[U-Boot] [PATCH v7] nand/denali: Adding Denali NAND driver support
Chin Liang See
clsee at altera.com
Mon Mar 24 16:10:48 CET 2014
To add the Denali NAND driver support into U-Boot. It required
information such as register base address from configuration
header file within include/configs folder.
Signed-off-by: Chin Liang See <clsee at altera.com>
Cc: Artem Bityutskiy <artem.bityutskiy at linux.intel.com>
Cc: David Woodhouse <David.Woodhouse at intel.com>
Cc: Brian Norris <computersforpeace at gmail.com>
Cc: Scott Wood <scottwood at freescale.com>
Cc: Masahiro Yamada <yamada.m at jp.panasonic.com>
---
Changes for v7
- Adding Masahiro's code to support 64bit version controller
- Removed unused stub functions
- Enhanced the ECC calculation
Changes for v6
- Remove chip_delay as its unused
- Remove ECC bit assignment in nand_para functions
Changes for v5
- Rename denali_nand to denali only
- Rename the macro for ctrl and data address
Changes for v4
- Added cache flush to handle dcache enabled
- Used standard return where 0 for pass
- Removed unnecessary casting
- Used standard readl and writel
Changes for v3
- Fixed coding style
Changes for v2
- Enable this driver support for SOCFPGA
---
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/denali.c | 1122 +++++++++++++++++++++++++++++++++++++++++++++
drivers/mtd/nand/denali.h | 490 ++++++++++++++++++++
3 files changed, 1613 insertions(+)
create mode 100644 drivers/mtd/nand/denali.c
create mode 100644 drivers/mtd/nand/denali.h
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 02b149c..76ae105 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -39,6 +39,7 @@ obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o
obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
+obj-$(CONFIG_NAND_DENALI) += denali.o
obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..348e244
--- /dev/null
+++ b/drivers/mtd/nand/denali.c
@@ -0,0 +1,1122 @@
+/*
+ * Copyright (C) 2014 Panasonic Corporation
+ * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+
+#include "denali.h"
+
+#define NAND_DEFAULT_TIMINGS -1
+
+static struct denali_nand_info denali;
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
+ INTR_STATUS__ECC_TRANSACTION_DONE | \
+ INTR_STATUS__ECC_ERR | \
+ INTR_STATUS__PROGRAM_FAIL | \
+ INTR_STATUS__LOAD_COMP | \
+ INTR_STATUS__PROGRAM_COMP | \
+ INTR_STATUS__TIME_OUT | \
+ INTR_STATUS__ERASE_FAIL | \
+ INTR_STATUS__RST_COMP | \
+ INTR_STATUS__ERASE_COMP | \
+ INTR_STATUS__ECC_UNCOR_ERR | \
+ INTR_STATUS__INT_ACT | \
+ INTR_STATUS__LOCKED_BLK)
+
+/* indicates whether or not the internal value for the flash bank is
+ * valid or not */
+#define CHIP_SELECT_INVALID -1
+
+#define SUPPORT_8BITECC 1
+
+/* These constants are defined by the driver to enable common driver
+ * configuration options. */
+#define SPARE_ACCESS 0x41
+#define MAIN_ACCESS 0x42
+#define MAIN_SPARE_ACCESS 0x43
+
+#define DENALI_UNLOCK_START 0x10
+#define DENALI_UNLOCK_END 0x11
+#define DENALI_LOCK 0x21
+#define DENALI_LOCK_TIGHT 0x31
+#define DENALI_BUFFER_LOAD 0x60
+#define DENALI_BUFFER_WRITE 0x62
+
+#define DENALI_READ 0
+#define DENALI_WRITE 0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE 0
+#define ADDR_CYCLE 1
+#define STATUS_CYCLE 2
+
+/* this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(uint32_t irq_mask)
+{
+ uint32_t intr_status_reg = 0;
+ intr_status_reg = INTR_STATUS(denali.flash_bank);
+ writel(irq_mask, denali.flash_reg + intr_status_reg);
+}
+
+static uint32_t read_interrupt_status(void)
+{
+ uint32_t intr_status_reg = 0;
+ intr_status_reg = INTR_STATUS(denali.flash_bank);
+ return readl(denali.flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(void)
+{
+ uint32_t status = 0;
+ status = read_interrupt_status();
+ clear_interrupt(status);
+ denali.irq_status = 0;
+}
+
+static void denali_irq_enable(uint32_t int_mask)
+{
+ int i;
+ for (i = 0; i < denali.max_banks; ++i)
+ writel(int_mask, denali.flash_reg + INTR_EN(i));
+}
+
+static uint32_t wait_for_irq(uint32_t irq_mask)
+{
+ unsigned long timeout = 1000000;
+ uint32_t intr_status;
+
+ do {
+ intr_status = read_interrupt_status() & DENALI_IRQ_ALL;
+ if (intr_status & irq_mask) {
+ denali.irq_status &= ~irq_mask;
+ /* our interrupt was detected */
+ break;
+ }
+ udelay(1);
+ timeout--;
+ } while (timeout != 0);
+
+ if (timeout == 0) {
+ /* timeout */
+ printf("Denali timeout with interrupt status %08x\n",
+ read_interrupt_status());
+ intr_status = 0;
+ }
+ return intr_status;
+}
+
+/*
+ * Certain operations for the denali NAND controller use an indexed mode to
+ * read/write data. The operation is performed by writing the address value
+ * of the command to the device memory followed by the data. This function
+ * abstracts this common operation.
+*/
+static void index_addr(uint32_t address, uint32_t data)
+{
+ writel(address, denali.flash_mem + INDEX_CTRL_REG);
+ writel(data, denali.flash_mem + INDEX_DATA_REG);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(uint32_t address, uint32_t *pdata)
+{
+ writel(address, denali.flash_mem + INDEX_CTRL_REG);
+ *pdata = readl(denali.flash_mem + INDEX_DATA_REG);
+}
+
+/* We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data. */
+static void reset_buf(void)
+{
+ denali.buf.head = 0;
+ denali.buf.tail = 0;
+}
+
+static void write_byte_to_buf(uint8_t byte)
+{
+ BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf));
+ denali.buf.buf[denali.buf.tail++] = byte;
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(void)
+{
+ uint32_t irq_status;
+ uint32_t irq_mask = INTR_STATUS__RST_COMP |
+ INTR_STATUS__TIME_OUT;
+
+ clear_interrupts();
+
+ writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET);
+
+ irq_status = wait_for_irq(irq_mask);
+ if (irq_status & INTR_STATUS__TIME_OUT)
+ debug(KERN_ERR "reset bank failed.\n");
+}
+
+/* Reset the flash controller */
+static uint32_t denali_nand_reset(void)
+{
+ uint32_t i;
+
+ for (i = 0; i < denali.max_banks; i++)
+ writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ denali.flash_reg + INTR_STATUS(i));
+
+ for (i = 0; i < denali.max_banks; i++) {
+ writel(1 << i, denali.flash_reg + DEVICE_RESET);
+ while (!(readl(denali.flash_reg + INTR_STATUS(i)) &
+ (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+ if (readl(denali.flash_reg + INTR_STATUS(i)) &
+ INTR_STATUS__TIME_OUT)
+ debug(KERN_DEBUG "NAND Reset operation "
+ "timed out on bank %d\n", i);
+ }
+
+ for (i = 0; i < denali.max_banks; i++)
+ writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ denali.flash_reg + INTR_STATUS(i));
+
+ return 0;
+}
+
+/* this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
+ */
+static void nand_onfi_timing_set(uint32_t mode)
+{
+ uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
+ uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
+ uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
+ uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
+ uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
+ uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
+ uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
+ uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
+ uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
+ uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
+ uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
+ uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
+
+ uint32_t tclsrising = 1;
+ uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+ uint32_t dv_window = 0;
+ uint32_t en_lo, en_hi;
+ uint32_t acc_clks;
+ uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+ en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
+ en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+ if ((en_hi * CLK_X) < (treh[mode] + 2))
+ en_hi++;
+#endif
+
+ if ((en_lo + en_hi) * CLK_X < trc[mode])
+ en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
+ CLK_X);
+
+ if ((en_lo + en_hi) < CLK_MULTI)
+ en_lo += CLK_MULTI - en_lo - en_hi;
+
+ while (dv_window < 8) {
+ data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
+
+ data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
+
+ data_invalid =
+ data_invalid_rhoh <
+ data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+ dv_window = data_invalid - trea[mode];
+
+ if (dv_window < 8)
+ en_lo++;
+ }
+
+ acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
+
+ while (((acc_clks * CLK_X) - trea[mode]) < 3)
+ acc_clks++;
+
+ if ((data_invalid - acc_clks * CLK_X) < 2)
+ debug(KERN_WARNING "%s, Line %d: Warning!\n",
+ __FILE__, __LINE__);
+
+ addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
+ re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
+ re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
+ we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
+ cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
+ if (!tclsrising)
+ cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X);
+ if (cs_cnt == 0)
+ cs_cnt = 1;
+
+ if (tcea[mode]) {
+ while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode])
+ cs_cnt++;
+ }
+
+#if MODE5_WORKAROUND
+ if (mode == 5)
+ acc_clks = 5;
+#endif
+
+ /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+ if ((readl(denali.flash_reg + MANUFACTURER_ID) == 0) &&
+ (readl(denali.flash_reg + DEVICE_ID) == 0x88))
+ acc_clks = 6;
+
+ writel(acc_clks, denali.flash_reg + ACC_CLKS);
+ writel(re_2_we, denali.flash_reg + RE_2_WE);
+ writel(re_2_re, denali.flash_reg + RE_2_RE);
+ writel(we_2_re, denali.flash_reg + WE_2_RE);
+ writel(addr_2_data, denali.flash_reg + ADDR_2_DATA);
+ writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT);
+ writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT);
+ writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT);
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint32_t get_onfi_nand_para(void)
+{
+ int i;
+ /* we needn't to do a reset here because driver has already
+ * reset all the banks before
+ * */
+ if (!(readl(denali.flash_reg + ONFI_TIMING_MODE) &
+ ONFI_TIMING_MODE__VALUE))
+ return -EIO;
+
+ for (i = 5; i > 0; i--) {
+ if (readl(denali.flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
+ break;
+ }
+
+ nand_onfi_timing_set(i);
+
+ /* By now, all the ONFI devices we know support the page cache */
+ /* rw feature. So here we enable the pipeline_rw_ahead feature */
+ return 0;
+}
+
+static void get_samsung_nand_para(uint8_t device_id)
+{
+ if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
+ /* Set timing register values according to datasheet */
+ writel(5, denali.flash_reg + ACC_CLKS);
+ writel(20, denali.flash_reg + RE_2_WE);
+ writel(12, denali.flash_reg + WE_2_RE);
+ writel(14, denali.flash_reg + ADDR_2_DATA);
+ writel(3, denali.flash_reg + RDWR_EN_LO_CNT);
+ writel(2, denali.flash_reg + RDWR_EN_HI_CNT);
+ writel(2, denali.flash_reg + CS_SETUP_CNT);
+ }
+}
+
+static void get_toshiba_nand_para(void)
+{
+ uint32_t tmp;
+
+ /* Workaround to fix a controller bug which reports a wrong */
+ /* spare area size for some kind of Toshiba NAND device */
+ if ((readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+ (readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE)
+ == 64)){
+ writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+ tmp = readl(denali.flash_reg + DEVICES_CONNECTED) *
+ readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+ writel(tmp, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ }
+}
+
+static void get_hynix_nand_para(uint8_t device_id)
+{
+ uint32_t main_size, spare_size;
+
+ switch (device_id) {
+ case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+ writel(128, denali.flash_reg + PAGES_PER_BLOCK);
+ writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE);
+ writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+ main_size = 4096 *
+ readl(denali.flash_reg + DEVICES_CONNECTED);
+ spare_size = 224 *
+ readl(denali.flash_reg + DEVICES_CONNECTED);
+ writel(main_size, denali.flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ writel(spare_size, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ writel(0, denali.flash_reg + DEVICE_WIDTH);
+ break;
+ default:
+ debug(KERN_WARNING
+ "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+ "Will use default parameter values instead.\n",
+ device_id);
+ }
+}
+
+/* determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(void)
+{
+ uint32_t id[denali.max_banks];
+ int i;
+
+ denali.total_used_banks = 1;
+ for (i = 0; i < denali.max_banks; i++) {
+ index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+ index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0);
+ index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2),
+ &id[i]);
+
+ if (i == 0) {
+ if (!(id[i] & 0x0ff))
+ break;
+ } else {
+ if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+ denali.total_used_banks++;
+ else
+ break;
+ }
+ }
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void detect_max_banks(void)
+{
+ uint32_t features = readl(denali.flash_reg + FEATURES);
+ denali.max_banks = 2 << (features & FEATURES__N_BANKS);
+}
+
+static void detect_partition_feature(void)
+{
+ /* For MRST platform, denali.fwblks represent the
+ * number of blocks firmware is taken,
+ * FW is in protect partition and MTD driver has no
+ * permission to access it. So let driver know how many
+ * blocks it can't touch.
+ * */
+ if (readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) {
+ if ((readl(denali.flash_reg + PERM_SRC_ID(1)) &
+ PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+ denali.fwblks =
+ ((readl(denali.flash_reg + MIN_MAX_BANK(1)) &
+ MIN_MAX_BANK__MIN_VALUE) *
+ denali.blksperchip)
+ +
+ (readl(denali.flash_reg + MIN_BLK_ADDR(1)) &
+ MIN_BLK_ADDR__VALUE);
+ } else {
+ denali.fwblks = SPECTRA_START_BLOCK;
+ }
+ } else {
+ denali.fwblks = SPECTRA_START_BLOCK;
+ }
+}
+
+static uint32_t denali_nand_timing_set(void)
+{
+ uint32_t id_bytes[5], addr;
+ uint8_t i, maf_id, device_id;
+
+ /* Use read id method to get device ID and other
+ * params. For some NAND chips, controller can't
+ * report the correct device ID by reading from
+ * DEVICE_ID register
+ * */
+ addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+ index_addr((uint32_t)addr | 0, 0x90);
+ index_addr((uint32_t)addr | 1, 0);
+ for (i = 0; i < 5; i++)
+ index_addr_read_data(addr | 2, &id_bytes[i]);
+ maf_id = id_bytes[0];
+ device_id = id_bytes[1];
+
+ if (readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+ if (get_onfi_nand_para())
+ return -EIO;
+ } else if (maf_id == 0xEC) { /* Samsung NAND */
+ get_samsung_nand_para(device_id);
+ } else if (maf_id == 0x98) { /* Toshiba NAND */
+ get_toshiba_nand_para();
+ } else if (maf_id == 0xAD) { /* Hynix NAND */
+ get_hynix_nand_para(device_id);
+ }
+
+ find_valid_banks();
+
+ detect_partition_feature();
+
+ /* If the user specified to override the default timings
+ * with a specific ONFI mode, we apply those changes here.
+ */
+ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+ nand_onfi_timing_set(onfi_timing_mode);
+
+ return 0;
+}
+
+/* validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+ return (flash_bank >= 0 && flash_bank < 4);
+}
+
+static void denali_irq_init(void)
+{
+ uint32_t int_mask = 0;
+ int i;
+
+ /* Disable global interrupts */
+ writel(0, denali.flash_reg + GLOBAL_INT_ENABLE);
+
+ int_mask = DENALI_IRQ_ALL;
+
+ /* Clear all status bits */
+ for (i = 0; i < denali.max_banks; ++i)
+ writel(0xFFFF, denali.flash_reg + INTR_STATUS(i));
+
+ denali_irq_enable(int_mask);
+}
+
+/* This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred. */
+static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare)
+{
+ int ecc_en_flag = 0, transfer_spare_flag = 0;
+
+ /* set ECC, transfer spare bits if needed */
+ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+ transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+ /* Enable spare area/ECC per user's request. */
+ writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE);
+ /* applicable for MAP01 only */
+ writel(transfer_spare_flag, denali.flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
+ int access_type, int op)
+{
+ uint32_t addr = 0x0, cmd = 0x0, irq_status = 0, irq_mask = 0;
+ uint32_t page_count = 1; /* always read a page */
+
+ if (op == DENALI_READ)
+ irq_mask = INTR_STATUS__LOAD_COMP;
+ else if (op == DENALI_WRITE)
+ irq_mask = INTR_STATUS__PROGRAM_COMP |
+ INTR_STATUS__PROGRAM_FAIL;
+ else
+ BUG();
+
+ /* clear interrupts */
+ clear_interrupts();
+
+ /* setup ECC and transfer spare reg */
+ setup_ecc_for_xfer(ecc_en, transfer_spare);
+
+ addr = BANK(denali.flash_bank) | denali.page;
+
+ /* setup the acccess type */
+ cmd = MODE_10 | addr;
+ index_addr((uint32_t)cmd, access_type);
+
+ /* setup the pipeline command */
+ if (access_type == SPARE_ACCESS && op == DENALI_WRITE)
+ index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE);
+ else if (access_type == SPARE_ACCESS && op == DENALI_READ)
+ index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD);
+ else
+ index_addr((uint32_t)cmd, 0x2000 | op | page_count);
+
+ /* wait for command to be accepted */
+ irq_status = wait_for_irq(irq_mask);
+ if ((irq_status & irq_mask) != irq_mask)
+ return -EIO;
+
+ if (access_type != SPARE_ACCESS) {
+ cmd = MODE_01 | addr;
+ writel(cmd, denali.flash_mem + INDEX_CTRL_REG);
+ }
+ return 0;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(const void *buf, int len)
+{
+ uint32_t i = 0, *buf32;
+
+ /* verify that the len is a multiple of 4. see comment in
+ * read_data_from_flash_mem() */
+ BUG_ON((len % 4) != 0);
+
+ /* write the data to the flash memory */
+ buf32 = (uint32_t *)buf;
+ for (i = 0; i < len / 4; i++)
+ writel(*buf32++, denali.flash_mem + INDEX_DATA_REG);
+ return i * 4; /* intent is to return the number of bytes read */
+}
+
+static void denali_mode_main_access(void)
+{
+ uint32_t addr, cmd;
+ addr = BANK(denali.flash_bank) | denali.page;
+ cmd = MODE_10 | addr;
+ index_addr(cmd, MAIN_ACCESS);
+}
+
+static void denali_mode_main_spare_access(void)
+{
+ uint32_t addr, cmd;
+ addr = BANK(denali.flash_bank) | denali.page;
+ cmd = MODE_10 | addr;
+ index_addr(cmd, MAIN_SPARE_ACCESS);
+}
+
+/* Writes OOB data to the device.
+ * This code unused under normal U-Boot console as normally page write raw
+ * to be used for write oob data with main data.
+ */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+ uint32_t cmd;
+
+ denali.page = page;
+ debug("* write_oob_data *\n");
+
+ /* We need to write to buffer first through MAP00 command */
+ cmd = MODE_00 | BANK(denali.flash_bank);
+ writel(cmd, denali.flash_mem + INDEX_CTRL_REG);
+
+ /* send the data into flash buffer */
+ write_data_to_flash_mem(buf, mtd->oobsize);
+
+ /* activate the write through MAP10 commands */
+ if (denali_send_pipeline_cmd(false, false, SPARE_ACCESS, DENALI_WRITE))
+ return -EIO;
+
+ return 0;
+}
+
+/* this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+ int i = 0;
+ for (i = 0; i < len; i++)
+ if (buf[i] != 0xFF)
+ return false;
+ return true;
+}
+
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(bool en)
+{
+ uint32_t reg_val = 0x0;
+
+ if (en)
+ reg_val = DMA_ENABLE__FLAG;
+
+ writel(reg_val, denali.flash_reg + DMA_ENABLE);
+ readl(denali.flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(int op)
+{
+ const int page_count = 1;
+ uint32_t mode;
+ uint32_t addr = (uint32_t)denali.buf.dma_buf;
+
+ flush_dcache_range(addr, addr + sizeof(denali.buf.dma_buf));
+
+#ifdef CONFIG_NAND_DENALI_64BIT
+ mode = MODE_10 | BANK(denali.flash_bank) | denali.page;
+
+ /* DMA is a three step process */
+
+ /* 1. setup transfer type, interrupt when complete,
+ burst len = 64 bytes, the number of pages */
+ index_addr(mode, 0x01002000 | (64 << 16) | op | page_count);
+
+ /* 2. set memory low address bits 31:0 */
+ index_addr(mode, addr);
+
+ /* 3. set memory high address bits 64:32 */
+ index_addr(mode, 0);
+#else
+ mode = MODE_10 | BANK(denali.flash_bank);
+
+ /* DMA is a four step process */
+
+ /* 1. setup transfer type and # of pages */
+ index_addr(mode | denali.page, 0x2000 | op | page_count);
+
+ /* 2. set memory high address bits 23:8 */
+ index_addr(mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
+
+ /* 3. set memory low address bits 23:8 */
+ index_addr(mode | ((uint32_t)addr << 8), 0x2300);
+
+ /* 4. interrupt when complete, burst len = 64 bytes*/
+ index_addr(mode | 0x14000, 0x2400);
+#endif
+}
+
+/* Common DMA function */
+static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
+ uint32_t irq_mask, int oob_required)
+{
+ uint32_t irq_status = 0;
+ /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
+ setup_ecc_for_xfer(!raw_xfer, oob_required);
+
+ /* clear any previous interrupt flags */
+ clear_interrupts();
+
+ /* enable the DMA */
+ denali_enable_dma(true);
+
+ /* setup the DMA */
+ denali_setup_dma(ops);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(irq_mask);
+
+ /* if ECC fault happen, seems we need delay before turning off DMA.
+ * If not, the controller will go into non responsive condition */
+ if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
+ udelay(100);
+
+ /* disable the DMA */
+ denali_enable_dma(false);
+
+ return irq_status;
+}
+
+static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, bool raw_xfer, int oob_required)
+{
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+ denali.status = 0;
+
+ /* copy buffer into DMA buffer */
+ memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize);
+
+ /* need extra memcpoy for raw transfer */
+ if (raw_xfer)
+ memcpy((void *)denali.buf.dma_buf + mtd->writesize,
+ chip->oob_poi, mtd->oobsize);
+
+ /* setting up DMA */
+ irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask,
+ oob_required);
+
+ /* if timeout happen, error out */
+ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
+ debug("DMA timeout for denali write_page\n");
+ denali.status = NAND_STATUS_FAIL;
+ return -EIO;
+ }
+
+ if (irq_status & INTR_STATUS__LOCKED_BLK) {
+ debug("Failed as write to locked block\n");
+ denali.status = NAND_STATUS_FAIL;
+ return -EIO;
+ }
+ return 0;
+}
+
+/* NAND core entry points */
+
+/*
+ * this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ */
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ /*
+ * for regular page writes, we let HW handle all the ECC
+ * data written to the device.
+ */
+ debug("denali_write_page at page %08x\n", denali.page);
+
+ if (oob_required)
+ /* switch to main + spare access */
+ denali_mode_main_spare_access();
+ else
+ /* switch to main access only */
+ denali_mode_main_access();
+
+ return write_page(mtd, chip, buf, false, oob_required);
+}
+
+/*
+ * This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ /*
+ * for raw page writes, we want to disable ECC and simply write
+ * whatever data is in the buffer.
+ */
+ debug("denali_write_page_raw at page %08x\n", denali.page);
+
+ if (oob_required)
+ /* switch to main + spare access */
+ denali_mode_main_spare_access();
+ else
+ /* switch to main access only */
+ denali_mode_main_access();
+
+ return write_page(mtd, chip, buf, true, oob_required);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+/* raw include ECC value and all the spare area */
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+ debug("denali_read_page_raw at page %08x\n", page);
+ if (denali.page != page) {
+ debug("Missing NAND_CMD_READ0 command\n");
+ return -EIO;
+ }
+
+ if (oob_required)
+ /* switch to main + spare access */
+ denali_mode_main_spare_access();
+ else
+ /* switch to main access only */
+ denali_mode_main_access();
+
+ /* setting up the DMA where ecc_enable is false */
+ irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask,
+ oob_required);
+
+ /* if timeout happen, error out */
+ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
+ debug("DMA timeout for denali_read_page_raw\n");
+ return -EIO;
+ }
+
+ /* splitting the content to destination buffer holder */
+ memcpy(chip->oob_poi, (denali.buf.dma_buf + mtd->writesize),
+ mtd->oobsize);
+ memcpy(buf, denali.buf.dma_buf, mtd->writesize);
+ debug("buf %02x %02x\n", buf[0], buf[1]);
+ debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]);
+ return 0;
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+ debug("denali_read_page at page %08x\n", page);
+ if (denali.page != page) {
+ debug("Missing NAND_CMD_READ0 command\n");
+ return -EIO;
+ }
+
+ if (oob_required)
+ /* switch to main + spare access */
+ denali_mode_main_spare_access();
+ else
+ /* switch to main access only */
+ denali_mode_main_access();
+
+ /* setting up the DMA where ecc_enable is true */
+ irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask,
+ oob_required);
+
+ memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
+ debug("buf %02x %02x\n", buf[0], buf[1]);
+
+ /* check whether any ECC error */
+ if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
+ /* is the ECC cause by erase page, check using read_page_raw */
+ debug(" Uncorrected ECC detected\n");
+ denali_read_page_raw(mtd, chip, buf, oob_required, denali.page);
+
+ if (is_erased(buf, mtd->writesize) == true &&
+ is_erased(chip->oob_poi, mtd->oobsize) == true) {
+ debug(" ECC error cause by erased block\n");
+ /* false alarm, return the 0xFF */
+ } else {
+ return -EIO;
+ }
+ }
+ memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
+ return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+ uint32_t addr, result;
+ addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+ index_addr_read_data((uint32_t)addr | 2, &result);
+ return (uint8_t)result & 0xFF;
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ debug("denali_read_oob at page %08x\n", page);
+ denali.page = page;
+ return denali_read_page_raw(mtd, chip, denali.buf.buf, 1, page);
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ uint32_t i, addr, result;
+
+ /* delay for tR (data transfer from Flash array to data register) */
+ udelay(25);
+
+ /* ensure device completed else additional delay and polling */
+ wait_for_irq(INTR_STATUS__INT_ACT);
+
+ addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+ for (i = 0; i < len; i++) {
+ index_addr_read_data((uint32_t)addr | 2, &result);
+ write_byte_to_buf(result);
+ }
+ memcpy(buf, denali.buf.buf, len);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+ denali.flash_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ int status = denali.status;
+ denali.status = 0;
+
+ return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+ uint32_t cmd = 0x0, irq_status = 0;
+
+ debug("denali_erase at page %08x\n", page);
+
+ /* clear interrupts */
+ clear_interrupts();
+
+ /* setup page read request for access type */
+ cmd = MODE_10 | BANK(denali.flash_bank) | page;
+ index_addr((uint32_t)cmd, 0x1);
+
+ /* wait for erase to complete or failure to occur */
+ irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP |
+ INTR_STATUS__ERASE_FAIL);
+
+ if (irq_status & INTR_STATUS__ERASE_FAIL ||
+ irq_status & INTR_STATUS__LOCKED_BLK)
+ denali.status = NAND_STATUS_FAIL;
+ else
+ denali.status = 0;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+ int page)
+{
+ uint32_t addr;
+
+ switch (cmd) {
+ case NAND_CMD_PAGEPROG:
+ break;
+ case NAND_CMD_STATUS:
+ addr = MODE_11 | BANK(denali.flash_bank);
+ index_addr(addr | 0, cmd);
+ break;
+ case NAND_CMD_PARAM:
+ clear_interrupts();
+ case NAND_CMD_READID:
+ reset_buf();
+ /* sometimes ManufactureId read from register is not right
+ * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+ * So here we send READID cmd to NAND insteand
+ * */
+ addr = MODE_11 | BANK(denali.flash_bank);
+ index_addr(addr | 0, cmd);
+ index_addr(addr | 1, col & 0xFF);
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_SEQIN:
+ denali.page = page;
+ break;
+ case NAND_CMD_RESET:
+ reset_bank();
+ break;
+ case NAND_CMD_READOOB:
+ /* TODO: Read OOB data */
+ break;
+ case NAND_CMD_ERASE1:
+ /*
+ * supporting block erase only, not multiblock erase as
+ * it will cross plane and software need complex calculation
+ * to identify the block count for the cross plane
+ */
+ denali_erase(mtd, page);
+ break;
+ case NAND_CMD_ERASE2:
+ /* nothing to do here as it was done during NAND_CMD_ERASE1 */
+ break;
+ case NAND_CMD_UNLOCK1:
+ addr = MODE_10 | BANK(denali.flash_bank) | page;
+ index_addr(addr | 0, DENALI_UNLOCK_START);
+ break;
+ case NAND_CMD_UNLOCK2:
+ addr = MODE_10 | BANK(denali.flash_bank) | page;
+ index_addr(addr | 0, DENALI_UNLOCK_END);
+ break;
+ case NAND_CMD_LOCK:
+ addr = MODE_10 | BANK(denali.flash_bank);
+ index_addr(addr | 0, DENALI_LOCK);
+ break;
+ case NAND_CMD_LOCK_TIGHT:
+ addr = MODE_10 | BANK(denali.flash_bank);
+ index_addr(addr | 0, DENALI_LOCK_TIGHT);
+ break;
+ default:
+ printf(": unsupported command received 0x%x\n", cmd);
+ break;
+ }
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(void)
+{
+ /*
+ * tell driver how many bit controller will skip before writing
+ * ECC code in OOB. This is normally used for bad block marker
+ */
+ writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
+ denali.flash_reg + SPARE_AREA_SKIP_BYTES);
+ detect_max_banks();
+ denali_nand_reset();
+ writel(0x0F, denali.flash_reg + RB_PIN_ENABLED);
+ writel(CHIP_EN_DONT_CARE__FLAG,
+ denali.flash_reg + CHIP_ENABLE_DONT_CARE);
+ writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER);
+
+ /* Should set value for these registers when init */
+ writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES);
+ writel(1, denali.flash_reg + ECC_ENABLE);
+ denali_nand_timing_set();
+ denali_irq_init();
+}
+
+static struct nand_ecclayout nand_oob;
+
+static int denali_nand_init(struct nand_chip *nand)
+{
+ denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+ denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+ /* check whether flash got BBT table (located at end of flash). As we
+ * use NAND_BBT_NO_OOB, the BBT page will start with
+ * bbt_pattern. We will have mirror pattern too */
+ nand->options |= NAND_BBT_USE_FLASH;
+ /*
+ * We are using main + spare with ECC support. As BBT need ECC support,
+ * we need to ensure BBT code don't write to OOB for the BBT pattern.
+ * All BBT info will be stored into data area with ECC support.
+ */
+ nand->options |= NAND_BBT_NO_OOB;
+#endif
+
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
+ nand->ecc.read_oob = denali_read_oob;
+ nand->ecc.write_oob = denali_write_oob;
+ nand->ecc.read_page = denali_read_page;
+ nand->ecc.read_page_raw = denali_read_page_raw;
+ nand->ecc.write_page = denali_write_page;
+ nand->ecc.write_page_raw = denali_write_page_raw;
+ /*
+ * Tell driver the ecc strength. This register may be already set
+ * correctly. So we read this value out.
+ */
+ nand->ecc.strength = readl(denali.flash_reg + ECC_CORRECTION);
+ switch (nand->ecc.size) {
+ case 512:
+ nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2;
+ break;
+ case 1024:
+ nand->ecc.bytes = (nand->ecc.strength * 14 + 15) / 16 * 2;
+ break;
+ default:
+ pr_err("Unsupported ECC size\n");
+ return -EINVAL;
+ }
+ nand_oob.eccbytes = nand->ecc.bytes;
+ nand->ecc.layout = &nand_oob;
+
+ /* Set address of hardware control function */
+ nand->cmdfunc = denali_cmdfunc;
+ nand->read_byte = denali_read_byte;
+ nand->read_buf = denali_read_buf;
+ nand->select_chip = denali_select_chip;
+ nand->waitfunc = denali_waitfunc;
+ denali_hw_init();
+ return 0;
+}
+
+int board_nand_init(struct nand_chip *chip)
+{
+ return denali_nand_init(chip);
+}
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..50a109d
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,490 @@
+/*
+ * Copyright (C) 2013-2014 Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <linux/mtd/nand.h>
+
+#define DEVICE_RESET 0x0
+#define DEVICE_RESET__BANK0 0x0001
+#define DEVICE_RESET__BANK1 0x0002
+#define DEVICE_RESET__BANK2 0x0004
+#define DEVICE_RESET__BANK3 0x0008
+
+#define TRANSFER_SPARE_REG 0x10
+#define TRANSFER_SPARE_REG__FLAG 0x0001
+
+#define LOAD_WAIT_CNT 0x20
+#define LOAD_WAIT_CNT__VALUE 0xffff
+
+#define PROGRAM_WAIT_CNT 0x30
+#define PROGRAM_WAIT_CNT__VALUE 0xffff
+
+#define ERASE_WAIT_CNT 0x40
+#define ERASE_WAIT_CNT__VALUE 0xffff
+
+#define INT_MON_CYCCNT 0x50
+#define INT_MON_CYCCNT__VALUE 0xffff
+
+#define RB_PIN_ENABLED 0x60
+#define RB_PIN_ENABLED__BANK0 0x0001
+#define RB_PIN_ENABLED__BANK1 0x0002
+#define RB_PIN_ENABLED__BANK2 0x0004
+#define RB_PIN_ENABLED__BANK3 0x0008
+
+#define MULTIPLANE_OPERATION 0x70
+#define MULTIPLANE_OPERATION__FLAG 0x0001
+
+#define MULTIPLANE_READ_ENABLE 0x80
+#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
+
+#define COPYBACK_DISABLE 0x90
+#define COPYBACK_DISABLE__FLAG 0x0001
+
+#define CACHE_WRITE_ENABLE 0xa0
+#define CACHE_WRITE_ENABLE__FLAG 0x0001
+
+#define CACHE_READ_ENABLE 0xb0
+#define CACHE_READ_ENABLE__FLAG 0x0001
+
+#define PREFETCH_MODE 0xc0
+#define PREFETCH_MODE__PREFETCH_EN 0x0001
+#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
+
+#define CHIP_ENABLE_DONT_CARE 0xd0
+#define CHIP_EN_DONT_CARE__FLAG 0x01
+
+#define ECC_ENABLE 0xe0
+#define ECC_ENABLE__FLAG 0x0001
+
+#define GLOBAL_INT_ENABLE 0xf0
+#define GLOBAL_INT_EN_FLAG 0x01
+
+#define WE_2_RE 0x100
+#define WE_2_RE__VALUE 0x003f
+
+#define ADDR_2_DATA 0x110
+#define ADDR_2_DATA__VALUE 0x003f
+
+#define RE_2_WE 0x120
+#define RE_2_WE__VALUE 0x003f
+
+#define ACC_CLKS 0x130
+#define ACC_CLKS__VALUE 0x000f
+
+#define NUMBER_OF_PLANES 0x140
+#define NUMBER_OF_PLANES__VALUE 0x0007
+
+#define PAGES_PER_BLOCK 0x150
+#define PAGES_PER_BLOCK__VALUE 0xffff
+
+#define DEVICE_WIDTH 0x160
+#define DEVICE_WIDTH__VALUE 0x0003
+
+#define DEVICE_MAIN_AREA_SIZE 0x170
+#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
+
+#define DEVICE_SPARE_AREA_SIZE 0x180
+#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
+
+#define TWO_ROW_ADDR_CYCLES 0x190
+#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT 0x1a0
+#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
+
+#define ECC_CORRECTION 0x1b0
+#define ECC_CORRECTION__VALUE 0x001f
+
+#define READ_MODE 0x1c0
+#define READ_MODE__VALUE 0x000f
+
+#define WRITE_MODE 0x1d0
+#define WRITE_MODE__VALUE 0x000f
+
+#define COPYBACK_MODE 0x1e0
+#define COPYBACK_MODE__VALUE 0x000f
+
+#define RDWR_EN_LO_CNT 0x1f0
+#define RDWR_EN_LO_CNT__VALUE 0x001f
+
+#define RDWR_EN_HI_CNT 0x200
+#define RDWR_EN_HI_CNT__VALUE 0x001f
+
+#define MAX_RD_DELAY 0x210
+#define MAX_RD_DELAY__VALUE 0x000f
+
+#define CS_SETUP_CNT 0x220
+#define CS_SETUP_CNT__VALUE 0x001f
+
+#define SPARE_AREA_SKIP_BYTES 0x230
+#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
+
+#define SPARE_AREA_MARKER 0x240
+#define SPARE_AREA_MARKER__VALUE 0xffff
+
+#define DEVICES_CONNECTED 0x250
+#define DEVICES_CONNECTED__VALUE 0x0007
+
+#define DIE_MASK 0x260
+#define DIE_MASK__VALUE 0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE 0x270
+#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
+
+#define WRITE_PROTECT 0x280
+#define WRITE_PROTECT__FLAG 0x0001
+
+#define RE_2_RE 0x290
+#define RE_2_RE__VALUE 0x003f
+
+#define MANUFACTURER_ID 0x300
+#define MANUFACTURER_ID__VALUE 0x00ff
+
+#define DEVICE_ID 0x310
+#define DEVICE_ID__VALUE 0x00ff
+
+#define DEVICE_PARAM_0 0x320
+#define DEVICE_PARAM_0__VALUE 0x00ff
+
+#define DEVICE_PARAM_1 0x330
+#define DEVICE_PARAM_1__VALUE 0x00ff
+
+#define DEVICE_PARAM_2 0x340
+#define DEVICE_PARAM_2__VALUE 0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE 0x350
+#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE 0x360
+#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
+
+#define REVISION 0x370
+#define REVISION__VALUE 0xffff
+
+#define ONFI_DEVICE_FEATURES 0x380
+#define ONFI_DEVICE_FEATURES__VALUE 0x003f
+
+#define ONFI_OPTIONAL_COMMANDS 0x390
+#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
+
+#define ONFI_TIMING_MODE 0x3a0
+#define ONFI_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0
+#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS 0x3c0
+#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff
+#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
+
+#define FEATURES 0x3f0
+#define FEATURES__N_BANKS 0x0003
+#define FEATURES__ECC_MAX_ERR 0x003c
+#define FEATURES__DMA 0x0040
+#define FEATURES__CMD_DMA 0x0080
+#define FEATURES__PARTITION 0x0100
+#define FEATURES__XDMA_SIDEBAND 0x0200
+#define FEATURES__GPREG 0x0400
+#define FEATURES__INDEX_ADDR 0x0800
+
+#define TRANSFER_MODE 0x400
+#define TRANSFER_MODE__VALUE 0x0003
+
+#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50))
+#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
+
+/*
+ * Some versions of the IP have the ECC fixup handled in hardware. In this
+ * configuration we only get interrupted when the error is uncorrectable.
+ * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
+ * old IP.
+ */
+#define INTR_STATUS__ECC_UNCOR_ERR 0x0001
+#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS__ECC_ERR 0x0002
+#define INTR_STATUS__DMA_CMD_COMP 0x0004
+#define INTR_STATUS__TIME_OUT 0x0008
+#define INTR_STATUS__PROGRAM_FAIL 0x0010
+#define INTR_STATUS__ERASE_FAIL 0x0020
+#define INTR_STATUS__LOAD_COMP 0x0040
+#define INTR_STATUS__PROGRAM_COMP 0x0080
+#define INTR_STATUS__ERASE_COMP 0x0100
+#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS__LOCKED_BLK 0x0400
+#define INTR_STATUS__UNSUP_CMD 0x0800
+#define INTR_STATUS__INT_ACT 0x1000
+#define INTR_STATUS__RST_COMP 0x2000
+#define INTR_STATUS__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS__PAGE_XFER_INC 0x8000
+
+#define INTR_EN__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN__ECC_ERR 0x0002
+#define INTR_EN__DMA_CMD_COMP 0x0004
+#define INTR_EN__TIME_OUT 0x0008
+#define INTR_EN__PROGRAM_FAIL 0x0010
+#define INTR_EN__ERASE_FAIL 0x0020
+#define INTR_EN__LOAD_COMP 0x0040
+#define INTR_EN__PROGRAM_COMP 0x0080
+#define INTR_EN__ERASE_COMP 0x0100
+#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN__LOCKED_BLK 0x0400
+#define INTR_EN__UNSUP_CMD 0x0800
+#define INTR_EN__INT_ACT 0x1000
+#define INTR_EN__RST_COMP 0x2000
+#define INTR_EN__PIPE_CMD_ERR 0x4000
+#define INTR_EN__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50))
+#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50))
+#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
+
+#define DATA_INTR 0x550
+#define DATA_INTR__WRITE_SPACE_AV 0x0001
+#define DATA_INTR__READ_DATA_AV 0x0002
+
+#define DATA_INTR_EN 0x560
+#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
+#define DATA_INTR_EN__READ_DATA_AV 0x0002
+
+#define GPREG_0 0x570
+#define GPREG_0__VALUE 0xffff
+
+#define GPREG_1 0x580
+#define GPREG_1__VALUE 0xffff
+
+#define GPREG_2 0x590
+#define GPREG_2__VALUE 0xffff
+
+#define GPREG_3 0x5a0
+#define GPREG_3__VALUE 0xffff
+
+#define ECC_THRESHOLD 0x600
+#define ECC_THRESHOLD__VALUE 0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS 0x610
+#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS 0x620
+#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff
+#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
+
+#define ECC_ERROR_ADDRESS 0x630
+#define ECC_ERROR_ADDRESS__OFFSET 0x0fff
+#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
+
+#define ERR_CORRECTION_INFO 0x640
+#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff
+#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00
+#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
+#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+
+#define DMA_ENABLE 0x700
+#define DMA_ENABLE__FLAG 0x0001
+
+#define IGNORE_ECC_DONE 0x710
+#define IGNORE_ECC_DONE__FLAG 0x0001
+
+#define DMA_INTR 0x720
+#define DMA_INTR__TARGET_ERROR 0x0001
+#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
+
+#define DMA_INTR_EN 0x730
+#define DMA_INTR_EN__TARGET_ERROR 0x0001
+#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+
+#define TARGET_ERR_ADDR_LO 0x740
+#define TARGET_ERR_ADDR_LO__VALUE 0xffff
+
+#define TARGET_ERR_ADDR_HI 0x750
+#define TARGET_ERR_ADDR_HI__VALUE 0xffff
+
+#define CHNL_ACTIVE 0x760
+#define CHNL_ACTIVE__CHANNEL0 0x0001
+#define CHNL_ACTIVE__CHANNEL1 0x0002
+#define CHNL_ACTIVE__CHANNEL2 0x0004
+#define CHNL_ACTIVE__CHANNEL3 0x0008
+
+#define ACTIVE_SRC_ID 0x800
+#define ACTIVE_SRC_ID__VALUE 0x00ff
+
+#define PTN_INTR 0x810
+#define PTN_INTR__CONFIG_ERROR 0x0001
+#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR__REG_ACCESS_ERROR 0x0020
+
+#define PTN_INTR_EN 0x820
+#define PTN_INTR_EN__CONFIG_ERROR 0x0001
+#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
+
+#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40))
+#define PERM_SRC_ID__SRCID 0x00ff
+#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID__READ_ACTIVE 0x4000
+#define PERM_SRC_ID__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40))
+#define MIN_BLK_ADDR__VALUE 0xffff
+
+#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40))
+#define MAX_BLK_ADDR__VALUE 0xffff
+
+#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40))
+#define MIN_MAX_BANK__MIN_VALUE 0x0003
+#define MIN_MAX_BANK__MAX_VALUE 0x000c
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X 5
+#define CLK_MULTI 4
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID 0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK 3
+#define NUM_FREE_BLOCKS_GATE 30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE 64
+
+#define GLOB_HWCTL_DEFAULT_BLKS 2048
+
+#define CUSTOM_CONF_PARAMS 0
+
+#define ONFI_BLOOM_TIME 1
+#define MODE5_WORKAROUND 0
+
+/* lld_nand.h */
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef _LLD_NAND_
+#define _LLD_NAND_
+
+#define INDEX_CTRL_REG 0x0
+#define INDEX_DATA_REG 0x10
+
+#define MODE_00 0x00000000
+#define MODE_01 0x04000000
+#define MODE_10 0x08000000
+#define MODE_11 0x0C000000
+
+
+#define DATA_TRANSFER_MODE 0
+#define PROTECTION_PER_BLOCK 1
+#define LOAD_WAIT_COUNT 2
+#define PROGRAM_WAIT_COUNT 3
+#define ERASE_WAIT_COUNT 4
+#define INT_MONITOR_CYCLE_COUNT 5
+#define READ_BUSY_PIN_ENABLED 6
+#define MULTIPLANE_OPERATION_SUPPORT 7
+#define PRE_FETCH_MODE 8
+#define CE_DONT_CARE_SUPPORT 9
+#define COPYBACK_SUPPORT 10
+#define CACHE_WRITE_SUPPORT 11
+#define CACHE_READ_SUPPORT 12
+#define NUM_PAGES_IN_BLOCK 13
+#define ECC_ENABLE_SELECT 14
+#define WRITE_ENABLE_2_READ_ENABLE 15
+#define ADDRESS_2_DATA 16
+#define READ_ENABLE_2_WRITE_ENABLE 17
+#define TWO_ROW_ADDRESS_CYCLES 18
+#define MULTIPLANE_ADDRESS_RESTRICT 19
+#define ACC_CLOCKS 20
+#define READ_WRITE_ENABLE_LOW_COUNT 21
+#define READ_WRITE_ENABLE_HIGH_COUNT 22
+
+#define ECC_SECTOR_SIZE 512
+
+#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+
+struct nand_buf {
+ int head;
+ int tail;
+ /* seprating dma_buf as buf can be used for status read purpose */
+ uint8_t dma_buf[DENALI_BUF_SIZE] __aligned(64);
+ uint8_t buf[DENALI_BUF_SIZE];
+};
+
+#define INTEL_CE4100 1
+#define INTEL_MRST 2
+#define DT 3
+
+struct denali_nand_info {
+ struct mtd_info mtd;
+ struct nand_chip *nand;
+
+ int flash_bank; /* currently selected chip */
+ int status;
+ int platform;
+ struct nand_buf buf;
+ struct device *dev;
+ int total_used_banks;
+ uint32_t block; /* stored for future use */
+ uint32_t page;
+ void __iomem *flash_reg; /* Mapped io reg base address */
+ void __iomem *flash_mem; /* Mapped io reg base address */
+
+ /* elements used by ISR */
+ /*struct completion complete;*/
+
+ uint32_t irq_status;
+ int irq_debug_array[32];
+ int idx;
+ int irq;
+
+ uint32_t devnum; /* represent how many nands connected */
+ uint32_t fwblks; /* represent how many blocks FW used */
+ uint32_t totalblks;
+ uint32_t blksperchip;
+ uint32_t bbtskipbytes;
+ uint32_t max_banks;
+};
+
+#endif /*_LLD_NAND_*/
--
1.7.9.5
More information about the U-Boot
mailing list