVE_SRC_ID 0x800
> +#define ACTIVE_SRC_ID__VALUE 0x00ff
> +
> +#define PTN_INTR 0x810
> +#define PTN_INTR__CONFIG_ERROR 0x0001
> +#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
> +#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
> +#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
> +#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
> +#define PTN_INTR__REG_ACCESS_ERROR 0x0020
> +
> +#define PTN_INTR_EN 0x820
> +#define PTN_INTR_EN__CONFIG_ERROR 0x0001
> +#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
> +#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
> +#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
> +#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
> +#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
> +
> +#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40))
> +#define PERM_SRC_ID__SRCID 0x00ff
> +#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800
> +#define PERM_SRC_ID__WRITE_ACTIVE 0x2000
> +#define PERM_SRC_ID__READ_ACTIVE 0x4000
> +#define PERM_SRC_ID__PARTITION_VALID 0x8000
> +
> +#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40))
> +#define MIN_BLK_ADDR__VALUE 0xffff
> +
> +#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40))
> +#define MAX_BLK_ADDR__VALUE 0xffff
> +
> +#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40))
> +#define MIN_MAX_BANK__MIN_VALUE 0x0003
> +#define MIN_MAX_BANK__MAX_VALUE 0x000c
> +
> +
> +/* ffsdefs.h */
> +#define CLEAR 0 /*use this to clear a field instead of "fail"*/
> +#define SET 1 /*use this to set a field instead of "pass"*/
> +#define FAIL 1 /*failed flag*/
> +#define PASS 0 /*success flag*/
> +#define ERR -1 /*error flag*/
> +
> +/* lld.h */
> +#define GOOD_BLOCK 0
> +#define DEFECTIVE_BLOCK 1
> +#define READ_ERROR 2
> +
> +#define CLK_X 5
> +#define CLK_MULTI 4
> +
> +/* spectraswconfig.h */
> +#define CMD_DMA 0
> +
> +#define SPECTRA_PARTITION_ID 0
> +/**** Block Table and Reserved Block Parameters *****/
> +#define SPECTRA_START_BLOCK 3
> +#define NUM_FREE_BLOCKS_GATE 30
> +
> +/* KBV - Updated to LNW scratch register address */
> +#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
> +#define SCRATCH_REG_SIZE 64
> +
> +#define GLOB_HWCTL_DEFAULT_BLKS 2048
> +
> +#define SUPPORT_15BITECC 1
> +#define SUPPORT_8BITECC 1
> +
> +#define CUSTOM_CONF_PARAMS 0
> +
> +#define ONFI_BLOOM_TIME 1
> +#define MODE5_WORKAROUND 0
> +
> +/* lld_nand.h */
> +/*
> + * NAND Flash Controller Device Driver
> + * Copyright (c) 2009, Intel Corporation and its suppliers.
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms and conditions of the GNU General Public License,
> + * version 2, as published by the Free Software Foundation.
> + *
> + * This program is distributed in the hope it will be useful, but WITHOUT
> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
> + * more details.
> + *
> + * You should have received a copy of the GNU General Public License along with
> + * this program; if not, write to the Free Software Foundation, Inc.,
> + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
> + *
> + */
> +
> +#ifndef _LLD_NAND_
> +#define _LLD_NAND_
> +
> +#define MODE_00 0x00000000
> +#define MODE_01 0x04000000
> +#define MODE_10 0x08000000
> +#define MODE_11 0x0C000000
> +
> +
> +#define DATA_TRANSFER_MODE 0
> +#define PROTECTION_PER_BLOCK 1
> +#define LOAD_WAIT_COUNT 2
> +#define PROGRAM_WAIT_COUNT 3
> +#define ERASE_WAIT_COUNT 4
> +#define INT_MONITOR_CYCLE_COUNT 5
> +#define READ_BUSY_PIN_ENABLED 6
> +#define MULTIPLANE_OPERATION_SUPPORT 7
> +#define PRE_FETCH_MODE 8
> +#define CE_DONT_CARE_SUPPORT 9
> +#define COPYBACK_SUPPORT 10
> +#define CACHE_WRITE_SUPPORT 11
> +#define CACHE_READ_SUPPORT 12
> +#define NUM_PAGES_IN_BLOCK 13
> +#define ECC_ENABLE_SELECT 14
> +#define WRITE_ENABLE_2_READ_ENABLE 15
> +#define ADDRESS_2_DATA 16
> +#define READ_ENABLE_2_WRITE_ENABLE 17
> +#define TWO_ROW_ADDRESS_CYCLES 18
> +#define MULTIPLANE_ADDRESS_RESTRICT 19
> +#define ACC_CLOCKS 20
> +#define READ_WRITE_ENABLE_LOW_COUNT 21
> +#define READ_WRITE_ENABLE_HIGH_COUNT 22
> +
> +#define ECC_SECTOR_SIZE 512
> +
> +#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
> +
> +struct nand_buf {
> + int head;
> + int tail;
> + /* seprating dma_buf as buf can be used for status read purpose */
> + uint8_t dma_buf[DENALI_BUF_SIZE] __aligned(64);
> + uint8_t buf[DENALI_BUF_SIZE];
> +};
> +
> +#define INTEL_CE4100 1
> +#define INTEL_MRST 2
> +#define DT 3
> +
> +struct denali_nand_info {
> + struct mtd_info mtd;
> + struct nand_chip *nand;
> +
> + int flash_bank; /* currently selected chip */
> + int status;
> + int platform;
> + struct nand_buf buf;
> + struct device *dev;
> + int total_used_banks;
> + uint32_t block; /* stored for future use */
> + uint32_t page;
> + void __iomem *flash_reg; /* Mapped io reg base address */
> + void __iomem *flash_mem; /* Mapped io reg base address */
> +
> + /* elements used by ISR */
> + /*struct completion complete;*/
> +
> + uint32_t irq_status;
> + int irq_debug_array[32];
> + int idx;
> + int irq;
> +
> + uint32_t devnum; /* represent how many nands connected */
> + uint32_t fwblks; /* represent how many blocks FW used */
> + uint32_t totalblks;
> + uint32_t blksperchip;
> + uint32_t bbtskipbytes;
> + uint32_t max_banks;
> +};
> +
> +#endif /*_LLD_NAND_*/
More information about the U-Boot
mailing list