[U-Boot] [PATCH 4/7] tools: sunxi: Add spl image builder
Maxime Ripard
maxime.ripard at free-electrons.com
Tue Nov 8 17:21:14 CET 2016
This program generates raw SPL images that can be flashed on the NAND with
the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard <maxime.ripard at free-electrons.com>
---
tools/.gitignore | 1 +-
tools/Makefile | 1 +-
tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++-
3 files changed, 1115 insertions(+), 0 deletions(-)
create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore
index cb1e722d4575..16574467544c 100644
--- a/tools/.gitignore
+++ b/tools/.gitignore
@@ -15,6 +15,7 @@
/mkexynosspl
/mxsboot
/mksunxiboot
+/sunxi-spl-image-builder
/ncb
/proftool
/relocate-rela
diff --git a/tools/Makefile b/tools/Makefile
index 400588cf0f5c..dfeeb23484ce 100644
--- a/tools/Makefile
+++ b/tools/Makefile
@@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot
HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot
+hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb
hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1
diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c
new file mode 100644
index 000000000000..0f915eb2bdf5
--- /dev/null
+++ b/tools/sunxi-spl-image-builder.c
@@ -0,0 +1,1113 @@
+/*
+ * Generic binary BCH encoding/decoding library
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * For the BCH implementation:
+ *
+ * Copyright © 2011 Parrot S.A.
+ *
+ * Author: Ivan Djelic <ivan.djelic at parrot.com>
+ *
+ * See also:
+ * http://lxr.free-electrons.com/source/lib/bch.c
+ *
+ * For the randomizer and image builder implementation:
+ *
+ * Copyright © 2016 NextThing Co.
+ * Copyright © 2016 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon at free-electrons.com>
+ *
+ */
+
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdio.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <asm/byteorder.h>
+#include <endian.h>
+#include <getopt.h>
+#include <version.h>
+
+#if defined(CONFIG_BCH_CONST_PARAMS)
+#define GF_M(_p) (CONFIG_BCH_CONST_M)
+#define GF_T(_p) (CONFIG_BCH_CONST_T)
+#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
+#else
+#define GF_M(_p) ((_p)->m)
+#define GF_T(_p) ((_p)->t)
+#define GF_N(_p) ((_p)->n)
+#endif
+
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+
+#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
+#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
+
+#ifndef dbg
+#define dbg(_fmt, args...) do {} while (0)
+#endif
+
+#define cpu_to_be32 htobe32
+#define kfree free
+#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+
+#define BCH_PRIMITIVE_POLY 0x5803
+
+struct image_info {
+ int ecc_strength;
+ int ecc_step_size;
+ int page_size;
+ int oob_size;
+ int usable_page_size;
+ int eraseblock_size;
+ int scramble;
+ int boot0;
+ off_t offset;
+ const char *source;
+ const char *dest;
+};
+
+/**
+ * struct bch_control - BCH control structure
+ * @m: Galois field order
+ * @n: maximum codeword size in bits (= 2^m-1)
+ * @t: error correction capability in bits
+ * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
+ * @ecc_bytes: ecc max size (m*t bits) in bytes
+ * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
+ * @a_log_tab: Galois field GF(2^m) log lookup table
+ * @mod8_tab: remainder generator polynomial lookup tables
+ * @ecc_buf: ecc parity words buffer
+ * @ecc_buf2: ecc parity words buffer
+ * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
+ * @syn: syndrome buffer
+ * @cache: log-based polynomial representation buffer
+ * @elp: error locator polynomial
+ * @poly_2t: temporary polynomials of degree 2t
+ */
+struct bch_control {
+ unsigned int m;
+ unsigned int n;
+ unsigned int t;
+ unsigned int ecc_bits;
+ unsigned int ecc_bytes;
+/* private: */
+ uint16_t *a_pow_tab;
+ uint16_t *a_log_tab;
+ uint32_t *mod8_tab;
+ uint32_t *ecc_buf;
+ uint32_t *ecc_buf2;
+ unsigned int *xi_tab;
+ unsigned int *syn;
+ int *cache;
+ struct gf_poly *elp;
+ struct gf_poly *poly_2t[4];
+};
+
+static int fls(int x)
+{
+ int r = 32;
+
+ if (!x)
+ return 0;
+ if (!(x & 0xffff0000u)) {
+ x <<= 16;
+ r -= 16;
+ }
+ if (!(x & 0xff000000u)) {
+ x <<= 8;
+ r -= 8;
+ }
+ if (!(x & 0xf0000000u)) {
+ x <<= 4;
+ r -= 4;
+ }
+ if (!(x & 0xc0000000u)) {
+ x <<= 2;
+ r -= 2;
+ }
+ if (!(x & 0x80000000u)) {
+ x <<= 1;
+ r -= 1;
+ }
+ return r;
+}
+
+/*
+ * represent a polynomial over GF(2^m)
+ */
+struct gf_poly {
+ unsigned int deg; /* polynomial degree */
+ unsigned int c[0]; /* polynomial terms */
+};
+
+/* given its degree, compute a polynomial size in bytes */
+#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
+
+/* polynomial of degree 1 */
+struct gf_poly_deg1 {
+ struct gf_poly poly;
+ unsigned int c[2];
+};
+
+/*
+ * same as encode_bch(), but process input data one byte at a time
+ */
+static void encode_bch_unaligned(struct bch_control *bch,
+ const unsigned char *data, unsigned int len,
+ uint32_t *ecc)
+{
+ int i;
+ const uint32_t *p;
+ const int l = BCH_ECC_WORDS(bch)-1;
+
+ while (len--) {
+ p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
+
+ for (i = 0; i < l; i++)
+ ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
+
+ ecc[l] = (ecc[l] << 8)^(*p);
+ }
+}
+
+/*
+ * convert ecc bytes to aligned, zero-padded 32-bit ecc words
+ */
+static void load_ecc8(struct bch_control *bch, uint32_t *dst,
+ const uint8_t *src)
+{
+ uint8_t pad[4] = {0, 0, 0, 0};
+ unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
+
+ for (i = 0; i < nwords; i++, src += 4)
+ dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
+
+ memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
+ dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
+}
+
+/*
+ * convert 32-bit ecc words to ecc bytes
+ */
+static void store_ecc8(struct bch_control *bch, uint8_t *dst,
+ const uint32_t *src)
+{
+ uint8_t pad[4];
+ unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
+
+ for (i = 0; i < nwords; i++) {
+ *dst++ = (src[i] >> 24);
+ *dst++ = (src[i] >> 16) & 0xff;
+ *dst++ = (src[i] >> 8) & 0xff;
+ *dst++ = (src[i] >> 0) & 0xff;
+ }
+ pad[0] = (src[nwords] >> 24);
+ pad[1] = (src[nwords] >> 16) & 0xff;
+ pad[2] = (src[nwords] >> 8) & 0xff;
+ pad[3] = (src[nwords] >> 0) & 0xff;
+ memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
+}
+
+/**
+ * encode_bch - calculate BCH ecc parity of data
+ * @bch: BCH control structure
+ * @data: data to encode
+ * @len: data length in bytes
+ * @ecc: ecc parity data, must be initialized by caller
+ *
+ * The @ecc parity array is used both as input and output parameter, in order to
+ * allow incremental computations. It should be of the size indicated by member
+ * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
+ *
+ * The exact number of computed ecc parity bits is given by member @ecc_bits of
+ * @bch; it may be less than m*t for large values of t.
+ */
+static void encode_bch(struct bch_control *bch, const uint8_t *data,
+ unsigned int len, uint8_t *ecc)
+{
+ const unsigned int l = BCH_ECC_WORDS(bch)-1;
+ unsigned int i, mlen;
+ unsigned long m;
+ uint32_t w, r[l+1];
+ const uint32_t * const tab0 = bch->mod8_tab;
+ const uint32_t * const tab1 = tab0 + 256*(l+1);
+ const uint32_t * const tab2 = tab1 + 256*(l+1);
+ const uint32_t * const tab3 = tab2 + 256*(l+1);
+ const uint32_t *pdata, *p0, *p1, *p2, *p3;
+
+ if (ecc) {
+ /* load ecc parity bytes into internal 32-bit buffer */
+ load_ecc8(bch, bch->ecc_buf, ecc);
+ } else {
+ memset(bch->ecc_buf, 0, sizeof(r));
+ }
+
+ /* process first unaligned data bytes */
+ m = ((uintptr_t)data) & 3;
+ if (m) {
+ mlen = (len < (4-m)) ? len : 4-m;
+ encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
+ data += mlen;
+ len -= mlen;
+ }
+
+ /* process 32-bit aligned data words */
+ pdata = (uint32_t *)data;
+ mlen = len/4;
+ data += 4*mlen;
+ len -= 4*mlen;
+ memcpy(r, bch->ecc_buf, sizeof(r));
+
+ /*
+ * split each 32-bit word into 4 polynomials of weight 8 as follows:
+ *
+ * 31 ...24 23 ...16 15 ... 8 7 ... 0
+ * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
+ * tttttttt mod g = r0 (precomputed)
+ * zzzzzzzz 00000000 mod g = r1 (precomputed)
+ * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
+ * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
+ * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
+ */
+ while (mlen--) {
+ /* input data is read in big-endian format */
+ w = r[0]^cpu_to_be32(*pdata++);
+ p0 = tab0 + (l+1)*((w >> 0) & 0xff);
+ p1 = tab1 + (l+1)*((w >> 8) & 0xff);
+ p2 = tab2 + (l+1)*((w >> 16) & 0xff);
+ p3 = tab3 + (l+1)*((w >> 24) & 0xff);
+
+ for (i = 0; i < l; i++)
+ r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
+
+ r[l] = p0[l]^p1[l]^p2[l]^p3[l];
+ }
+ memcpy(bch->ecc_buf, r, sizeof(r));
+
+ /* process last unaligned bytes */
+ if (len)
+ encode_bch_unaligned(bch, data, len, bch->ecc_buf);
+
+ /* store ecc parity bytes into original parity buffer */
+ if (ecc)
+ store_ecc8(bch, ecc, bch->ecc_buf);
+}
+
+static inline int modulo(struct bch_control *bch, unsigned int v)
+{
+ const unsigned int n = GF_N(bch);
+ while (v >= n) {
+ v -= n;
+ v = (v & n) + (v >> GF_M(bch));
+ }
+ return v;
+}
+
+/*
+ * shorter and faster modulo function, only works when v < 2N.
+ */
+static inline int mod_s(struct bch_control *bch, unsigned int v)
+{
+ const unsigned int n = GF_N(bch);
+ return (v < n) ? v : v-n;
+}
+
+static inline int deg(unsigned int poly)
+{
+ /* polynomial degree is the most-significant bit index */
+ return fls(poly)-1;
+}
+
+/* Galois field basic operations: multiply, divide, inverse, etc. */
+
+static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
+ unsigned int b)
+{
+ return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
+ bch->a_log_tab[b])] : 0;
+}
+
+static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
+{
+ return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
+}
+
+static inline unsigned int a_pow(struct bch_control *bch, int i)
+{
+ return bch->a_pow_tab[modulo(bch, i)];
+}
+
+static inline int a_log(struct bch_control *bch, unsigned int x)
+{
+ return bch->a_log_tab[x];
+}
+
+/*
+ * generate Galois field lookup tables
+ */
+static int build_gf_tables(struct bch_control *bch, unsigned int poly)
+{
+ unsigned int i, x = 1;
+ const unsigned int k = 1 << deg(poly);
+
+ /* primitive polynomial must be of degree m */
+ if (k != (1u << GF_M(bch)))
+ return -1;
+
+ for (i = 0; i < GF_N(bch); i++) {
+ bch->a_pow_tab[i] = x;
+ bch->a_log_tab[x] = i;
+ if (i && (x == 1))
+ /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
+ return -1;
+ x <<= 1;
+ if (x & k)
+ x ^= poly;
+ }
+ bch->a_pow_tab[GF_N(bch)] = 1;
+ bch->a_log_tab[0] = 0;
+
+ return 0;
+}
+
+/*
+ * compute generator polynomial remainder tables for fast encoding
+ */
+static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
+{
+ int i, j, b, d;
+ uint32_t data, hi, lo, *tab;
+ const int l = BCH_ECC_WORDS(bch);
+ const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
+ const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
+
+ memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
+
+ for (i = 0; i < 256; i++) {
+ /* p(X)=i is a small polynomial of weight <= 8 */
+ for (b = 0; b < 4; b++) {
+ /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
+ tab = bch->mod8_tab + (b*256+i)*l;
+ data = i << (8*b);
+ while (data) {
+ d = deg(data);
+ /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
+ data ^= g[0] >> (31-d);
+ for (j = 0; j < ecclen; j++) {
+ hi = (d < 31) ? g[j] << (d+1) : 0;
+ lo = (j+1 < plen) ?
+ g[j+1] >> (31-d) : 0;
+ tab[j] ^= hi|lo;
+ }
+ }
+ }
+ }
+}
+
+/*
+ * build a base for factoring degree 2 polynomials
+ */
+static int build_deg2_base(struct bch_control *bch)
+{
+ const int m = GF_M(bch);
+ int i, j, r;
+ unsigned int sum, x, y, remaining, ak = 0, xi[m];
+
+ /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
+ for (i = 0; i < m; i++) {
+ for (j = 0, sum = 0; j < m; j++)
+ sum ^= a_pow(bch, i*(1 << j));
+
+ if (sum) {
+ ak = bch->a_pow_tab[i];
+ break;
+ }
+ }
+ /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
+ remaining = m;
+ memset(xi, 0, sizeof(xi));
+
+ for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
+ y = gf_sqr(bch, x)^x;
+ for (i = 0; i < 2; i++) {
+ r = a_log(bch, y);
+ if (y && (r < m) && !xi[r]) {
+ bch->xi_tab[r] = x;
+ xi[r] = 1;
+ remaining--;
+ dbg("x%d = %x\n", r, x);
+ break;
+ }
+ y ^= ak;
+ }
+ }
+ /* should not happen but check anyway */
+ return remaining ? -1 : 0;
+}
+
+static void *bch_alloc(size_t size, int *err)
+{
+ void *ptr;
+
+ ptr = malloc(size);
+ if (ptr == NULL)
+ *err = 1;
+ return ptr;
+}
+
+/*
+ * compute generator polynomial for given (m,t) parameters.
+ */
+static uint32_t *compute_generator_polynomial(struct bch_control *bch)
+{
+ const unsigned int m = GF_M(bch);
+ const unsigned int t = GF_T(bch);
+ int n, err = 0;
+ unsigned int i, j, nbits, r, word, *roots;
+ struct gf_poly *g;
+ uint32_t *genpoly;
+
+ g = bch_alloc(GF_POLY_SZ(m*t), &err);
+ roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
+ genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
+
+ if (err) {
+ kfree(genpoly);
+ genpoly = NULL;
+ goto finish;
+ }
+
+ /* enumerate all roots of g(X) */
+ memset(roots , 0, (bch->n+1)*sizeof(*roots));
+ for (i = 0; i < t; i++) {
+ for (j = 0, r = 2*i+1; j < m; j++) {
+ roots[r] = 1;
+ r = mod_s(bch, 2*r);
+ }
+ }
+ /* build generator polynomial g(X) */
+ g->deg = 0;
+ g->c[0] = 1;
+ for (i = 0; i < GF_N(bch); i++) {
+ if (roots[i]) {
+ /* multiply g(X) by (X+root) */
+ r = bch->a_pow_tab[i];
+ g->c[g->deg+1] = 1;
+ for (j = g->deg; j > 0; j--)
+ g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
+
+ g->c[0] = gf_mul(bch, g->c[0], r);
+ g->deg++;
+ }
+ }
+ /* store left-justified binary representation of g(X) */
+ n = g->deg+1;
+ i = 0;
+
+ while (n > 0) {
+ nbits = (n > 32) ? 32 : n;
+ for (j = 0, word = 0; j < nbits; j++) {
+ if (g->c[n-1-j])
+ word |= 1u << (31-j);
+ }
+ genpoly[i++] = word;
+ n -= nbits;
+ }
+ bch->ecc_bits = g->deg;
+
+finish:
+ kfree(g);
+ kfree(roots);
+
+ return genpoly;
+}
+
+/**
+ * free_bch - free the BCH control structure
+ * @bch: BCH control structure to release
+ */
+static void free_bch(struct bch_control *bch)
+{
+ unsigned int i;
+
+ if (bch) {
+ kfree(bch->a_pow_tab);
+ kfree(bch->a_log_tab);
+ kfree(bch->mod8_tab);
+ kfree(bch->ecc_buf);
+ kfree(bch->ecc_buf2);
+ kfree(bch->xi_tab);
+ kfree(bch->syn);
+ kfree(bch->cache);
+ kfree(bch->elp);
+
+ for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
+ kfree(bch->poly_2t[i]);
+
+ kfree(bch);
+ }
+}
+
+/**
+ * init_bch - initialize a BCH encoder/decoder
+ * @m: Galois field order, should be in the range 5-15
+ * @t: maximum error correction capability, in bits
+ * @prim_poly: user-provided primitive polynomial (or 0 to use default)
+ *
+ * Returns:
+ * a newly allocated BCH control structure if successful, NULL otherwise
+ *
+ * This initialization can take some time, as lookup tables are built for fast
+ * encoding/decoding; make sure not to call this function from a time critical
+ * path. Usually, init_bch() should be called on module/driver init and
+ * free_bch() should be called to release memory on exit.
+ *
+ * You may provide your own primitive polynomial of degree @m in argument
+ * @prim_poly, or let init_bch() use its default polynomial.
+ *
+ * Once init_bch() has successfully returned a pointer to a newly allocated
+ * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
+ * the structure.
+ */
+static struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
+{
+ int err = 0;
+ unsigned int i, words;
+ uint32_t *genpoly;
+ struct bch_control *bch = NULL;
+
+ const int min_m = 5;
+ const int max_m = 15;
+
+ /* default primitive polynomials */
+ static const unsigned int prim_poly_tab[] = {
+ 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
+ 0x402b, 0x8003,
+ };
+
+#if defined(CONFIG_BCH_CONST_PARAMS)
+ if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
+ printk(KERN_ERR "bch encoder/decoder was configured to support "
+ "parameters m=%d, t=%d only!\n",
+ CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
+ goto fail;
+ }
+#endif
+ if ((m < min_m) || (m > max_m))
+ /*
+ * values of m greater than 15 are not currently supported;
+ * supporting m > 15 would require changing table base type
+ * (uint16_t) and a small patch in matrix transposition
+ */
+ goto fail;
+
+ /* sanity checks */
+ if ((t < 1) || (m*t >= ((1 << m)-1)))
+ /* invalid t value */
+ goto fail;
+
+ /* select a primitive polynomial for generating GF(2^m) */
+ if (prim_poly == 0)
+ prim_poly = prim_poly_tab[m-min_m];
+
+ bch = malloc(sizeof(*bch));
+ if (bch == NULL)
+ goto fail;
+
+ memset(bch, 0, sizeof(*bch));
+
+ bch->m = m;
+ bch->t = t;
+ bch->n = (1 << m)-1;
+ words = DIV_ROUND_UP(m*t, 32);
+ bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
+ bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
+ bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
+ bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
+ bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
+ bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
+ bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
+ bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
+ bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
+ bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
+
+ for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
+ bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
+
+ if (err)
+ goto fail;
+
+ err = build_gf_tables(bch, prim_poly);
+ if (err)
+ goto fail;
+
+ /* use generator polynomial for computing encoding tables */
+ genpoly = compute_generator_polynomial(bch);
+ if (genpoly == NULL)
+ goto fail;
+
+ build_mod8_tables(bch, genpoly);
+ kfree(genpoly);
+
+ err = build_deg2_base(bch);
+ if (err)
+ goto fail;
+
+ return bch;
+
+fail:
+ free_bch(bch);
+ return NULL;
+}
+
+static void swap_bits(uint8_t *buf, int len)
+{
+ int i, j;
+
+ for (j = 0; j < len; j++) {
+ uint8_t byte = buf[j];
+
+ buf[j] = 0;
+ for (i = 0; i < 8; i++) {
+ if (byte & (1 << i))
+ buf[j] |= (1 << (7 - i));
+ }
+ }
+}
+
+static uint16_t lfsr_step(uint16_t state, int count)
+{
+ state &= 0x7fff;
+ while (count--)
+ state = ((state >> 1) |
+ ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
+
+ return state;
+}
+
+static uint16_t default_scrambler_seeds[] = {
+ 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
+ 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
+ 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
+ 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
+ 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
+ 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
+ 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
+ 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
+ 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
+ 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
+ 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
+ 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
+ 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
+ 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
+ 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
+ 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+
+static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
+
+static void scramble(const struct image_info *info,
+ int page, uint8_t *data, int datalen)
+{
+ uint16_t state;
+ int i;
+
+ /* Boot0 is always scrambled no matter the command line option. */
+ if (info->boot0) {
+ state = brom_scrambler_seeds[0];
+ } else {
+ unsigned seedmod = info->eraseblock_size / info->page_size;
+
+ /* Bail out earlier if the user didn't ask for scrambling. */
+ if (!info->scramble)
+ return;
+
+ if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
+ seedmod = ARRAY_SIZE(default_scrambler_seeds);
+
+ state = default_scrambler_seeds[page % seedmod];
+ }
+
+ /* Prepare the initial state... */
+ state = lfsr_step(state, 15);
+
+ /* and start scrambling data. */
+ for (i = 0; i < datalen; i++) {
+ data[i] ^= state;
+ state = lfsr_step(state, 8);
+ }
+}
+
+static int write_page(const struct image_info *info, uint8_t *buffer,
+ FILE *src, FILE *rnd, FILE *dst,
+ struct bch_control *bch, int page)
+{
+ int steps = info->usable_page_size / info->ecc_step_size;
+ int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
+ off_t pos = ftell(dst);
+ size_t pad, cnt;
+ int i;
+
+ if (eccbytes % 2)
+ eccbytes++;
+
+ memset(buffer, 0xff, info->page_size + info->oob_size);
+ cnt = fread(buffer, 1, info->usable_page_size, src);
+ if (!cnt) {
+ if (!feof(src)) {
+ fprintf(stderr,
+ "Failed to read data from the source\n");
+ return -1;
+ } else {
+ return 0;
+ }
+ }
+
+ fwrite(buffer, info->page_size + info->oob_size, 1, dst);
+
+ for (i = 0; i < info->usable_page_size; i++) {
+ if (buffer[i] != 0xff)
+ break;
+ }
+
+ /* We leave empty pages at 0xff. */
+ if (i == info->usable_page_size)
+ return 0;
+
+ /* Restore the source pointer to read it again. */
+ fseek(src, -cnt, SEEK_CUR);
+
+ /* Randomize unused space if scrambling is required. */
+ if (info->scramble) {
+ int offs;
+
+ if (info->boot0) {
+ offs = steps * (info->ecc_step_size + eccbytes + 4);
+ cnt = info->page_size + info->oob_size - offs;
+ fread(buffer + offs, 1, cnt, rnd);
+ } else {
+ offs = info->page_size + (steps * (eccbytes + 4));
+ cnt = info->page_size + info->oob_size - offs;
+ memset(buffer + offs, 0xff, cnt);
+ scramble(info, page, buffer + offs, cnt);
+ }
+ fseek(dst, pos + offs, SEEK_SET);
+ fwrite(buffer + offs, cnt, 1, dst);
+ }
+
+ for (i = 0; i < steps; i++) {
+ int ecc_offs, data_offs;
+ uint8_t *ecc;
+
+ memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
+ ecc = buffer + info->ecc_step_size + 4;
+ if (info->boot0) {
+ data_offs = i * (info->ecc_step_size + eccbytes + 4);
+ ecc_offs = data_offs + info->ecc_step_size + 4;
+ } else {
+ data_offs = i * info->ecc_step_size;
+ ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
+ }
+
+ cnt = fread(buffer, 1, info->ecc_step_size, src);
+ if (!cnt && !feof(src)) {
+ fprintf(stderr,
+ "Failed to read data from the source\n");
+ return -1;
+ }
+
+ pad = info->ecc_step_size - cnt;
+ if (pad) {
+ if (info->scramble && info->boot0)
+ fread(buffer + cnt, 1, pad, rnd);
+ else
+ memset(buffer + cnt, 0xff, pad);
+ }
+
+ memset(ecc, 0, eccbytes);
+ swap_bits(buffer, info->ecc_step_size + 4);
+ encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
+ swap_bits(buffer, info->ecc_step_size + 4);
+ swap_bits(ecc, eccbytes);
+ scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
+
+ fseek(dst, pos + data_offs, SEEK_SET);
+ fwrite(buffer, info->ecc_step_size, 1, dst);
+ fseek(dst, pos + ecc_offs - 4, SEEK_SET);
+ fwrite(ecc - 4, eccbytes + 4, 1, dst);
+ }
+
+ /* Fix BBM. */
+ fseek(dst, pos + info->page_size, SEEK_SET);
+ memset(buffer, 0xff, 2);
+ fwrite(buffer, 2, 1, dst);
+
+ /* Make dst pointer point to the next page. */
+ fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
+
+ return 0;
+}
+
+static int create_image(const struct image_info *info)
+{
+ off_t page = info->offset / info->page_size;
+ struct bch_control *bch;
+ FILE *src, *dst, *rnd;
+ uint8_t *buffer;
+
+ bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
+ if (!bch) {
+ fprintf(stderr, "Failed to init the BCH engine\n");
+ return -1;
+ }
+
+ buffer = malloc(info->page_size + info->oob_size);
+ if (!buffer) {
+ fprintf(stderr, "Failed to allocate the NAND page buffer\n");
+ return -1;
+ }
+
+ memset(buffer, 0xff, info->page_size + info->oob_size);
+
+ src = fopen(info->source, "r");
+ if (!src) {
+ fprintf(stderr, "Failed to open source file (%s)\n",
+ info->source);
+ return -1;
+ }
+
+ dst = fopen(info->dest, "w");
+ if (!dst) {
+ fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
+ return -1;
+ }
+
+ rnd = fopen("/dev/urandom", "r");
+ if (!rnd) {
+ fprintf(stderr, "Failed to open /dev/urandom\n");
+ return -1;
+ }
+
+ while (!feof(src)) {
+ int ret;
+
+ ret = write_page(info, buffer, src, rnd, dst, bch, page++);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static void display_help(int status)
+{
+ fprintf(status == EXIT_SUCCESS ? stdout : stderr,
+ "sunxi-nand-image-builder %s\n"
+ "\n"
+ "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
+ "\n"
+ "Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
+ "\n"
+ "-h --help Display this help and exit\n"
+ "-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
+ "-p <size> --page=<size> Page size\n"
+ "-o <size> --oob=<size> OOB size\n"
+ "-u <size> --usable=<size> Usable page size\n"
+ "-e <size> --eraseblock=<size> Erase block size\n"
+ "-b --boot0 Build a boot0 image.\n"
+ "-s --scramble Scramble data\n"
+ "-a <offset> --address=<offset> Where the image will be programmed.\n"
+ "\n"
+ "Notes:\n"
+ "All the information you need to pass to this tool should be part of\n"
+ "the NAND datasheet.\n"
+ "\n"
+ "The NAND controller only supports the following ECC configs\n"
+ " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
+ " Valid ECC step size: 512 and 1024\n"
+ "\n"
+ "If you are building a boot0 image, you'll have specify extra options.\n"
+ "These options should be chosen based on the layouts described here:\n"
+ " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
+ "\n"
+ " --usable should be assigned the 'Hardware page' value\n"
+ " --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
+ " --usable should be smaller than --page\n"
+ "\n"
+ "The --address option is only required for non-boot0 images that are \n"
+ "meant to be programmed at a non eraseblock aligned offset.\n"
+ "\n"
+ "Examples:\n"
+ " The H27UCG8T2BTR-BC NAND exposes\n"
+ " * 16k pages\n"
+ " * 1280 OOB bytes per page\n"
+ " * 4M eraseblocks\n"
+ " * requires data scrambling\n"
+ " * expects a minimum ECC of 40bits/1024bytes\n"
+ "\n"
+ " A normal image can be generated with\n"
+ " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
+ " A boot0 image can be generated with\n"
+ " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
+ PLAIN_VERSION);
+ exit(status);
+}
+
+static int check_image_info(struct image_info *info)
+{
+ static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
+ int eccbytes, eccsteps;
+ unsigned i;
+
+ if (!info->page_size) {
+ fprintf(stderr, "--page is missing\n");
+ return -EINVAL;
+ }
+
+ if (!info->page_size) {
+ fprintf(stderr, "--oob is missing\n");
+ return -EINVAL;
+ }
+
+ if (!info->eraseblock_size) {
+ fprintf(stderr, "--eraseblock is missing\n");
+ return -EINVAL;
+ }
+
+ if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
+ fprintf(stderr, "Invalid ECC step argument: %d\n",
+ info->ecc_step_size);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
+ if (valid_ecc_strengths[i] == info->ecc_strength)
+ break;
+ }
+
+ if (i == ARRAY_SIZE(valid_ecc_strengths)) {
+ fprintf(stderr, "Invalid ECC strength argument: %d\n",
+ info->ecc_strength);
+ return -EINVAL;
+ }
+
+ eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
+ if (eccbytes % 2)
+ eccbytes++;
+ eccbytes += 4;
+
+ eccsteps = info->usable_page_size / info->ecc_step_size;
+
+ if (info->page_size + info->oob_size <
+ info->usable_page_size + (eccsteps * eccbytes)) {
+ fprintf(stderr,
+ "ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+int main(int argc, char **argv)
+{
+ struct image_info info;
+
+ memset(&info, 0, sizeof(info));
+ /*
+ * Process user arguments
+ */
+ for (;;) {
+ int option_index = 0;
+ char *endptr = NULL;
+ static const struct option long_options[] = {
+ {"help", no_argument, 0, 'h'},
+ {"ecc", required_argument, 0, 'c'},
+ {"page", required_argument, 0, 'p'},
+ {"oob", required_argument, 0, 'o'},
+ {"usable", required_argument, 0, 'u'},
+ {"eraseblock", required_argument, 0, 'e'},
+ {"boot0", no_argument, 0, 'b'},
+ {"scramble", no_argument, 0, 's'},
+ {"address", required_argument, 0, 'a'},
+ {0, 0, 0, 0},
+ };
+
+ int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
+ long_options, &option_index);
+ if (c == EOF)
+ break;
+
+ switch (c) {
+ case 'h':
+ display_help(0);
+ break;
+ case 's':
+ info.scramble = 1;
+ break;
+ case 'c':
+ info.ecc_strength = strtol(optarg, &endptr, 0);
+ if (endptr || *endptr == '/')
+ info.ecc_step_size = strtol(endptr + 1, NULL, 0);
+ break;
+ case 'p':
+ info.page_size = strtol(optarg, NULL, 0);
+ break;
+ case 'o':
+ info.oob_size = strtol(optarg, NULL, 0);
+ break;
+ case 'u':
+ info.usable_page_size = strtol(optarg, NULL, 0);
+ break;
+ case 'e':
+ info.eraseblock_size = strtol(optarg, NULL, 0);
+ break;
+ case 'b':
+ info.boot0 = 1;
+ break;
+ case 'a':
+ info.offset = strtoull(optarg, NULL, 0);
+ break;
+ case '?':
+ display_help(-1);
+ break;
+ }
+ }
+
+ if ((argc - optind) != 2)
+ display_help(-1);
+
+ info.source = argv[optind];
+ info.dest = argv[optind + 1];
+
+ if (!info.boot0) {
+ info.usable_page_size = info.page_size;
+ } else if (!info.usable_page_size) {
+ if (info.page_size > 8192)
+ info.usable_page_size = 8192;
+ else if (info.page_size > 4096)
+ info.usable_page_size = 4096;
+ else
+ info.usable_page_size = 1024;
+ }
+
+ if (check_image_info(&info))
+ display_help(-1);
+
+ return create_image(&info);
+}
--
git-series 0.8.11
More information about the U-Boot
mailing list