[U-Boot] [PATCH 4/7] tools: sunxi: Add spl image builder
Hans de Goede
hdegoede at redhat.com
Mon Nov 14 12:29:25 CET 2016
Hi,
On 14-11-16 12:18, Hans de Goede wrote:
> Hi,
>
> On 08-11-16 17:21, Maxime Ripard wrote:
>> This program generates raw SPL images that can be flashed on the NAND with
>> the ECC and randomizer properly set up.
>>
>> Signed-off-by: Maxime Ripard <maxime.ripard at free-electrons.com>
>
> Looks good to me:
>
> Reviewed-by: Hans de Goede <hdegoede at redhat.com>
Note this causes a cpu_to_be32 redefine compiler warning
I've fixed this up locally.
Regards,
Hans
>
> Regards,
>
> Hans
>
>
>
>> ---
>> tools/.gitignore | 1 +-
>> tools/Makefile | 1 +-
>> tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++-
>> 3 files changed, 1115 insertions(+), 0 deletions(-)
>> create mode 100644 tools/sunxi-spl-image-builder.c
>>
>> diff --git a/tools/.gitignore b/tools/.gitignore
>> index cb1e722d4575..16574467544c 100644
>> --- a/tools/.gitignore
>> +++ b/tools/.gitignore
>> @@ -15,6 +15,7 @@
>> /mkexynosspl
>> /mxsboot
>> /mksunxiboot
>> +/sunxi-spl-image-builder
>> /ncb
>> /proftool
>> /relocate-rela
>> diff --git a/tools/Makefile b/tools/Makefile
>> index 400588cf0f5c..dfeeb23484ce 100644
>> --- a/tools/Makefile
>> +++ b/tools/Makefile
>> @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot
>> HOSTCFLAGS_mxsboot.o := -pedantic
>>
>> hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot
>> +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
>>
>> hostprogs-$(CONFIG_NETCONSOLE) += ncb
>> hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1
>> diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c
>> new file mode 100644
>> index 000000000000..0f915eb2bdf5
>> --- /dev/null
>> +++ b/tools/sunxi-spl-image-builder.c
>> @@ -0,0 +1,1113 @@
>> +/*
>> + * Generic binary BCH encoding/decoding library
>> + *
>> + * This program is free software; you can redistribute it and/or modify it
>> + * under the terms of the GNU General Public License version 2 as published by
>> + * the Free Software Foundation.
>> + *
>> + * This program is distributed in the hope that it will be useful, but WITHOUT
>> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
>> + * more details.
>> + *
>> + * You should have received a copy of the GNU General Public License along with
>> + * this program; if not, write to the Free Software Foundation, Inc., 51
>> + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
>> + *
>> + * For the BCH implementation:
>> + *
>> + * Copyright © 2011 Parrot S.A.
>> + *
>> + * Author: Ivan Djelic <ivan.djelic at parrot.com>
>> + *
>> + * See also:
>> + * http://lxr.free-electrons.com/source/lib/bch.c
>> + *
>> + * For the randomizer and image builder implementation:
>> + *
>> + * Copyright © 2016 NextThing Co.
>> + * Copyright © 2016 Free Electrons
>> + *
>> + * Author: Boris Brezillon <boris.brezillon at free-electrons.com>
>> + *
>> + */
>> +
>> +#include <stdint.h>
>> +#include <stdlib.h>
>> +#include <string.h>
>> +#include <stdio.h>
>> +#include <linux/kernel.h>
>> +#include <linux/errno.h>
>> +#include <asm/byteorder.h>
>> +#include <endian.h>
>> +#include <getopt.h>
>> +#include <version.h>
>> +
>> +#if defined(CONFIG_BCH_CONST_PARAMS)
>> +#define GF_M(_p) (CONFIG_BCH_CONST_M)
>> +#define GF_T(_p) (CONFIG_BCH_CONST_T)
>> +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
>> +#else
>> +#define GF_M(_p) ((_p)->m)
>> +#define GF_T(_p) ((_p)->t)
>> +#define GF_N(_p) ((_p)->n)
>> +#endif
>> +
>> +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
>> +
>> +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
>> +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
>> +
>> +#ifndef dbg
>> +#define dbg(_fmt, args...) do {} while (0)
>> +#endif
>> +
>> +#define cpu_to_be32 htobe32
>> +#define kfree free
>> +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
>> +
>> +#define BCH_PRIMITIVE_POLY 0x5803
>> +
>> +struct image_info {
>> + int ecc_strength;
>> + int ecc_step_size;
>> + int page_size;
>> + int oob_size;
>> + int usable_page_size;
>> + int eraseblock_size;
>> + int scramble;
>> + int boot0;
>> + off_t offset;
>> + const char *source;
>> + const char *dest;
>> +};
>> +
>> +/**
>> + * struct bch_control - BCH control structure
>> + * @m: Galois field order
>> + * @n: maximum codeword size in bits (= 2^m-1)
>> + * @t: error correction capability in bits
>> + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
>> + * @ecc_bytes: ecc max size (m*t bits) in bytes
>> + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
>> + * @a_log_tab: Galois field GF(2^m) log lookup table
>> + * @mod8_tab: remainder generator polynomial lookup tables
>> + * @ecc_buf: ecc parity words buffer
>> + * @ecc_buf2: ecc parity words buffer
>> + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
>> + * @syn: syndrome buffer
>> + * @cache: log-based polynomial representation buffer
>> + * @elp: error locator polynomial
>> + * @poly_2t: temporary polynomials of degree 2t
>> + */
>> +struct bch_control {
>> + unsigned int m;
>> + unsigned int n;
>> + unsigned int t;
>> + unsigned int ecc_bits;
>> + unsigned int ecc_bytes;
>> +/* private: */
>> + uint16_t *a_pow_tab;
>> + uint16_t *a_log_tab;
>> + uint32_t *mod8_tab;
>> + uint32_t *ecc_buf;
>> + uint32_t *ecc_buf2;
>> + unsigned int *xi_tab;
>> + unsigned int *syn;
>> + int *cache;
>> + struct gf_poly *elp;
>> + struct gf_poly *poly_2t[4];
>> +};
>> +
>> +static int fls(int x)
>> +{
>> + int r = 32;
>> +
>> + if (!x)
>> + return 0;
>> + if (!(x & 0xffff0000u)) {
>> + x <<= 16;
>> + r -= 16;
>> + }
>> + if (!(x & 0xff000000u)) {
>> + x <<= 8;
>> + r -= 8;
>> + }
>> + if (!(x & 0xf0000000u)) {
>> + x <<= 4;
>> + r -= 4;
>> + }
>> + if (!(x & 0xc0000000u)) {
>> + x <<= 2;
>> + r -= 2;
>> + }
>> + if (!(x & 0x80000000u)) {
>> + x <<= 1;
>> + r -= 1;
>> + }
>> + return r;
>> +}
>> +
>> +/*
>> + * represent a polynomial over GF(2^m)
>> + */
>> +struct gf_poly {
>> + unsigned int deg; /* polynomial degree */
>> + unsigned int c[0]; /* polynomial terms */
>> +};
>> +
>> +/* given its degree, compute a polynomial size in bytes */
>> +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
>> +
>> +/* polynomial of degree 1 */
>> +struct gf_poly_deg1 {
>> + struct gf_poly poly;
>> + unsigned int c[2];
>> +};
>> +
>> +/*
>> + * same as encode_bch(), but process input data one byte at a time
>> + */
>> +static void encode_bch_unaligned(struct bch_control *bch,
>> + const unsigned char *data, unsigned int len,
>> + uint32_t *ecc)
>> +{
>> + int i;
>> + const uint32_t *p;
>> + const int l = BCH_ECC_WORDS(bch)-1;
>> +
>> + while (len--) {
>> + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
>> +
>> + for (i = 0; i < l; i++)
>> + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
>> +
>> + ecc[l] = (ecc[l] << 8)^(*p);
>> + }
>> +}
>> +
>> +/*
>> + * convert ecc bytes to aligned, zero-padded 32-bit ecc words
>> + */
>> +static void load_ecc8(struct bch_control *bch, uint32_t *dst,
>> + const uint8_t *src)
>> +{
>> + uint8_t pad[4] = {0, 0, 0, 0};
>> + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
>> +
>> + for (i = 0; i < nwords; i++, src += 4)
>> + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
>> +
>> + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
>> + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
>> +}
>> +
>> +/*
>> + * convert 32-bit ecc words to ecc bytes
>> + */
>> +static void store_ecc8(struct bch_control *bch, uint8_t *dst,
>> + const uint32_t *src)
>> +{
>> + uint8_t pad[4];
>> + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
>> +
>> + for (i = 0; i < nwords; i++) {
>> + *dst++ = (src[i] >> 24);
>> + *dst++ = (src[i] >> 16) & 0xff;
>> + *dst++ = (src[i] >> 8) & 0xff;
>> + *dst++ = (src[i] >> 0) & 0xff;
>> + }
>> + pad[0] = (src[nwords] >> 24);
>> + pad[1] = (src[nwords] >> 16) & 0xff;
>> + pad[2] = (src[nwords] >> 8) & 0xff;
>> + pad[3] = (src[nwords] >> 0) & 0xff;
>> + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
>> +}
>> +
>> +/**
>> + * encode_bch - calculate BCH ecc parity of data
>> + * @bch: BCH control structure
>> + * @data: data to encode
>> + * @len: data length in bytes
>> + * @ecc: ecc parity data, must be initialized by caller
>> + *
>> + * The @ecc parity array is used both as input and output parameter, in order to
>> + * allow incremental computations. It should be of the size indicated by member
>> + * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
>> + *
>> + * The exact number of computed ecc parity bits is given by member @ecc_bits of
>> + * @bch; it may be less than m*t for large values of t.
>> + */
>> +static void encode_bch(struct bch_control *bch, const uint8_t *data,
>> + unsigned int len, uint8_t *ecc)
>> +{
>> + const unsigned int l = BCH_ECC_WORDS(bch)-1;
>> + unsigned int i, mlen;
>> + unsigned long m;
>> + uint32_t w, r[l+1];
>> + const uint32_t * const tab0 = bch->mod8_tab;
>> + const uint32_t * const tab1 = tab0 + 256*(l+1);
>> + const uint32_t * const tab2 = tab1 + 256*(l+1);
>> + const uint32_t * const tab3 = tab2 + 256*(l+1);
>> + const uint32_t *pdata, *p0, *p1, *p2, *p3;
>> +
>> + if (ecc) {
>> + /* load ecc parity bytes into internal 32-bit buffer */
>> + load_ecc8(bch, bch->ecc_buf, ecc);
>> + } else {
>> + memset(bch->ecc_buf, 0, sizeof(r));
>> + }
>> +
>> + /* process first unaligned data bytes */
>> + m = ((uintptr_t)data) & 3;
>> + if (m) {
>> + mlen = (len < (4-m)) ? len : 4-m;
>> + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
>> + data += mlen;
>> + len -= mlen;
>> + }
>> +
>> + /* process 32-bit aligned data words */
>> + pdata = (uint32_t *)data;
>> + mlen = len/4;
>> + data += 4*mlen;
>> + len -= 4*mlen;
>> + memcpy(r, bch->ecc_buf, sizeof(r));
>> +
>> + /*
>> + * split each 32-bit word into 4 polynomials of weight 8 as follows:
>> + *
>> + * 31 ...24 23 ...16 15 ... 8 7 ... 0
>> + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
>> + * tttttttt mod g = r0 (precomputed)
>> + * zzzzzzzz 00000000 mod g = r1 (precomputed)
>> + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
>> + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
>> + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
>> + */
>> + while (mlen--) {
>> + /* input data is read in big-endian format */
>> + w = r[0]^cpu_to_be32(*pdata++);
>> + p0 = tab0 + (l+1)*((w >> 0) & 0xff);
>> + p1 = tab1 + (l+1)*((w >> 8) & 0xff);
>> + p2 = tab2 + (l+1)*((w >> 16) & 0xff);
>> + p3 = tab3 + (l+1)*((w >> 24) & 0xff);
>> +
>> + for (i = 0; i < l; i++)
>> + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
>> +
>> + r[l] = p0[l]^p1[l]^p2[l]^p3[l];
>> + }
>> + memcpy(bch->ecc_buf, r, sizeof(r));
>> +
>> + /* process last unaligned bytes */
>> + if (len)
>> + encode_bch_unaligned(bch, data, len, bch->ecc_buf);
>> +
>> + /* store ecc parity bytes into original parity buffer */
>> + if (ecc)
>> + store_ecc8(bch, ecc, bch->ecc_buf);
>> +}
>> +
>> +static inline int modulo(struct bch_control *bch, unsigned int v)
>> +{
>> + const unsigned int n = GF_N(bch);
>> + while (v >= n) {
>> + v -= n;
>> + v = (v & n) + (v >> GF_M(bch));
>> + }
>> + return v;
>> +}
>> +
>> +/*
>> + * shorter and faster modulo function, only works when v < 2N.
>> + */
>> +static inline int mod_s(struct bch_control *bch, unsigned int v)
>> +{
>> + const unsigned int n = GF_N(bch);
>> + return (v < n) ? v : v-n;
>> +}
>> +
>> +static inline int deg(unsigned int poly)
>> +{
>> + /* polynomial degree is the most-significant bit index */
>> + return fls(poly)-1;
>> +}
>> +
>> +/* Galois field basic operations: multiply, divide, inverse, etc. */
>> +
>> +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
>> + unsigned int b)
>> +{
>> + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
>> + bch->a_log_tab[b])] : 0;
>> +}
>> +
>> +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
>> +{
>> + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
>> +}
>> +
>> +static inline unsigned int a_pow(struct bch_control *bch, int i)
>> +{
>> + return bch->a_pow_tab[modulo(bch, i)];
>> +}
>> +
>> +static inline int a_log(struct bch_control *bch, unsigned int x)
>> +{
>> + return bch->a_log_tab[x];
>> +}
>> +
>> +/*
>> + * generate Galois field lookup tables
>> + */
>> +static int build_gf_tables(struct bch_control *bch, unsigned int poly)
>> +{
>> + unsigned int i, x = 1;
>> + const unsigned int k = 1 << deg(poly);
>> +
>> + /* primitive polynomial must be of degree m */
>> + if (k != (1u << GF_M(bch)))
>> + return -1;
>> +
>> + for (i = 0; i < GF_N(bch); i++) {
>> + bch->a_pow_tab[i] = x;
>> + bch->a_log_tab[x] = i;
>> + if (i && (x == 1))
>> + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
>> + return -1;
>> + x <<= 1;
>> + if (x & k)
>> + x ^= poly;
>> + }
>> + bch->a_pow_tab[GF_N(bch)] = 1;
>> + bch->a_log_tab[0] = 0;
>> +
>> + return 0;
>> +}
>> +
>> +/*
>> + * compute generator polynomial remainder tables for fast encoding
>> + */
>> +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
>> +{
>> + int i, j, b, d;
>> + uint32_t data, hi, lo, *tab;
>> + const int l = BCH_ECC_WORDS(bch);
>> + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
>> + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
>> +
>> + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
>> +
>> + for (i = 0; i < 256; i++) {
>> + /* p(X)=i is a small polynomial of weight <= 8 */
>> + for (b = 0; b < 4; b++) {
>> + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
>> + tab = bch->mod8_tab + (b*256+i)*l;
>> + data = i << (8*b);
>> + while (data) {
>> + d = deg(data);
>> + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
>> + data ^= g[0] >> (31-d);
>> + for (j = 0; j < ecclen; j++) {
>> + hi = (d < 31) ? g[j] << (d+1) : 0;
>> + lo = (j+1 < plen) ?
>> + g[j+1] >> (31-d) : 0;
>> + tab[j] ^= hi|lo;
>> + }
>> + }
>> + }
>> + }
>> +}
>> +
>> +/*
>> + * build a base for factoring degree 2 polynomials
>> + */
>> +static int build_deg2_base(struct bch_control *bch)
>> +{
>> + const int m = GF_M(bch);
>> + int i, j, r;
>> + unsigned int sum, x, y, remaining, ak = 0, xi[m];
>> +
>> + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
>> + for (i = 0; i < m; i++) {
>> + for (j = 0, sum = 0; j < m; j++)
>> + sum ^= a_pow(bch, i*(1 << j));
>> +
>> + if (sum) {
>> + ak = bch->a_pow_tab[i];
>> + break;
>> + }
>> + }
>> + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
>> + remaining = m;
>> + memset(xi, 0, sizeof(xi));
>> +
>> + for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
>> + y = gf_sqr(bch, x)^x;
>> + for (i = 0; i < 2; i++) {
>> + r = a_log(bch, y);
>> + if (y && (r < m) && !xi[r]) {
>> + bch->xi_tab[r] = x;
>> + xi[r] = 1;
>> + remaining--;
>> + dbg("x%d = %x\n", r, x);
>> + break;
>> + }
>> + y ^= ak;
>> + }
>> + }
>> + /* should not happen but check anyway */
>> + return remaining ? -1 : 0;
>> +}
>> +
>> +static void *bch_alloc(size_t size, int *err)
>> +{
>> + void *ptr;
>> +
>> + ptr = malloc(size);
>> + if (ptr == NULL)
>> + *err = 1;
>> + return ptr;
>> +}
>> +
>> +/*
>> + * compute generator polynomial for given (m,t) parameters.
>> + */
>> +static uint32_t *compute_generator_polynomial(struct bch_control *bch)
>> +{
>> + const unsigned int m = GF_M(bch);
>> + const unsigned int t = GF_T(bch);
>> + int n, err = 0;
>> + unsigned int i, j, nbits, r, word, *roots;
>> + struct gf_poly *g;
>> + uint32_t *genpoly;
>> +
>> + g = bch_alloc(GF_POLY_SZ(m*t), &err);
>> + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
>> + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
>> +
>> + if (err) {
>> + kfree(genpoly);
>> + genpoly = NULL;
>> + goto finish;
>> + }
>> +
>> + /* enumerate all roots of g(X) */
>> + memset(roots , 0, (bch->n+1)*sizeof(*roots));
>> + for (i = 0; i < t; i++) {
>> + for (j = 0, r = 2*i+1; j < m; j++) {
>> + roots[r] = 1;
>> + r = mod_s(bch, 2*r);
>> + }
>> + }
>> + /* build generator polynomial g(X) */
>> + g->deg = 0;
>> + g->c[0] = 1;
>> + for (i = 0; i < GF_N(bch); i++) {
>> + if (roots[i]) {
>> + /* multiply g(X) by (X+root) */
>> + r = bch->a_pow_tab[i];
>> + g->c[g->deg+1] = 1;
>> + for (j = g->deg; j > 0; j--)
>> + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
>> +
>> + g->c[0] = gf_mul(bch, g->c[0], r);
>> + g->deg++;
>> + }
>> + }
>> + /* store left-justified binary representation of g(X) */
>> + n = g->deg+1;
>> + i = 0;
>> +
>> + while (n > 0) {
>> + nbits = (n > 32) ? 32 : n;
>> + for (j = 0, word = 0; j < nbits; j++) {
>> + if (g->c[n-1-j])
>> + word |= 1u << (31-j);
>> + }
>> + genpoly[i++] = word;
>> + n -= nbits;
>> + }
>> + bch->ecc_bits = g->deg;
>> +
>> +finish:
>> + kfree(g);
>> + kfree(roots);
>> +
>> + return genpoly;
>> +}
>> +
>> +/**
>> + * free_bch - free the BCH control structure
>> + * @bch: BCH control structure to release
>> + */
>> +static void free_bch(struct bch_control *bch)
>> +{
>> + unsigned int i;
>> +
>> + if (bch) {
>> + kfree(bch->a_pow_tab);
>> + kfree(bch->a_log_tab);
>> + kfree(bch->mod8_tab);
>> + kfree(bch->ecc_buf);
>> + kfree(bch->ecc_buf2);
>> + kfree(bch->xi_tab);
>> + kfree(bch->syn);
>> + kfree(bch->cache);
>> + kfree(bch->elp);
>> +
>> + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
>> + kfree(bch->poly_2t[i]);
>> +
>> + kfree(bch);
>> + }
>> +}
>> +
>> +/**
>> + * init_bch - initialize a BCH encoder/decoder
>> + * @m: Galois field order, should be in the range 5-15
>> + * @t: maximum error correction capability, in bits
>> + * @prim_poly: user-provided primitive polynomial (or 0 to use default)
>> + *
>> + * Returns:
>> + * a newly allocated BCH control structure if successful, NULL otherwise
>> + *
>> + * This initialization can take some time, as lookup tables are built for fast
>> + * encoding/decoding; make sure not to call this function from a time critical
>> + * path. Usually, init_bch() should be called on module/driver init and
>> + * free_bch() should be called to release memory on exit.
>> + *
>> + * You may provide your own primitive polynomial of degree @m in argument
>> + * @prim_poly, or let init_bch() use its default polynomial.
>> + *
>> + * Once init_bch() has successfully returned a pointer to a newly allocated
>> + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
>> + * the structure.
>> + */
>> +static struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
>> +{
>> + int err = 0;
>> + unsigned int i, words;
>> + uint32_t *genpoly;
>> + struct bch_control *bch = NULL;
>> +
>> + const int min_m = 5;
>> + const int max_m = 15;
>> +
>> + /* default primitive polynomials */
>> + static const unsigned int prim_poly_tab[] = {
>> + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
>> + 0x402b, 0x8003,
>> + };
>> +
>> +#if defined(CONFIG_BCH_CONST_PARAMS)
>> + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
>> + printk(KERN_ERR "bch encoder/decoder was configured to support "
>> + "parameters m=%d, t=%d only!\n",
>> + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
>> + goto fail;
>> + }
>> +#endif
>> + if ((m < min_m) || (m > max_m))
>> + /*
>> + * values of m greater than 15 are not currently supported;
>> + * supporting m > 15 would require changing table base type
>> + * (uint16_t) and a small patch in matrix transposition
>> + */
>> + goto fail;
>> +
>> + /* sanity checks */
>> + if ((t < 1) || (m*t >= ((1 << m)-1)))
>> + /* invalid t value */
>> + goto fail;
>> +
>> + /* select a primitive polynomial for generating GF(2^m) */
>> + if (prim_poly == 0)
>> + prim_poly = prim_poly_tab[m-min_m];
>> +
>> + bch = malloc(sizeof(*bch));
>> + if (bch == NULL)
>> + goto fail;
>> +
>> + memset(bch, 0, sizeof(*bch));
>> +
>> + bch->m = m;
>> + bch->t = t;
>> + bch->n = (1 << m)-1;
>> + words = DIV_ROUND_UP(m*t, 32);
>> + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
>> + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
>> + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
>> + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
>> + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
>> + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
>> + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
>> + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
>> + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
>> + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
>> +
>> + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
>> + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
>> +
>> + if (err)
>> + goto fail;
>> +
>> + err = build_gf_tables(bch, prim_poly);
>> + if (err)
>> + goto fail;
>> +
>> + /* use generator polynomial for computing encoding tables */
>> + genpoly = compute_generator_polynomial(bch);
>> + if (genpoly == NULL)
>> + goto fail;
>> +
>> + build_mod8_tables(bch, genpoly);
>> + kfree(genpoly);
>> +
>> + err = build_deg2_base(bch);
>> + if (err)
>> + goto fail;
>> +
>> + return bch;
>> +
>> +fail:
>> + free_bch(bch);
>> + return NULL;
>> +}
>> +
>> +static void swap_bits(uint8_t *buf, int len)
>> +{
>> + int i, j;
>> +
>> + for (j = 0; j < len; j++) {
>> + uint8_t byte = buf[j];
>> +
>> + buf[j] = 0;
>> + for (i = 0; i < 8; i++) {
>> + if (byte & (1 << i))
>> + buf[j] |= (1 << (7 - i));
>> + }
>> + }
>> +}
>> +
>> +static uint16_t lfsr_step(uint16_t state, int count)
>> +{
>> + state &= 0x7fff;
>> + while (count--)
>> + state = ((state >> 1) |
>> + ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
>> +
>> + return state;
>> +}
>> +
>> +static uint16_t default_scrambler_seeds[] = {
>> + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
>> + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
>> + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
>> + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
>> + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
>> + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
>> + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
>> + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
>> + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
>> + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
>> + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
>> + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
>> + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
>> + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
>> + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
>> + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
>> +};
>> +
>> +static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
>> +
>> +static void scramble(const struct image_info *info,
>> + int page, uint8_t *data, int datalen)
>> +{
>> + uint16_t state;
>> + int i;
>> +
>> + /* Boot0 is always scrambled no matter the command line option. */
>> + if (info->boot0) {
>> + state = brom_scrambler_seeds[0];
>> + } else {
>> + unsigned seedmod = info->eraseblock_size / info->page_size;
>> +
>> + /* Bail out earlier if the user didn't ask for scrambling. */
>> + if (!info->scramble)
>> + return;
>> +
>> + if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
>> + seedmod = ARRAY_SIZE(default_scrambler_seeds);
>> +
>> + state = default_scrambler_seeds[page % seedmod];
>> + }
>> +
>> + /* Prepare the initial state... */
>> + state = lfsr_step(state, 15);
>> +
>> + /* and start scrambling data. */
>> + for (i = 0; i < datalen; i++) {
>> + data[i] ^= state;
>> + state = lfsr_step(state, 8);
>> + }
>> +}
>> +
>> +static int write_page(const struct image_info *info, uint8_t *buffer,
>> + FILE *src, FILE *rnd, FILE *dst,
>> + struct bch_control *bch, int page)
>> +{
>> + int steps = info->usable_page_size / info->ecc_step_size;
>> + int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
>> + off_t pos = ftell(dst);
>> + size_t pad, cnt;
>> + int i;
>> +
>> + if (eccbytes % 2)
>> + eccbytes++;
>> +
>> + memset(buffer, 0xff, info->page_size + info->oob_size);
>> + cnt = fread(buffer, 1, info->usable_page_size, src);
>> + if (!cnt) {
>> + if (!feof(src)) {
>> + fprintf(stderr,
>> + "Failed to read data from the source\n");
>> + return -1;
>> + } else {
>> + return 0;
>> + }
>> + }
>> +
>> + fwrite(buffer, info->page_size + info->oob_size, 1, dst);
>> +
>> + for (i = 0; i < info->usable_page_size; i++) {
>> + if (buffer[i] != 0xff)
>> + break;
>> + }
>> +
>> + /* We leave empty pages at 0xff. */
>> + if (i == info->usable_page_size)
>> + return 0;
>> +
>> + /* Restore the source pointer to read it again. */
>> + fseek(src, -cnt, SEEK_CUR);
>> +
>> + /* Randomize unused space if scrambling is required. */
>> + if (info->scramble) {
>> + int offs;
>> +
>> + if (info->boot0) {
>> + offs = steps * (info->ecc_step_size + eccbytes + 4);
>> + cnt = info->page_size + info->oob_size - offs;
>> + fread(buffer + offs, 1, cnt, rnd);
>> + } else {
>> + offs = info->page_size + (steps * (eccbytes + 4));
>> + cnt = info->page_size + info->oob_size - offs;
>> + memset(buffer + offs, 0xff, cnt);
>> + scramble(info, page, buffer + offs, cnt);
>> + }
>> + fseek(dst, pos + offs, SEEK_SET);
>> + fwrite(buffer + offs, cnt, 1, dst);
>> + }
>> +
>> + for (i = 0; i < steps; i++) {
>> + int ecc_offs, data_offs;
>> + uint8_t *ecc;
>> +
>> + memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
>> + ecc = buffer + info->ecc_step_size + 4;
>> + if (info->boot0) {
>> + data_offs = i * (info->ecc_step_size + eccbytes + 4);
>> + ecc_offs = data_offs + info->ecc_step_size + 4;
>> + } else {
>> + data_offs = i * info->ecc_step_size;
>> + ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
>> + }
>> +
>> + cnt = fread(buffer, 1, info->ecc_step_size, src);
>> + if (!cnt && !feof(src)) {
>> + fprintf(stderr,
>> + "Failed to read data from the source\n");
>> + return -1;
>> + }
>> +
>> + pad = info->ecc_step_size - cnt;
>> + if (pad) {
>> + if (info->scramble && info->boot0)
>> + fread(buffer + cnt, 1, pad, rnd);
>> + else
>> + memset(buffer + cnt, 0xff, pad);
>> + }
>> +
>> + memset(ecc, 0, eccbytes);
>> + swap_bits(buffer, info->ecc_step_size + 4);
>> + encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
>> + swap_bits(buffer, info->ecc_step_size + 4);
>> + swap_bits(ecc, eccbytes);
>> + scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
>> +
>> + fseek(dst, pos + data_offs, SEEK_SET);
>> + fwrite(buffer, info->ecc_step_size, 1, dst);
>> + fseek(dst, pos + ecc_offs - 4, SEEK_SET);
>> + fwrite(ecc - 4, eccbytes + 4, 1, dst);
>> + }
>> +
>> + /* Fix BBM. */
>> + fseek(dst, pos + info->page_size, SEEK_SET);
>> + memset(buffer, 0xff, 2);
>> + fwrite(buffer, 2, 1, dst);
>> +
>> + /* Make dst pointer point to the next page. */
>> + fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
>> +
>> + return 0;
>> +}
>> +
>> +static int create_image(const struct image_info *info)
>> +{
>> + off_t page = info->offset / info->page_size;
>> + struct bch_control *bch;
>> + FILE *src, *dst, *rnd;
>> + uint8_t *buffer;
>> +
>> + bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
>> + if (!bch) {
>> + fprintf(stderr, "Failed to init the BCH engine\n");
>> + return -1;
>> + }
>> +
>> + buffer = malloc(info->page_size + info->oob_size);
>> + if (!buffer) {
>> + fprintf(stderr, "Failed to allocate the NAND page buffer\n");
>> + return -1;
>> + }
>> +
>> + memset(buffer, 0xff, info->page_size + info->oob_size);
>> +
>> + src = fopen(info->source, "r");
>> + if (!src) {
>> + fprintf(stderr, "Failed to open source file (%s)\n",
>> + info->source);
>> + return -1;
>> + }
>> +
>> + dst = fopen(info->dest, "w");
>> + if (!dst) {
>> + fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
>> + return -1;
>> + }
>> +
>> + rnd = fopen("/dev/urandom", "r");
>> + if (!rnd) {
>> + fprintf(stderr, "Failed to open /dev/urandom\n");
>> + return -1;
>> + }
>> +
>> + while (!feof(src)) {
>> + int ret;
>> +
>> + ret = write_page(info, buffer, src, rnd, dst, bch, page++);
>> + if (ret)
>> + return ret;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static void display_help(int status)
>> +{
>> + fprintf(status == EXIT_SUCCESS ? stdout : stderr,
>> + "sunxi-nand-image-builder %s\n"
>> + "\n"
>> + "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
>> + "\n"
>> + "Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
>> + "\n"
>> + "-h --help Display this help and exit\n"
>> + "-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
>> + "-p <size> --page=<size> Page size\n"
>> + "-o <size> --oob=<size> OOB size\n"
>> + "-u <size> --usable=<size> Usable page size\n"
>> + "-e <size> --eraseblock=<size> Erase block size\n"
>> + "-b --boot0 Build a boot0 image.\n"
>> + "-s --scramble Scramble data\n"
>> + "-a <offset> --address=<offset> Where the image will be programmed.\n"
>> + "\n"
>> + "Notes:\n"
>> + "All the information you need to pass to this tool should be part of\n"
>> + "the NAND datasheet.\n"
>> + "\n"
>> + "The NAND controller only supports the following ECC configs\n"
>> + " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
>> + " Valid ECC step size: 512 and 1024\n"
>> + "\n"
>> + "If you are building a boot0 image, you'll have specify extra options.\n"
>> + "These options should be chosen based on the layouts described here:\n"
>> + " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
>> + "\n"
>> + " --usable should be assigned the 'Hardware page' value\n"
>> + " --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
>> + " --usable should be smaller than --page\n"
>> + "\n"
>> + "The --address option is only required for non-boot0 images that are \n"
>> + "meant to be programmed at a non eraseblock aligned offset.\n"
>> + "\n"
>> + "Examples:\n"
>> + " The H27UCG8T2BTR-BC NAND exposes\n"
>> + " * 16k pages\n"
>> + " * 1280 OOB bytes per page\n"
>> + " * 4M eraseblocks\n"
>> + " * requires data scrambling\n"
>> + " * expects a minimum ECC of 40bits/1024bytes\n"
>> + "\n"
>> + " A normal image can be generated with\n"
>> + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
>> + " A boot0 image can be generated with\n"
>> + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
>> + PLAIN_VERSION);
>> + exit(status);
>> +}
>> +
>> +static int check_image_info(struct image_info *info)
>> +{
>> + static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
>> + int eccbytes, eccsteps;
>> + unsigned i;
>> +
>> + if (!info->page_size) {
>> + fprintf(stderr, "--page is missing\n");
>> + return -EINVAL;
>> + }
>> +
>> + if (!info->page_size) {
>> + fprintf(stderr, "--oob is missing\n");
>> + return -EINVAL;
>> + }
>> +
>> + if (!info->eraseblock_size) {
>> + fprintf(stderr, "--eraseblock is missing\n");
>> + return -EINVAL;
>> + }
>> +
>> + if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
>> + fprintf(stderr, "Invalid ECC step argument: %d\n",
>> + info->ecc_step_size);
>> + return -EINVAL;
>> + }
>> +
>> + for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
>> + if (valid_ecc_strengths[i] == info->ecc_strength)
>> + break;
>> + }
>> +
>> + if (i == ARRAY_SIZE(valid_ecc_strengths)) {
>> + fprintf(stderr, "Invalid ECC strength argument: %d\n",
>> + info->ecc_strength);
>> + return -EINVAL;
>> + }
>> +
>> + eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
>> + if (eccbytes % 2)
>> + eccbytes++;
>> + eccbytes += 4;
>> +
>> + eccsteps = info->usable_page_size / info->ecc_step_size;
>> +
>> + if (info->page_size + info->oob_size <
>> + info->usable_page_size + (eccsteps * eccbytes)) {
>> + fprintf(stderr,
>> + "ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
>> + return -EINVAL;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +int main(int argc, char **argv)
>> +{
>> + struct image_info info;
>> +
>> + memset(&info, 0, sizeof(info));
>> + /*
>> + * Process user arguments
>> + */
>> + for (;;) {
>> + int option_index = 0;
>> + char *endptr = NULL;
>> + static const struct option long_options[] = {
>> + {"help", no_argument, 0, 'h'},
>> + {"ecc", required_argument, 0, 'c'},
>> + {"page", required_argument, 0, 'p'},
>> + {"oob", required_argument, 0, 'o'},
>> + {"usable", required_argument, 0, 'u'},
>> + {"eraseblock", required_argument, 0, 'e'},
>> + {"boot0", no_argument, 0, 'b'},
>> + {"scramble", no_argument, 0, 's'},
>> + {"address", required_argument, 0, 'a'},
>> + {0, 0, 0, 0},
>> + };
>> +
>> + int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
>> + long_options, &option_index);
>> + if (c == EOF)
>> + break;
>> +
>> + switch (c) {
>> + case 'h':
>> + display_help(0);
>> + break;
>> + case 's':
>> + info.scramble = 1;
>> + break;
>> + case 'c':
>> + info.ecc_strength = strtol(optarg, &endptr, 0);
>> + if (endptr || *endptr == '/')
>> + info.ecc_step_size = strtol(endptr + 1, NULL, 0);
>> + break;
>> + case 'p':
>> + info.page_size = strtol(optarg, NULL, 0);
>> + break;
>> + case 'o':
>> + info.oob_size = strtol(optarg, NULL, 0);
>> + break;
>> + case 'u':
>> + info.usable_page_size = strtol(optarg, NULL, 0);
>> + break;
>> + case 'e':
>> + info.eraseblock_size = strtol(optarg, NULL, 0);
>> + break;
>> + case 'b':
>> + info.boot0 = 1;
>> + break;
>> + case 'a':
>> + info.offset = strtoull(optarg, NULL, 0);
>> + break;
>> + case '?':
>> + display_help(-1);
>> + break;
>> + }
>> + }
>> +
>> + if ((argc - optind) != 2)
>> + display_help(-1);
>> +
>> + info.source = argv[optind];
>> + info.dest = argv[optind + 1];
>> +
>> + if (!info.boot0) {
>> + info.usable_page_size = info.page_size;
>> + } else if (!info.usable_page_size) {
>> + if (info.page_size > 8192)
>> + info.usable_page_size = 8192;
>> + else if (info.page_size > 4096)
>> + info.usable_page_size = 4096;
>> + else
>> + info.usable_page_size = 1024;
>> + }
>> +
>> + if (check_image_info(&info))
>> + display_help(-1);
>> +
>> + return create_image(&info);
>> +}
>>
More information about the U-Boot
mailing list