[U-Boot] Request For Comments: wget and TCP listener
Duncan Hare
dh at synoia.com
Thu Sep 21 20:32:58 UTC 2017
Mods to:
cmd/net.cnet/Makefilenet/net.cinclude/net.hnet/wget.cnet/wget.hnet/ping.c
I do not know how to do patches, I'm a noobat this:
cmd/net.c
Additions
static int do_wget(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]){ return netboot_common(WGET, cmdtp, argc, argv);}
U_BOOT_CMD( wget, 3, 1, do_wget, "boot image via network using HTTP protocol", "[loadAddress] [[hostIPaddr:]bootfilename]");
net/Makefile addition
obj-$(CONFIG_CMD_NFS) += wget.o
net.c complete, look for #ifdef TCP
/*
* Copied from Linux Monitor (LiMon) - Networking.
*
* Copyright 1994 - 2000 Neil Russell.
* (See License)
* Copyright 2000 Roland Borde
* Copyright 2000 Paolo Scaffardi
* Copyright 2000-2002 Wolfgang Denk, wd at denx.de
* Copyright 2017-2018 Duncan Hare, dh at synoia.com
* SPDX-License-Identifier: GPL-2.0
*/
#define TCP 1
/*
* General Desription:
*
* The user interface supports commands for BOOTP, RARP, and TFTP.
* Also, we support ARP internally. Depending on available data,
* these interact as follows:
*
* BOOTP:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* - TFTP server IP address
* - name of bootfile
* Next step: ARP
*
* LINK_LOCAL:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* Next step: ARP
*
* RARP:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* - TFTP server IP address
* Next step: ARP
*
* ARP:
*
* Prerequisites: - own ethernet address
* - own IP address
* - TFTP server IP address
* We want: - TFTP server ethernet address
* Next step: TFTP
*
* DHCP:
*
* Prerequisites: - own ethernet address
* We want: - IP, Netmask, ServerIP, Gateway IP
* - bootfilename, lease time
* Next step: - TFTP
*
* TFTP:
*
* Prerequisites: - own ethernet address
* - own IP address
* - TFTP server IP address
* - TFTP server ethernet address
* - name of bootfile (if unknown, we use a default name
* derived from our own IP address)
* We want: - load the boot file
* Next step: none
*
* NFS:
*
* Prerequisites: - own ethernet address
* - own IP address
* - name of bootfile (if unknown, we use a default name
* derived from our own IP address)
* We want: - load the boot file
* Next step: none
*
* SNTP:
*
* Prerequisites: - own ethernet address
* - own IP address
* We want: - network time
* Next step: none
*
* HTTP/TCP Receiver:
*
* Prequeisites: - own ethernet adress
* - own IP address
* - Server IP address
* - HTP client
* - Bootfile path & name
* We want: - Load the Boot file
* Next Step HTTPS?
*/
#define DEBUG_DCH_PKT 1
#define DEBUG_TCP_PKT 0
#include <common.h>
#include <command.h>
#include <console.h>
#include <environment.h>
#include <errno.h>
#include <net.h>
#include <net/tftp.h>
#if defined(CONFIG_STATUS_LED)
#include <miiphy.h>
#include <status_led.h>
#endif
#include <watchdog.h>
#include <linux/compiler.h>
#include "arp.h"
#include "bootp.h"
#include "cdp.h"
#if defined(CONFIG_CMD_DNS)
#include "dns.h"
#endif
#include "link_local.h"
#include "nfs.h"
#include "wget.h"
#include "ping.h"
#include "rarp.h"
#if defined(CONFIG_CMD_SNTP)
#include "sntp.h"
#endif
DECLARE_GLOBAL_DATA_PTR;
/** BOOTP EXTENTIONS **/
/* Our subnet mask (0=unknown) */
struct in_addr net_netmask;
/* Our gateways IP address */
struct in_addr net_gateway;
/* Our DNS IP address */
struct in_addr net_dns_server;
#if defined(CONFIG_BOOTP_DNS2)
/* Our 2nd DNS IP address */
struct in_addr net_dns_server2;
#endif
#ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
struct in_addr net_mcast_addr;
#endif
/** END OF BOOTP EXTENTIONS **/
/* Our ethernet address */
u8 net_ethaddr[6];
/* Boot server enet address */
u8 net_server_ethaddr[6];
/* Our IP addr (0 = unknown) */
struct in_addr net_ip;
/* Server IP addr (0 = unknown) */
struct in_addr net_server_ip;
/* Port numbers */
int dport;
int sport;
/* Current receive packet */
uchar *net_rx_packet;
/* Current rx max packet length */
int net_rx_packet_len;
/* IP packet ID */
static unsigned net_ip_id;
/* Ethernet bcast address */
const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
const u8 net_null_ethaddr[6];
#if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
void (*push_packet)(void *, int len) = 0;
#endif
/* Network loop state */
enum net_loop_state net_state;
/* Tried all network devices */
int net_restart_wrap;
/* Network loop restarted */
static int net_restarted;
/* At least one device configured */
static int net_dev_exists;
#ifdef TCP
/* TCP sliding window control */
static u32 tcp_next_expected_seq_num;
static struct tcp_sack_v tcp_lost; /* used by us to request re-TX */
struct w_manage {
struct sack_edges tcp_hole;
enum acked { FALSE, TRUE, FILLED } sent;
int age;
};
static int tcp_max_hole;
struct w_manage holes[TCP_STREAM_HOLES];
/* TCP option timestamp */
static u32 loc_timestamp;
static u32 rmt_timestamp;
/* TCP connection state */
static enum TCP_STATE tcp_state;
#endif
/* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
/* default is without VLAN */
ushort net_our_vlan = 0xFFFF;
/* ditto */
ushort net_native_vlan = 0xFFFF;
/* Boot File name */
char net_boot_file_name[1024];
/* The actual transferred size of the bootfile (in bytes) */
u32 net_boot_file_size;
/* Boot file size in blocks as reported by the DHCP server */
u32 net_boot_file_expected_size_in_blocks;
#if defined(CONFIG_CMD_SNTP)
/* NTP server IP address */
struct in_addr net_ntp_server;
/* offset time from UTC */
int net_ntp_time_offset;
#endif
static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
/* Receive packets */
uchar *net_rx_packets[PKTBUFSRX];
/*
* An incoming TCP packet handler for the TCP protocol.
* There is also a dymanic function pointer for TCP based commads to
* receive incoming traffic after the TCP protocol code has done its work.
*/
void rxhand_tcp_f( union tcp_build_pkt *b, unsigned len);
/* Current TCP RX packet handler */
static rxhand_f *tcp_packet_handler;
/* Current UDP RX packet handler */
static rxhand_f *udp_packet_handler;
/* Current ARP RX packet handler */
static rxhand_f *arp_packet_handler;
#ifdef CONFIG_CMD_TFTPPUT
/* Current ICMP rx handler */
static rxhand_icmp_f *packet_icmp_handler;
#endif
/* Current timeout handler */
static thand_f *time_handler;
/* Time base value */
static ulong time_start;
/* Current timeout value */
static ulong time_delta;
/* THE transmit packet */
uchar *net_tx_packet;
static int net_check_prereq(enum proto_t protocol);
static int net_try_count;
int __maybe_unused net_busy_flag;
/**********************************************************************/
static int on_bootfile(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
switch (op) {
case env_op_create:
case env_op_overwrite:
copy_filename(net_boot_file_name, value,
sizeof(net_boot_file_name));
break;
default:
break;
}
return 0;
}
U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
static int on_ipaddr(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_ip = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
static int on_gatewayip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_gateway = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
static int on_netmask(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_netmask = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(netmask, on_netmask);
static int on_serverip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_server_ip = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(serverip, on_serverip);
static int on_nvlan(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_native_vlan = string_to_vlan(value);
return 0;
}
U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
static int on_vlan(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_our_vlan = string_to_vlan(value);
return 0;
}
U_BOOT_ENV_CALLBACK(vlan, on_vlan);
#if defined(CONFIG_CMD_DNS)
static int on_dnsip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_dns_server = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
#endif
/*
* Check if autoload is enabled. If so, use either NFS or TFTP to download
* the boot file.
*/
void net_auto_load(void)
{
#if defined(CONFIG_CMD_NFS)
const char *s = getenv("autoload");
if (s != NULL && strcmp(s, "NFS") == 0) {
/*
* Use NFS to load the bootfile.
*/
nfs_start();
return;
}
#endif
if (getenv_yesno("autoload") == 0) {
/*
* Just use BOOTP/RARP to configure system;
* Do not use TFTP to load the bootfile.
*/
net_set_state(NETLOOP_SUCCESS);
return;
}
tftp_start(TFTPGET);
}
static void net_init_loop(void)
{
if (eth_get_dev())
memcpy(net_ethaddr, eth_get_ethaddr(), 6);
return;
}
static void net_clear_handlers(void)
{
net_set_tcp_handler(NULL);
net_set_udp_handler(NULL);
net_set_arp_handler(NULL);
net_set_timeout_handler(0, NULL);
}
static void net_cleanup_loop(void)
{
net_clear_handlers();
}
void net_set_ports( int server_port, int our_port )
{
dport = server_port;
sport = our_port;
}
#ifdef TCP
enum TCP_STATE net_get_tcp_state( void )
{
return(tcp_state);
}
void net_print_buffer( uchar raw[], int pkt_len, int payload_len, int hdr_len, bool hide )
{
int i;
for ( i = pkt_len - payload_len; i < pkt_len; i++ )
{
if ( i <= hdr_len )
{
printf("%02X", raw[i]);
}
else if (( raw[i] > 0x19 ) && ( raw[i] < 0x7f ))
{
putc( raw[i] );
}
else if (hide == 0 ) putc( raw[i] );
else printf("%02X", raw[i]);
// else printf ("%s",".");
}
printf ( "%s", "\n" );
}
int net_find_in_buffer( uchar raw[], int payload_len, uchar field[], int field_len )
{
int i,j;
for (i = 0; i < payload_len; i ++ )
{
if ( raw[i] == field[0] )
{
for (j = 1; j < field_len; j++ )
{
if ( raw[i+j] != field[j] ) break;
}
if ( j == field_len ) return( i );
}
}
return ( 0 );
}
u16 net_set_psuedo_header( uchar * pkt, struct in_addr src, struct in_addr dest, int tcp_len, int pkt_len )
{
union tcp_build_pkt *b = (union tcp_build_pkt *) pkt;
int checksum_len;
/*
* Psuedo header
*/
pkt[ pkt_len ] = 0x00;
net_copy_ip((void *)&b->ph.p_src, &src);
net_copy_ip((void *)&b->ph.p_dst, &dest);
b->ph.rsvd = 0x00;
b->ph.p = IPPROTO_TCP;
b->ph.len = htons(tcp_len);
checksum_len = tcp_len + PSUEDO_HDR_SIZE;
debug_cond(DEBUG_DEV_PKT,
"TCP Psuedo Header (to=%pI4, from=%pI4, CheckLen=%d)\n",
&b->ph.p_dst, &b->ph.p_src, checksum_len );
/*
* If the data is an odd number of bytes, zero the
* byte after the last byte so that the header checksum
* will work.
*/
return( compute_ip_checksum( pkt + PSUEDO_PAD_SIZE, checksum_len ));
}
int net_set_ack_options( union tcp_build_pkt *b )
{
b->sack.hdr.tcp_hlen = ( TCP_HDR_SIZE >>2 ) << 4;
b->sack.TSopt.kind = TCP_O_TS;
b->sack.TSopt.len = TCP_OPT_LEN_A;
b->sack.TSopt.TSsnd = htons(loc_timestamp);
b->sack.TSopt.TSrcv = rmt_timestamp;
b->sack.sack_v.kind = 0x01;
b->sack.sack_v.len = 0x00;
if ( tcp_lost.len > 0 )
{
b->sack.sack_v.len = tcp_lost.len;
b->sack.sack_v.kind = TCP_V_SACK;
b->sack.sack_v.hole[1].l = htonl(tcp_lost.hole[1].l);
b->sack.sack_v.hole[1].r = htonl(tcp_lost.hole[1].r);
/*
* These fields are initialized with NOPs to
* provide TCP header alignment padding
*/
b->sack.sack_v.hole[2].l = htonl(tcp_lost.hole[1].l);
b->sack.sack_v.hole[2].r = htonl(tcp_lost.hole[1].r);
b->sack.sack_v.hole[3].l = htonl(tcp_lost.hole[2].l);
b->sack.sack_v.hole[3].r = htonl(tcp_lost.hole[2].r);
tcp_lost.len = 0;
}
b->sack.hdr.tcp_hlen = (((TCP_HDR_SIZE + TCP_TSOPT_SIZE + tcp_lost.len + 3) >> 2) << 4);
return( b->sack.hdr.tcp_hlen >> 2);
}
void net_set_syn_options( union tcp_build_pkt *b )
{
tcp_lost.len = 0;
b->ip.hdr.tcp_hlen = 0xa0; /* hdr 10 32 bit words */
b->ip.mss.kind = TCP_O_MSS;
b->ip.mss.len = TCP_OPT_LEN_4;
b->ip.mss.mss = htons(TCP_MSS); /* tunable parameter */
b->ip.scale.kind = TCP_O_SCL;
b->ip.scale.scale = TCP_SCALE; /* tunable parameter */
b->ip.scale.len = TCP_OPT_LEN_3;
b->ip.sack_p.kind = TCP_P_SACK ; /* SACK supported */
b->ip.sack_p.len = TCP_OPT_LEN_2;
b->ip.TSopt.kind = TCP_O_TS;
b->ip.TSopt.len = TCP_OPT_LEN_A;
loc_timestamp = get_ticks() % 3072;
rmt_timestamp = 0x00000000;
b->ip.TSopt.TSsnd = 0;
b->ip.TSopt.TSrcv = 0x00000000;
b->ip.end = TCP_O_END;
}
int net_set_tcp_header(uchar *pkt, int payload_len, u8 action, u32 tcp_seq_num, u32 tcp_ack_num )
{
union tcp_build_pkt *b = (union tcp_build_pkt *) pkt;
int pkt_hdr_len;
int pkt_len;
int tcp_len;
b->ip.hdr.tcp_flags = action;
pkt_hdr_len = IP_TCP_HDR_SIZE;
b->ip.hdr.tcp_hlen = 0x50; /* Header is 5 32 bit words */
/* 4 bits TCP header Length/4 */
/* 4 bits Reserved */
switch (action) /* For options */
{
case TCP_SYN:
debug_cond(DEBUG_TCP_PKT,
"TCP Header:SYN (to=%pI4, from=%pI4, TCPseq=%d, TCPack=%d)\n",
&net_server_ip, &net_ip, tcp_seq_num, tcp_ack_num);
net_set_syn_options( b );
tcp_seq_num = 0; /* TCP sequence number */
tcp_ack_num = 0; /* TCP Ack Number */
pkt_hdr_len = IP_TCP_O_SIZE;
if ( tcp_state == TCP_SYN_SENT) /* Too many sins */
{
action = TCP_FIN;
tcp_state = TCP_FIN_WAIT_1;
}
else tcp_state = TCP_SYN_SENT;
break;
case TCP_ACK:
pkt_hdr_len = IP_HDR_SIZE + net_set_ack_options( b );
b->ip.hdr.tcp_flags = action;
debug_cond(DEBUG_TCP_PKT,
"TCP Header:ACK (to=%pI4, from=%pI4, TCPseq=%d, TCPack=%d, Action=%x)\n",
&net_server_ip, &net_ip, tcp_seq_num, tcp_ack_num, b->ip.hdr.tcp_flags);
break;
case TCP_FIN:
debug_cond(DEBUG_TCP_PKT,
"TCP Header:FIN (to=%pI4, from=%pI4, TCPseq=%d, TCPack=%d)\n",
&net_server_ip, &net_ip, tcp_seq_num, tcp_ack_num);
payload_len = 0;
pkt_hdr_len = IP_TCP_HDR_SIZE;
tcp_state = TCP_FIN_WAIT_1;
tcp_seq_num++;
break;
case (TCP_FIN + TCP_ACK):
case (TCP_FIN + TCP_ACK + TCP_PUSH):
if ( tcp_state == TCP_CLOSE_WAIT ) tcp_state = TCP_CLOSING;
default:
pkt_hdr_len = IP_HDR_SIZE + net_set_ack_options( b );
b->ip.hdr.tcp_flags = action | TCP_PUSH | TCP_ACK;
debug_cond(DEBUG_TCP_PKT,
"TCP Header:default (to=%pI4, from=%pI4, TCPseq=%d, TCPack=%d, Action=%x)\n",
&net_server_ip, &net_ip, tcp_seq_num, tcp_ack_num, b->ip.hdr.tcp_flags);
}
pkt_len = pkt_hdr_len + payload_len;
tcp_len = pkt_len - IP_HDR_SIZE;
/*
* TCP Header
*/
b->ip.hdr.tcp_ack = htonl( tcp_ack_num);
b->ip.hdr.tcp_src = htons(sport);
b->ip.hdr.tcp_dst = htons(dport);
b->ip.hdr.tcp_seq = htonl(tcp_seq_num);
tcp_seq_num = tcp_seq_num + payload_len;
/*
* TCP window size - TCP header variable tcp_win.
* Chage tcp_win only if you have an understanding of network overruun, congestion,
* TCP segment sizes, TCP windows, TCP scale, queuing theory and packet buffering.
* If there are too few buffers, there will be data loss, recovery may work or the
* sending TCP, the server, could abort the stream transmission.
* MSS is governed by maximum Ethernet frame langth.
* The number of buffers is governed by the desire to have a queue of full buffers
* to be processed at the destination to maximize throughput.
* Temporary memory use for the boot phase on modern SOCs is not considered a constraint to
* buffer space.
*/
b->ip.hdr.tcp_win = htons( PKTBUFSRX * TCP_MSS >> TCP_SCALE );
b->ip.hdr.tcp_xsum = 0x0000; /* Checksum */
b->ip.hdr.tcp_ugr = 0x0000; /* Pointer to urgent data */
b->ip.hdr.tcp_xsum = net_set_psuedo_header( pkt, net_ip, net_server_ip, tcp_len, pkt_len );
/*
* IP Header
*/
net_set_ip_header((uchar *) &b->ip, net_server_ip, net_ip, pkt_len, IPPROTO_TCP);
return ( pkt_hdr_len );
}
#endif
int net_send_ip_packet( int payload_len, int proto, u8 action, u32 tcp_seq_num, u32 tcp_ack_num )
{
uchar *pkt;
int eth_hdr_size;
int pkt_hdr_size;
uchar * ether = net_server_ethaddr;
if ( proto == IPPROTO_UDP )
{ debug_cond(DEBUG_DEV_PKT,
"UDP Send (to=%pI4, from=%pI4, len=%d)\n",
&net_server_ip, &net_ip, payload_len);
}
#ifdef TCP
else
{ debug_cond(DEBUG_TCP_PKT,
"TCP Send (to=%pI4, from=%pI4, len=%d, Action=%x)\n",
&net_server_ip, &net_ip, payload_len, action );
}
#endif
/* make sure the net_tx_packet is initialized (net_init() was called) */
assert(net_tx_packet != NULL);
if (net_tx_packet == NULL) return -1;
/* convert to new style broadcast */
if (net_server_ip.s_addr == 0) net_server_ip.s_addr = 0xFFFFFFFF;
/* if broadcast, make the ether address a broadcast and don't do ARP */
if (net_server_ip.s_addr == 0xFFFFFFFF) ether = (uchar *)net_bcast_ethaddr;
pkt = (uchar *)net_tx_packet;
/*
*Get ethernet header size and write the ethernet header
*/
eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
#ifdef TCP
if (proto == IPPROTO_UDP )
{
#endif
net_set_udp_header(pkt + eth_hdr_size, net_server_ip, dport, sport, payload_len);
pkt_hdr_size = IP_UDP_HDR_SIZE;
eth_hdr_size = eth_hdr_size + pkt_hdr_size;
#ifdef TCP
}
else pkt_hdr_size = eth_hdr_size + net_set_tcp_header(pkt + eth_hdr_size,
payload_len, action, tcp_seq_num, tcp_ack_num );
#endif
/* if MAC address was not discovered yet, do an ARP request */
if (memcmp(ether, net_null_ethaddr, 6) == 0) {
debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &net_server_ip);
/* save the ip and eth addr for the packet to send after arp */
net_arp_wait_packet_ip = net_server_ip;
arp_wait_packet_ethaddr = ether;
/* size of the waiting packet */
arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
/* and do the ARP request */
arp_wait_try = 1;
arp_wait_timer_start = get_timer(0);
arp_request();
return 1; /* waiting */
} else {
debug_cond(DEBUG_DEV_PKT, "sending TCP to %pI4/%pM/%d\n",
&net_server_ip, ether, pkt_hdr_size + payload_len);
net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
return 0; /* transmitted */
}
}
#ifdef TCP
int tcp_hole_age ( int age )
{
int i, j = 0, filled = 0;
tcp_lost.len = TCP_OPT_LEN_2;
tcp_lost.hole[1].l = TCP_O_NOP;
tcp_lost.hole[1].r = TCP_O_NOP;
tcp_lost.hole[2].l = TCP_O_NOP;
tcp_lost.hole[2].r = TCP_O_NOP;
tcp_lost.kind = TCP_V_SACK;
for (i = 0; (( i == tcp_max_hole ) || ( j == 2 )) ; i++ )
{
if (( holes[i].tcp_hole.l != 0 ) && ( holes[i].sent == FALSE ))
{
if ( holes[i].age <= TCP_HOLE_AGE ) holes[i].age++;
else
{
/*
* Ask for hole to be filled by sender on next ack response.
*/
tcp_lost.len = tcp_lost.len + TCP_OPT_LEN_8;
tcp_lost.hole[j].l = holes[i].tcp_hole.l;
tcp_lost.hole[j].l = holes[i].tcp_hole.r;
holes[i].sent = TRUE;
j++;
}
}
if (( holes[i].tcp_hole.l == 0 ) || ( holes[i].sent == FILLED )) filled++;
switch (holes[i].sent)
{
case FALSE:
debug_cond( DEBUG_DCH_PKT, ".");
break;
case TRUE:
debug_cond( DEBUG_DCH_PKT, "o");
break;
case FILLED:
debug_cond( DEBUG_DCH_PKT, "|");
break;
}
}
debug_cond( DEBUG_DCH_PKT, "\n");
/*
* No holes found? Set return code.
*/
if ( tcp_lost.len == TCP_OPT_LEN_2 )
{
tcp_lost.len = 0;
return ( filled - tcp_max_hole );
}
else return ( 1 );
}
void tcp_hole_fill( u32 tcp_left, u32 tcp_right )
{
int i ,j;
for ( i = 0; (( i = tcp_max_hole ) || ( tcp_left != holes[i].tcp_hole.l )); i++ );
if ( tcp_left == holes[i].tcp_hole.l )
{
holes[i].sent = FILLED;
/*
* Move holes to down hole array as preceeding holes become filled
*/
for ( j = i; (j < tcp_max_hole); j++ )
{
holes[j] = holes[j + 1];
}
}
else debug_cond( DEBUG_DCH_PKT, "Error: Hole not found: Left=%d\n", tcp_left );
}
void tcp_hole_create( u32 tcp_left, u32 tcp_right )
{
debug_cond( 1, "Hole Created Left=%d\n", tcp_left );
tcp_lost.len = tcp_lost.len + TCP_OPT_LEN_A;
tcp_lost.hole[0].l = tcp_left;
tcp_lost.hole[0].l = tcp_right;
tcp_lost.hole[1].l = TCP_O_NOP;
tcp_lost.hole[1].r = TCP_O_NOP;
tcp_lost.hole[2].l = TCP_O_NOP;
tcp_lost.hole[2].r = TCP_O_NOP;
}
void tcp_hole_create_complex( u32 tcp_left, u32 tcp_right )
{
int i;
for (i = 0; i < TCP_STREAM_HOLES; i++ )
{
/*
* Find empty hole struct and fill it
*/
if ( holes[i].tcp_hole.l == 0 )
holes[i].tcp_hole.l = tcp_left;
holes[i].tcp_hole.r = tcp_right;
holes[i].sent = FALSE;
holes[i].age = 0;
if ( i > tcp_max_hole ) tcp_max_hole = i;
return;
}
debug_cond( 1, "Error: Too many TCP erorrs, increase TCP_STREAM_HOLES or get a better network\n");
net_set_state(NETLOOP_FAIL);
}
void init_tcp_holes( u32 tcp_seq_num )
{
int i;
for (i = 0; i < TCP_STREAM_HOLES; i++)
{
holes[i].tcp_hole.l = 0;
holes[i].tcp_hole.r = 0;
holes[i].sent = FALSE;
holes[i].age = 0;
}
tcp_next_expected_seq_num = tcp_seq_num;
/*
* // For production set to 0.
* // For testingt set to TCP_STREAM_HOLES - 1
*/
tcp_max_hole = TCP_STREAM_HOLES - 1; // For testing.
// For production set 0.
}
void tcp_parse_options( uchar *o, int o_len)
{
struct tcp_TSopt *tsopt;
uchar *p = o;
for ( p = o; p < (o + o_len); p = p + p[1])
{
if (p[1] == 0) return;
else
{
switch ( p[0] )
{
case TCP_O_END: return;
case TCP_O_MSS:
break;
case TCP_O_SCL:
break;
case TCP_P_SACK:
break;
case TCP_V_SACK:
break;
case TCP_O_TS :
tsopt = (struct tcp_TSopt *) p;
rmt_timestamp = tsopt->TSsnd;
return;
break;
}
if (p[0] == TCP_O_NOP) p++;
}
}
return;
}
u8 tcp_state_machine( u8 tcp_flags, u32 *tcp_seq_num, int payload_len )
{
u8 tcp_fin = tcp_flags & TCP_FIN;
u8 tcp_syn = tcp_flags & TCP_SYN;
u8 tcp_rst = tcp_flags & TCP_RST;
u8 tcp_push = tcp_flags & TCP_PUSH;
u8 tcp_ack = tcp_flags & TCP_ACK;
u8 tcp_urg = tcp_flags & TCP_URG;
u8 tcp_ece = tcp_flags & TCP_ECE;
u8 tcp_cwr = tcp_flags & TCP_CWR;
u8 action = TCP_DATA;
/*
* tcp_flags are examined to determine TX action in a given state
* tcp_options, if not zero, is a pointer to the TCP options,
* to extract the receive timestamp value
*/
/*
* These flags are not supported.
*/
if (tcp_urg) action = action;
if (tcp_ece) action = action;
if (tcp_cwr) action = action;
debug_cond(DEBUG_INT_STATE, "TCP STATE ENTRY (%x)\n", action);
if (tcp_rst)
{
action = TCP_DATA;
tcp_state = TCP_CLOSED;
net_set_state( NETLOOP_FAIL );
debug_cond(DEBUG_DCH_PKT, "TCP Reset (%x)\n", tcp_flags);
}
else switch (tcp_state)
{
case TCP_CLOSED: /* Should never happen */
debug_cond(DEBUG_TCP_PKT, "TCP CLOSED (%x)\n", tcp_flags);
if (tcp_fin) action = TCP_DATA;
if (tcp_syn) action = TCP_RST;
if (tcp_ack) action = TCP_DATA;
break;
case TCP_SYN_SENT:
debug_cond(DEBUG_TCP_PKT, "TCP_SYN_SENT (%x), %d\n", tcp_flags, *tcp_seq_num);
if (tcp_fin) {action = action | TCP_PUSH; tcp_state = TCP_CLOSE_WAIT;}
if (tcp_syn)
{
action = action | TCP_ACK;
if (tcp_ack)
{
*tcp_seq_num = *tcp_seq_num + 1;
tcp_state = TCP_ESTABLISHED; /* SACK */
action = action | TCP_PUSH; /* Notify app */
init_tcp_holes( *tcp_seq_num );
}
}
else
if (tcp_ack) action = TCP_DATA;
break;
case TCP_ESTABLISHED:
debug_cond(DEBUG_TCP_PKT, "TCP_ESTABLISHED (%x)\n", tcp_flags );
if (tcp_fin)
{ /*
* Check for holes !!
*/
*tcp_seq_num = *tcp_seq_num + 1;
tcp_next_expected_seq_num ++;
action = action | TCP_FIN | TCP_PUSH | TCP_ACK;
tcp_state = TCP_CLOSE_WAIT;
}
else if (tcp_ack) action = TCP_DATA;
if (tcp_push) action = action | TCP_PUSH;
if (tcp_syn) action = TCP_ACK + TCP_RST;
/* tcp_hole_age( TCP_HOLE_AGE );
if (*tcp_seq_num < tcp_next_expected_seq_num )
tcp_hole_fill( *tcp_seq_num, payload_len );
else
{
*/ if (*tcp_seq_num > tcp_next_expected_seq_num )
{
tcp_hole_create( tcp_next_expected_seq_num, *tcp_seq_num );
debug_cond(DEBUG_DCH_PKT,
"TCP_ESTABLISHED Seq In %x, Exp %x, action %x\n",
*tcp_seq_num, tcp_next_expected_seq_num, action);
}
if (*tcp_seq_num != tcp_next_expected_seq_num )
net_set_state( NETLOOP_FAIL );
else tcp_next_expected_seq_num = *tcp_seq_num + payload_len;
/* }
*/
debug_cond(DEBUG_TCP_PKT, "TCP_ESTABLISHED (%x), %d\n", action, *tcp_seq_num);
break;
case TCP_CLOSE_WAIT:
debug_cond(DEBUG_TCP_PKT, "TCP_CLOSE_WAIT (%x)\n", tcp_flags);
action = TCP_DATA; /* Wait for app */
break;
case TCP_FIN_WAIT_2:
debug_cond(DEBUG_TCP_PKT, "TCP_FIN_WAIT_2 (%x)\n", tcp_flags);
if (tcp_fin) action = TCP_DATA;
if (tcp_syn) action = TCP_DATA;
if (tcp_ack) {action = TCP_PUSH | TCP_ACK; tcp_state = TCP_CLOSED;}
break;
case TCP_FIN_WAIT_1:
debug_cond(DEBUG_DCH_PKT, "TCP_FIN_WAIT_1 (%x)\n", tcp_flags);
if (tcp_fin) action = TCP_ACK | TCP_FIN; tcp_state = TCP_FIN_WAIT_2 ;
if (tcp_syn) action = TCP_RST;
if (tcp_ack) {tcp_state = TCP_CLOSED; *tcp_seq_num = *tcp_seq_num + 1;}
net_set_state( NETLOOP_FAIL );
break;
case TCP_CLOSING:
debug_cond(DEBUG_TCP_PKT, "TCP_CLOSING (%x)\n", tcp_flags);
if (tcp_fin) action = TCP_DATA;
if (tcp_syn) action = TCP_RST;
if (tcp_ack) {action = TCP_DATA; tcp_state = TCP_CLOSED;}
break;
}
return( action );
}
void rxhand_tcp_f( union tcp_build_pkt *b, unsigned pkt_len )
{
int tcp_len = pkt_len - IP_HDR_SIZE;
u16 tcp_rx_xsum = b->ip.hdr.ip_sum;
u8 tcp_action = TCP_DATA;
u8 net_action = TCP_DATA;
u32 tcp_seq_num;
u32 tcp_ack_num;
struct in_addr action_and_state;
int tcp_hdr_len;
int payload_len;
/*
* Verify ip header
*/
debug_cond(DEBUG_TCP_PKT,
"TCP RX in RX Sum (to=%pI4, from=%pI4, len=%d)\n",
&b->ip.hdr.ip_src, &b->ip.hdr.ip_dst, pkt_len);
debug_cond(DEBUG_TCP_PKT,
"____________________________________________\n");
b->ip.hdr.ip_src = net_server_ip;
b->ip.hdr.ip_dst = net_ip;
b->ip.hdr.ip_sum = 0x0000;
if (tcp_rx_xsum != compute_ip_checksum(b, IP_HDR_SIZE))
{
debug_cond(DEBUG_TCP_PKT,
"TCP RX IP xum Error (to=%pI4, from=%pI4, len=%d)\n",
&net_ip, &net_server_ip, pkt_len);
return;
}
/*
* Build Pseudo header and Verify TCP header
*/
tcp_rx_xsum = b->ip.hdr.tcp_xsum;
b->ip.hdr.tcp_xsum = 0x0000;
if (tcp_rx_xsum != net_set_psuedo_header((uchar *)b, b->ip.hdr.ip_src,
b->ip.hdr.ip_dst, tcp_len, pkt_len ))
{
debug_cond(DEBUG_TCP_PKT,
"TCP RX TCP xSum Error (to=%pI4, from=%pI4, len=%d)\n",
&net_ip, &net_server_ip, tcp_len);
return;
}
tcp_hdr_len = ( b->ip.hdr.tcp_hlen >> 2);
payload_len = tcp_len - tcp_hdr_len;
if (tcp_hdr_len > TCP_HDR_SIZE)
tcp_parse_options((uchar *) b + IP_TCP_HDR_SIZE,
tcp_hdr_len - TCP_HDR_SIZE );
/*
* Incoming sequence and ack numbers are server's view of the numbers.
* The app must swap the numbers when responding.
*/
tcp_seq_num = ntohl(b->ip.hdr.tcp_seq);
tcp_ack_num = ntohl(b->ip.hdr.tcp_ack);
tcp_action = tcp_state_machine( b->ip.hdr.tcp_flags, &tcp_seq_num, payload_len );
/*
* State altering command to be sent.
* The packet sequence and ack numbers are in the tcp_seq_num and tcp_ack_num variables.
* The current packet, its position in the date stream, is the in the range of those variables.
*
* In the "application push" invocation the TCP header with all its information is pointed to by the
* packet pointer, and the other variable "repurposed" (or misused) to carry sequence numbers
* and TCP state.
*
* TCP_PUSH from the state machine with a payload length of 0 is a connect or disconnect event
*/
if (( tcp_action && TCP_PUSH ) || ( payload_len > 0))
{
debug_cond(DEBUG_TCP_PKT,
"TCP App Notify (action=%x, Seq=%d, Ack=%d, Payload=%d)\n",
tcp_action, tcp_seq_num, tcp_ack_num, payload_len );
action_and_state.s_addr = tcp_action;
(*tcp_packet_handler) ((uchar *) b + pkt_len - payload_len,
tcp_seq_num, action_and_state, tcp_ack_num, payload_len );
}
else if ( tcp_action != TCP_DATA )
{
debug_cond(DEBUG_TCP_PKT,
"TCP Net Action (action=%x, Seq=%d, Ack=%d,Payload=%d)\n",
tcp_action, tcp_seq_num, tcp_ack_num, payload_len );
/*
* Warning Incoming sequence number are transposed here to TX sequence numbers
*/
net_action = (tcp_action & (~ TCP_PUSH));
net_send_ip_packet( 0, IPPROTO_TCP, net_action, tcp_ack_num, tcp_seq_num );
}
}
#endif
void net_init(void)
{
static int first_call = 1;
if (first_call) {
/*
* Setup packet wbuffers, aligned correctly.
*/
int i;
net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
for (i = 0; i < PKTBUFSRX; i++) {
net_rx_packets[i] = net_tx_packet +
(i + 1) * PKTSIZE_ALIGN;
}
arp_init();
net_clear_handlers();
/* Only need to setup buffer pointers once. */
first_call = 0;
#ifdef TCP
tcp_state = TCP_CLOSED;
#endif
}
net_init_loop();
}
/**********************************************************************/
/*
* Main network processing loop.
*/
int net_loop(enum proto_t protocol)
{
int ret = -EINVAL;
net_restarted = 0;
net_dev_exists = 0;
net_try_count = 1;
debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
net_init();
if (eth_is_on_demand_init() || protocol != NETCONS) {
eth_halt();
eth_set_current();
ret = eth_init();
if (ret < 0) {
eth_halt();
return ret;
}
} else {
eth_init_state_only();
}
restart:
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 0;
#endif
net_set_state(NETLOOP_CONTINUE);
/*
* Start the ball rolling with the given start function. From
* here on, this code is a state machine driven by received
* packets and timer events.
*/
debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
net_init_loop();
switch (net_check_prereq(protocol)) {
case 1:
/* network not configured */
eth_halt();
return -ENODEV;
case 2:
/* network device not configured */
break;
case 0:
net_dev_exists = 1;
net_boot_file_size = 0;
switch (protocol) {
case TFTPGET:
#ifdef CONFIG_CMD_TFTPPUT
case TFTPPUT:
#endif
/* always use ARP to get server ethernet address */
tftp_start(protocol);
break;
#ifdef CONFIG_CMD_TFTPSRV
case TFTPSRV:
tftp_start_server();
break;
#endif
#if defined(CONFIG_CMD_DHCP)
case DHCP:
bootp_reset();
net_ip.s_addr = 0;
dhcp_request(); /* Basically same as BOOTP */
break;
#endif
case BOOTP:
bootp_reset();
net_ip.s_addr = 0;
bootp_request();
break;
#if defined(CONFIG_CMD_RARP)
case RARP:
rarp_try = 0;
net_ip.s_addr = 0;
rarp_request();
break;
#endif
#if defined(CONFIG_CMD_PING)
case PING:
ping_start();
break;
#endif
#if defined(CONFIG_CMD_NFS)
case NFS:
nfs_start();
break;
#endif
#if defined(CONFIG_CMD_CDP)
case CDP:
cdp_start();
break;
#endif
#if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
case NETCONS:
nc_start();
break;
#endif
#if defined(CONFIG_CMD_SNTP)
case SNTP:
sntp_start();
break;
#endif
#if defined(CONFIG_CMD_DNS)
case DNS:
dns_start();
break;
#endif
#if defined(CONFIG_CMD_LINK_LOCAL)
case LINKLOCAL:
link_local_start();
break;
#endif
#ifdef TCP
//#if defined(CONFIG_CMD_WGET)
case WGET:
wget_start();
break;
//#endif
#endif
default:
break;
}
break;
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
defined(CONFIG_STATUS_LED) && \
defined(STATUS_LED_RED)
/*
* Echo the inverted link state to the fault LED.
*/
if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
else
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
#endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
#endif /* CONFIG_MII, ... */
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 1;
#endif
/*
* Main packet reception loop. Loop receiving packets until
* someone sets `net_state' to a state that terminates.
*/
for (;;) {
WATCHDOG_RESET();
#ifdef CONFIG_SHOW_ACTIVITY
show_activity(1);
#endif
if (arp_timeout_check() > 0)
time_start = get_timer(0);
/*
* Check the ethernet for a new packet. The ethernet
* receive routine will process it.
* Most drivers return the most recent packet size, but not
* errors that may have happened.
*/
eth_rx();
/*
* Abort if ctrl-c was pressed.
*/
if (ctrlc()) {
/* cancel any ARP that may not have completed */
net_arp_wait_packet_ip.s_addr = 0;
net_cleanup_loop();
eth_halt();
/* Invalidate the last protocol */
eth_set_last_protocol(BOOTP);
puts("\nAbort\n");
/* include a debug print as well incase the debug
messages are directed to stderr */
debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
ret = -EINTR;
goto done;
}
/*
* Check for a timeout, and run the timeout handler
* if we have one.
*/
if (time_handler &&
((get_timer(0) - time_start) > time_delta)) {
thand_f *x;
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
defined(CONFIG_STATUS_LED) && \
defined(STATUS_LED_RED)
/*
* Echo the inverted link state to the fault LED.
*/
if (miiphy_link(eth_get_dev()->name,
CONFIG_SYS_FAULT_MII_ADDR))
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
else
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
#endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
#endif /* CONFIG_MII, ... */
debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
x = time_handler;
time_handler = (thand_f *)0;
(*x)();
}
if (net_state == NETLOOP_FAIL)
ret = net_start_again();
switch (net_state) {
case NETLOOP_RESTART:
net_restarted = 1;
goto restart;
case NETLOOP_SUCCESS:
net_cleanup_loop();
if (net_boot_file_size > 0) {
printf("Bytes transferred = %d (%x hex)\n",
net_boot_file_size, net_boot_file_size);
setenv_hex("filesize", net_boot_file_size);
setenv_hex("fileaddr", load_addr);
}
if (protocol != NETCONS)
eth_halt();
else
eth_halt_state_only();
eth_set_last_protocol(protocol);
ret = net_boot_file_size;
debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
goto done;
case NETLOOP_FAIL:
net_cleanup_loop();
/* Invalidate the last protocol */
eth_set_last_protocol(BOOTP);
debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
goto done;
case NETLOOP_CONTINUE:
continue;
}
}
done:
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 0;
#endif
#ifdef CONFIG_CMD_TFTPPUT
/* Clear out the handlers */
net_set_udp_handler(NULL);
net_set_icmp_handler(NULL);
#endif
return ret;
}
/**********************************************************************/
static void start_again_timeout_handler(void)
{
net_set_state(NETLOOP_RESTART);
}
int net_start_again(void)
{
char *nretry;
int retry_forever = 0;
unsigned long retrycnt = 0;
int ret;
nretry = getenv("netretry");
if (nretry) {
if (!strcmp(nretry, "yes"))
retry_forever = 1;
else if (!strcmp(nretry, "no"))
retrycnt = 0;
else if (!strcmp(nretry, "once"))
retrycnt = 1;
else
retrycnt = simple_strtoul(nretry, NULL, 0);
} else {
retrycnt = 0;
retry_forever = 0;
}
if ((!retry_forever) && (net_try_count >= retrycnt)) {
eth_halt();
net_set_state(NETLOOP_FAIL);
/*
* We don't provide a way for the protocol to return an error,
* but this is almost always the reason.
*/
return -ETIMEDOUT;
}
net_try_count++;
eth_halt();
#if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
eth_try_another(!net_restarted);
#endif
ret = eth_init();
if (net_restart_wrap) {
net_restart_wrap = 0;
if (net_dev_exists) {
net_set_timeout_handler(10000UL,
start_again_timeout_handler);
net_set_udp_handler(NULL);
} else {
net_set_state(NETLOOP_FAIL);
}
} else {
net_set_state(NETLOOP_RESTART);
}
return ret;
}
/**********************************************************************/
/*
* Miscelaneous bits.
*/
static void dummy_handler(uchar *pkt, unsigned dport,
struct in_addr sip, unsigned sport,
unsigned len)
{
}
rxhand_f *net_get_udp_handler(void)
{
return udp_packet_handler;
}
void net_set_tcp_handler(rxhand_f *f)
{
debug_cond(DEBUG_INT_STATE, "--- net_loop TCP handler set (%p)\n", f);
if (f == NULL)
tcp_packet_handler = dummy_handler;
else
tcp_packet_handler = f;
}
void net_set_udp_handler(rxhand_f *f)
{
debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
if (f == NULL)
udp_packet_handler = dummy_handler;
else
udp_packet_handler = f;
}
rxhand_f *net_get_arp_handler(void)
{
return arp_packet_handler;
}
void net_set_arp_handler(rxhand_f *f)
{
debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
if (f == NULL)
arp_packet_handler = dummy_handler;
else
arp_packet_handler = f;
}
#ifdef CONFIG_CMD_TFTPPUT
void net_set_icmp_handler(rxhand_icmp_f *f)
{
packet_icmp_handler = f;
}
#endif
void net_set_timeout_handler(ulong iv, thand_f *f)
{
if (iv == 0) {
debug_cond(DEBUG_INT_STATE,
"--- net_loop timeout handler cancelled\n");
time_handler = (thand_f *)0;
} else {
debug_cond(DEBUG_INT_STATE,
"--- net_loop timeout handler set (%p)\n", f);
time_handler = f;
time_start = get_timer(0);
time_delta = iv * CONFIG_SYS_HZ / 1000;
}
}
int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
int payload_len)
{
// net_send_udp_orig_packet( ether, dest, dport, sport, payload_len );
// return(0);
net_set_ports( dport, sport );
return(net_send_ip_packet( payload_len, IPPROTO_UDP, IPPROTO_UDP, 0, 0));
}
#ifdef CONFIG_IP_DEFRAG
/*
* This function collects fragments in a single packet, according
* to the algorithm in RFC815. It returns NULL or the pointer to
* a complete packet, in static storage
*/
#ifndef CONFIG_NET_MAXDEFRAG
#define CONFIG_NET_MAXDEFRAG 16384
#endif
#define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
#define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
/*
* this is the packet being assembled, either data or frag control.
* Fragments go by 8 bytes, so this union must be 8 bytes long
*/
struct hole {
/* first_byte is address of this structure */
u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
u16 prev_hole; /* index of prev, 0 == none */
u16 unused;
};
static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
{
static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
static u16 first_hole, total_len;
struct hole *payload, *thisfrag, *h, *newh;
struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
uchar *indata = (uchar *)ip;
int offset8, start, len, done = 0;
u16 ip_off = ntohs(ip->ip_off);
/* payload starts after IP header, this fragment is in there */
payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
offset8 = (ip_off & IP_OFFS);
thisfrag = payload + offset8;
start = offset8 * 8;
len = ntohs(ip->ip_len) - IP_HDR_SIZE;
if (start + len > IP_MAXUDP) /* fragment extends too far */
return NULL;
if (!total_len || localip->ip_id != ip->ip_id) {
/* new (or different) packet, reset structs */
total_len = 0xffff;
payload[0].last_byte = ~0;
payload[0].next_hole = 0;
payload[0].prev_hole = 0;
first_hole = 0;
/* any IP header will work, copy the first we received */
memcpy(localip, ip, IP_HDR_SIZE);
}
/*
* What follows is the reassembly algorithm. We use the payload
* array as a linked list of hole descriptors, as each hole starts
* at a multiple of 8 bytes. However, last byte can be whatever value,
* so it is represented as byte count, not as 8-byte blocks.
*/
h = payload + first_hole;
while (h->last_byte < start) {
if (!h->next_hole) {
/* no hole that far away */
return NULL;
}
h = payload + h->next_hole;
}
/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
if (offset8 + ((len + 7) / 8) <= h - payload) {
/* no overlap with holes (dup fragment?) */
return NULL;
}
if (!(ip_off & IP_FLAGS_MFRAG)) {
/* no more fragmentss: truncate this (last) hole */
total_len = start + len;
h->last_byte = start + len;
}
/*
* There is some overlap: fix the hole list. This code doesn't
* deal with a fragment that overlaps with two different holes
* (thus being a superset of a previously-received fragment).
*/
if ((h >= thisfrag) && (h->last_byte <= start + len)) {
/* complete overlap with hole: remove hole */
if (!h->prev_hole && !h->next_hole) {
/* last remaining hole */
done = 1;
} else if (!h->prev_hole) {
/* first hole */
first_hole = h->next_hole;
payload[h->next_hole].prev_hole = 0;
} else if (!h->next_hole) {
/* last hole */
payload[h->prev_hole].next_hole = 0;
} else {
/* in the middle of the list */
payload[h->next_hole].prev_hole = h->prev_hole;
payload[h->prev_hole].next_hole = h->next_hole;
}
} else if (h->last_byte <= start + len) {
/* overlaps with final part of the hole: shorten this hole */
h->last_byte = start;
} else if (h >= thisfrag) {
/* overlaps with initial part of the hole: move this hole */
newh = thisfrag + (len / 8);
*newh = *h;
h = newh;
if (h->next_hole)
payload[h->next_hole].prev_hole = (h - payload);
if (h->prev_hole)
payload[h->prev_hole].next_hole = (h - payload);
else
first_hole = (h - payload);
} else {
/* fragment sits in the middle: split the hole */
newh = thisfrag + (len / 8);
*newh = *h;
h->last_byte = start;
h->next_hole = (newh - payload);
newh->prev_hole = (h - payload);
if (newh->next_hole)
payload[newh->next_hole].prev_hole = (newh - payload);
}
/* finally copy this fragment and possibly return whole packet */
memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
if (!done)
return NULL;
localip->ip_len = htons(total_len);
*lenp = total_len + IP_HDR_SIZE;
return localip;
}
static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
int *lenp)
{
u16 ip_off = ntohs(ip->ip_off);
if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
return ip; /* not a fragment */
return __net_defragment(ip, lenp);
}
#else /* !CONFIG_IP_DEFRAG */
static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
int *lenp)
{
u16 ip_off = ntohs(ip->ip_off);
if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
return ip; /* not a fragment */
return NULL;
}
#endif
/**
* Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
* drop others.
*
* @parma ip IP packet containing the ICMP
*/
static void receive_icmp(struct ip_udp_hdr *ip, int len,
struct in_addr src_ip, struct ethernet_hdr *et)
{
struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
switch (icmph->type) {
case ICMP_REDIRECT:
if (icmph->code != ICMP_REDIR_HOST)
return;
printf(" ICMP Host Redirect to %pI4 ",
&icmph->un.gateway);
break;
default:
#if defined(CONFIG_CMD_PING)
ping_receive(et, ip, len);
#endif
#ifdef CONFIG_CMD_TFTPPUT
if (packet_icmp_handler)
packet_icmp_handler(icmph->type, icmph->code,
ntohs(ip->udp_dst), src_ip,
ntohs(ip->udp_src), icmph->un.data,
ntohs(ip->udp_len));
#endif
break;
}
}
void net_process_received_packet(uchar *in_packet, int len)
{
struct ethernet_hdr *et;
struct ip_udp_hdr *ip;
struct in_addr dst_ip;
struct in_addr src_ip;
int eth_proto;
#if defined(CONFIG_CMD_CDP)
int iscdp;
#endif
ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
debug_cond(DEBUG_NET_PKT, "packet received\n");
net_rx_packet = in_packet;
net_rx_packet_len = len;
et = (struct ethernet_hdr *)in_packet;
/* too small packet? */
if (len < ETHER_HDR_SIZE)
return;
#if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
if (push_packet) {
(*push_packet)(in_packet, len);
return;
}
#endif
#if defined(CONFIG_CMD_CDP)
/* keep track if packet is CDP */
iscdp = is_cdp_packet(et->et_dest);
#endif
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
mynvlanid = ntohs(net_native_vlan);
if (mynvlanid == (ushort)-1)
mynvlanid = VLAN_NONE;
eth_proto = ntohs(et->et_protlen);
if (eth_proto < 1514) {
struct e802_hdr *et802 = (struct e802_hdr *)et;
/*
* Got a 802.2 packet. Check the other protocol field.
* XXX VLAN over 802.2+SNAP not implemented!
*/
eth_proto = ntohs(et802->et_prot);
ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
len -= E802_HDR_SIZE;
} else if (eth_proto != PROT_VLAN) { /* normal packet */
ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
len -= ETHER_HDR_SIZE;
} else { /* VLAN packet */
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)et;
debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
/* too small packet? */
if (len < VLAN_ETHER_HDR_SIZE)
return;
/* if no VLAN active */
if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
#if defined(CONFIG_CMD_CDP)
&& iscdp == 0
#endif
)
return;
cti = ntohs(vet->vet_tag);
vlanid = cti & VLAN_IDMASK;
eth_proto = ntohs(vet->vet_type);
ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
len -= VLAN_ETHER_HDR_SIZE;
}
debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
#if defined(CONFIG_CMD_CDP)
if (iscdp) {
cdp_receive((uchar *)ip, len);
return;
}
#endif
if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
if (vlanid == VLAN_NONE)
vlanid = (mynvlanid & VLAN_IDMASK);
/* not matched? */
if (vlanid != (myvlanid & VLAN_IDMASK))
return;
}
switch (eth_proto) {
case PROT_ARP:
arp_receive(et, ip, len);
break;
#ifdef CONFIG_CMD_RARP
case PROT_RARP:
rarp_receive(ip, len);
break;
#endif
case PROT_IP:
debug_cond(DEBUG_NET_PKT, "Got IP\n");
/* Before we start poking the header, make sure it is there */
if (len < IP_UDP_HDR_SIZE) {
debug("len bad %d < %lu\n", len,
(ulong)IP_UDP_HDR_SIZE);
return;
}
/* Check the packet length */
if (len < ntohs(ip->ip_len)) {
debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
return;
}
len = ntohs(ip->ip_len);
debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
len, ip->ip_hl_v & 0xff);
/* Can't deal with anything except IPv4 */
if ((ip->ip_hl_v & 0xf0) != 0x40)
return;
/* Can't deal with IP options (headers != 20 bytes) */
if ((ip->ip_hl_v & 0x0f) > 0x05)
return;
/* Check the Checksum of the header */
if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
debug("checksum bad\n");
return;
}
/* If it is not for us, ignore it */
dst_ip = net_read_ip(&ip->ip_dst);
if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
dst_ip.s_addr != 0xFFFFFFFF) {
#ifdef CONFIG_MCAST_TFTP
if (net_mcast_addr != dst_ip)
#endif
return;
}
/* Read source IP address for later use */
src_ip = net_read_ip(&ip->ip_src);
/*
* The function returns the unchanged packet if it's not
* a fragment, and either the complete packet or NULL if
* it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
*/
ip = net_defragment(ip, &len);
if (!ip)
return;
/*
* watch for ICMP host redirects
*
* There is no real handler code (yet). We just watch
* for ICMP host redirect messages. In case anybody
* sees these messages: please contact me
* (wd at denx.de), or - even better - send me the
* necessary fixes :-)
*
* Note: in all cases where I have seen this so far
* it was a problem with the router configuration,
* for instance when a router was configured in the
* BOOTP reply, but the TFTP server was on the same
* subnet. So this is probably a warning that your
* configuration might be wrong. But I'm not really
* sure if there aren't any other situations.
*
* Simon Glass <sjg at chromium.org>: We get an ICMP when
* we send a tftp packet to a dead connection, or when
* there is no server at the other end.
*/
if (ip->ip_p == IPPROTO_ICMP) {
receive_icmp(ip, len, src_ip, et);
return;
} else if (ip->ip_p == IPPROTO_UDP) { /* Only UDP packets */
debug_cond(DEBUG_DEV_PKT,
"received UDP (to=%pI4, from=%pI4, len=%d)\n",
&dst_ip, &src_ip, len);
#ifdef CONFIG_UDP_CHECKSUM
if (ip->udp_xsum != 0) {
ulong xsum;
ushort *sumptr;
ushort sumlen;
xsum = ip->ip_p;
xsum += (ntohs(ip->udp_len));
xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
sumlen = ntohs(ip->udp_len);
sumptr = (ushort *)&(ip->udp_src);
while (sumlen > 1) {
ushort sumdata;
sumdata = *sumptr++;
xsum += ntohs(sumdata);
sumlen -= 2;
}
if (sumlen > 0) {
ushort sumdata;
sumdata = *(unsigned char *)sumptr;
sumdata = (sumdata << 8) & 0xff00;
xsum += sumdata;
}
while ((xsum >> 16) != 0) {
xsum = (xsum & 0x0000ffff) +
((xsum >> 16) & 0x0000ffff);
}
if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
printf(" UDP wrong checksum %08lx %08x\n",
xsum, ntohs(ip->udp_xsum));
return;
}
}
#endif
#if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
src_ip,
ntohs(ip->udp_dst),
ntohs(ip->udp_src),
ntohs(ip->udp_len) - UDP_HDR_SIZE);
#endif
/*
* IP header OK. Pass the packet to the current handler.
*/
debug_cond(DEBUG_DEV_PKT,
"UDP PH (to=%pI4, from=%pI4, len=%d)\n",
&dst_ip, &src_ip, len);
(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
ntohs(ip->udp_dst),
src_ip,
ntohs(ip->udp_src),
ntohs(ip->udp_len) - UDP_HDR_SIZE);
}
#ifdef TCP
else if (ip->ip_p == IPPROTO_TCP) { /* Only TCP packets */
debug_cond(DEBUG_DEV_PKT,
"TCP PH (to=%pI4, from=%pI4, len=%d)\n",
&dst_ip, &src_ip, len);
rxhand_tcp_f((union tcp_build_pkt *) ip, len);
}
#endif
}
}
/**********************************************************************/
static int net_check_prereq(enum proto_t protocol)
{
switch (protocol) {
/* Fall through */
#if defined(CONFIG_CMD_PING)
case PING:
if (net_ping_ip.s_addr == 0) {
puts("*** ERROR: ping address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_SNTP)
case SNTP:
if (net_ntp_server.s_addr == 0) {
puts("*** ERROR: NTP server address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_DNS)
case DNS:
if (net_dns_server.s_addr == 0) {
puts("*** ERROR: DNS server address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_NFS)
case NFS:
#endif
/* Fall through */
case TFTPGET:
case TFTPPUT:
if (net_server_ip.s_addr == 0) {
puts("*** ERROR: `serverip' not set\n");
return 1;
}
#if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
defined(CONFIG_CMD_DNS)
common:
#endif
/* Fall through */
case NETCONS:
case TFTPSRV:
if (net_ip.s_addr == 0) {
puts("*** ERROR: `ipaddr' not set\n");
return 1;
}
/* Fall through */
#ifdef CONFIG_CMD_RARP
case RARP:
#endif
case BOOTP:
case CDP:
case DHCP:
case LINKLOCAL:
if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
int num = eth_get_dev_index();
switch (num) {
case -1:
puts("*** ERROR: No ethernet found.\n");
return 1;
case 0:
puts("*** ERROR: `ethaddr' not set\n");
break;
default:
printf("*** ERROR: `eth%daddr' not set\n",
num);
break;
}
net_start_again();
return 2;
}
/* Fall through */
default:
return 0;
}
return 0; /* OK */
}
/**********************************************************************/
int
net_eth_hdr_size(void)
{
ushort myvlanid;
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
VLAN_ETHER_HDR_SIZE;
}
int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
{
struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
ushort myvlanid;
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
memcpy(et->et_dest, dest_ethaddr, 6);
memcpy(et->et_src, net_ethaddr, 6);
if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
et->et_protlen = htons(prot);
return ETHER_HDR_SIZE;
} else {
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)xet;
vet->vet_vlan_type = htons(PROT_VLAN);
vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
vet->vet_type = htons(prot);
return VLAN_ETHER_HDR_SIZE;
}
}
int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
{
ushort protlen;
memcpy(et->et_dest, addr, 6);
memcpy(et->et_src, net_ethaddr, 6);
protlen = ntohs(et->et_protlen);
if (protlen == PROT_VLAN) {
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)et;
vet->vet_type = htons(prot);
return VLAN_ETHER_HDR_SIZE;
} else if (protlen > 1514) {
et->et_protlen = htons(prot);
return ETHER_HDR_SIZE;
} else {
/* 802.2 + SNAP */
struct e802_hdr *et802 = (struct e802_hdr *)et;
et802->et_prot = htons(prot);
return E802_HDR_SIZE;
}
}
void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
u16 pkt_len, u8 prot)
{
struct ip_hdr *ip = (struct ip_hdr *)pkt;
/*
* Construct an IP header.
*/
/* IP_HDR_SIZE / 4 (not including UDP) */
ip->ip_hl_v = 0x45;
ip->ip_tos = 0;
ip->ip_len = htons(pkt_len);
ip->ip_id = htons(net_ip_id++);
ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
ip->ip_ttl = 255;
ip->ip_p = prot;
ip->ip_sum = 0;
/* already in network byte order */
net_copy_ip((void *)&ip->ip_src, &source);
/* already in network byte order */
net_copy_ip((void *)&ip->ip_dst, &dest);
ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
}
void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
int len)
{
struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
/*
* If the data is an odd number of bytes, zero the
* byte after the last byte so that the checksum
* will work.
*/
if (len & 1)
pkt[IP_UDP_HDR_SIZE + len] = 0;
net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len, IPPROTO_UDP);
ip->udp_src = htons(sport);
ip->udp_dst = htons(dport);
ip->udp_len = htons(UDP_HDR_SIZE + len);
ip->udp_xsum = 0;
}
void copy_filename(char *dst, const char *src, int size)
{
if (*src && (*src == '"')) {
++src;
--size;
}
while ((--size > 0) && *src && (*src != '"'))
*dst++ = *src++;
*dst = '\0';
}
#if defined(CONFIG_CMD_NFS) || \
defined(CONFIG_CMD_SNTP) || \
defined(CONFIG_CMD_DNS) || \
defined(CONFIG_CMD_WGET)
/*
* make port a little random (1024-17407)
* This keeps the math somewhat trivial to compute, and seems to work with
* all supported protocols/clients/servers
*/
unsigned int random_port(void)
{
return 1024 + (get_timer(0) % 0x4000);
}
#endif
void ip_to_string(struct in_addr x, char *s)
{
x.s_addr = ntohl(x.s_addr);
sprintf(s, "%d.%d.%d.%d",
(int) ((x.s_addr >> 24) & 0xff),
(int) ((x.s_addr >> 16) & 0xff),
(int) ((x.s_addr >> 8) & 0xff),
(int) ((x.s_addr >> 0) & 0xff)
);
}
void vlan_to_string(ushort x, char *s)
{
x = ntohs(x);
if (x == (ushort)-1)
x = VLAN_NONE;
if (x == VLAN_NONE)
strcpy(s, "none");
else
sprintf(s, "%d", x & VLAN_IDMASK);
}
ushort string_to_vlan(const char *s)
{
ushort id;
if (s == NULL)
return htons(VLAN_NONE);
if (*s < '0' || *s > '9')
id = VLAN_NONE;
else
id = (ushort)simple_strtoul(s, NULL, 10);
return htons(id);
}
ushort getenv_vlan(char *var)
{
return string_to_vlan(getenv(var));
}include/net.h
/*
* LiMon Monitor (LiMon) - Network.
*
* Copyright 1994 - 2000 Neil Russell.
* (See License)
* SPDX-License-Identifier: GPL-2.0
*
* History
* 9/16/00 bor adapted to TQM823L/STK8xxL board, RARP/TFTP boot added
* 9/20/2017 dch Added TCP listener
*/
#ifndef __NET_H__
#define __NET_H__
#if defined(CONFIG_8xx)
#include <commproc.h>
#endif /* CONFIG_8xx */
#include <asm/cache.h>
#include <asm/byteorder.h> /* for nton* / ntoh* stuff */
#define DEBUG_LL_STATE 0 /* Link local state machine changes */
#define DEBUG_DEV_PKT 0 /* Packets or info directed to the device */
#define DEBUG_NET_PKT 0 /* Packets on info on the network at large */
#define DEBUG_INT_STATE 0 /* Internal network state changes */
/*
* The number of receive packet buffers, and the required packet buffer
* alignment in memory.
*
*/
#define TCP 1
#ifdef TCP
#define CONFIG_SYS_RX_ETH_BUFFER 50 /* For TCP */
#endif
#ifdef CONFIG_SYS_RX_ETH_BUFFER
# define PKTBUFSRX CONFIG_SYS_RX_ETH_BUFFER
#else
# define PKTBUFSRX 4
#endif
#define PKTALIGN ARCH_DMA_MINALIGN
/* IPv4 addresses are always 32 bits in size */
struct in_addr {
__be32 s_addr;
};
/**
* An incoming packet handler.
* @param pkt pointer to the application packet
* @param dport destination UDP port
* @param sip source IP address
* @param sport source UDP port
* @param len packet length
*/
typedef void rxhand_f(uchar *pkt, unsigned dport,
struct in_addr sip, unsigned sport,
unsigned len);
/**
* An incoming ICMP packet handler.
* @param type ICMP type
* @param code ICMP code
* @param dport destination UDP port
* @param sip source IP address
* @param sport source UDP port
* @param pkt pointer to the ICMP packet data
* @param len packet length
*/
typedef void rxhand_icmp_f(unsigned type, unsigned code, unsigned dport,
struct in_addr sip, unsigned sport, uchar *pkt, unsigned len);
/*
* A timeout handler. Called after time interval has expired.
*/
typedef void thand_f(void);
enum eth_state_t {
ETH_STATE_INIT,
ETH_STATE_PASSIVE,
ETH_STATE_ACTIVE
};
#ifdef CONFIG_DM_ETH
/**
* struct eth_pdata - Platform data for Ethernet MAC controllers
*
* @iobase: The base address of the hardware registers
* @enetaddr: The Ethernet MAC address that is loaded from EEPROM or env
* @phy_interface: PHY interface to use - see PHY_INTERFACE_MODE_...
* @max_speed: Maximum speed of Ethernet connection supported by MAC
*/
struct eth_pdata {
phys_addr_t iobase;
unsigned char enetaddr[6];
int phy_interface;
int max_speed;
};
enum eth_recv_flags {
/*
* Check hardware device for new packets (otherwise only return those
* which are already in the memory buffer ready to process)
*/
ETH_RECV_CHECK_DEVICE = 1 << 0,
};
/**
* struct eth_ops - functions of Ethernet MAC controllers
*
* start: Prepare the hardware to send and receive packets
* send: Send the bytes passed in "packet" as a packet on the wire
* recv: Check if the hardware received a packet. If so, set the pointer to the
* packet buffer in the packetp parameter. If not, return an error or 0 to
* indicate that the hardware receive FIFO is empty. If 0 is returned, the
* network stack will not process the empty packet, but free_pkt() will be
* called if supplied
* free_pkt: Give the driver an opportunity to manage its packet buffer memory
* when the network stack is finished processing it. This will only be
* called when no error was returned from recv - optional
* stop: Stop the hardware from looking for packets - may be called even if
* state == PASSIVE
* mcast: Join or leave a multicast group (for TFTP) - optional
* write_hwaddr: Write a MAC address to the hardware (used to pass it to Linux
* on some platforms like ARM). This function expects the
* eth_pdata::enetaddr field to be populated. The method can
* return -ENOSYS to indicate that this is not implemented for
this hardware - optional.
* read_rom_hwaddr: Some devices have a backup of the MAC address stored in a
* ROM on the board. This is how the driver should expose it
* to the network stack. This function should fill in the
* eth_pdata::enetaddr field - optional
*/
struct eth_ops {
int (*start)(struct udevice *dev);
int (*send)(struct udevice *dev, void *packet, int length);
int (*recv)(struct udevice *dev, int flags, uchar **packetp);
int (*free_pkt)(struct udevice *dev, uchar *packet, int length);
void (*stop)(struct udevice *dev);
#ifdef CONFIG_MCAST_TFTP
int (*mcast)(struct udevice *dev, const u8 *enetaddr, int join);
#endif
int (*write_hwaddr)(struct udevice *dev);
int (*read_rom_hwaddr)(struct udevice *dev);
};
#define eth_get_ops(dev) ((struct eth_ops *)(dev)->driver->ops)
struct udevice *eth_get_dev(void); /* get the current device */
/*
* The devname can be either an exact name given by the driver or device tree
* or it can be an alias of the form "eth%d"
*/
struct udevice *eth_get_dev_by_name(const char *devname);
unsigned char *eth_get_ethaddr(void); /* get the current device MAC */
/* Used only when NetConsole is enabled */
int eth_is_active(struct udevice *dev); /* Test device for active state */
int eth_init_state_only(void); /* Set active state */
void eth_halt_state_only(void); /* Set passive state */
#endif
#ifndef CONFIG_DM_ETH
struct eth_device {
char name[16];
unsigned char enetaddr[6];
phys_addr_t iobase;
int state;
int (*init)(struct eth_device *, bd_t *);
int (*send)(struct eth_device *, void *packet, int length);
int (*recv)(struct eth_device *);
void (*halt)(struct eth_device *);
#ifdef CONFIG_MCAST_TFTP
int (*mcast)(struct eth_device *, const u8 *enetaddr, u8 set);
#endif
int (*write_hwaddr)(struct eth_device *);
struct eth_device *next;
int index;
void *priv;
};
int eth_register(struct eth_device *dev);/* Register network device */
int eth_unregister(struct eth_device *dev);/* Remove network device */
extern struct eth_device *eth_current;
static __always_inline struct eth_device *eth_get_dev(void)
{
return eth_current;
}
struct eth_device *eth_get_dev_by_name(const char *devname);
struct eth_device *eth_get_dev_by_index(int index); /* get dev @ index */
/* get the current device MAC */
static inline unsigned char *eth_get_ethaddr(void)
{
if (eth_current)
return eth_current->enetaddr;
return NULL;
}
/* Used only when NetConsole is enabled */
int eth_is_active(struct eth_device *dev); /* Test device for active state */
/* Set active state */
static __always_inline int eth_init_state_only(void)
{
eth_get_dev()->state = ETH_STATE_ACTIVE;
return 0;
}
/* Set passive state */
static __always_inline void eth_halt_state_only(void)
{
eth_get_dev()->state = ETH_STATE_PASSIVE;
}
/*
* Set the hardware address for an ethernet interface based on 'eth%daddr'
* environment variable (or just 'ethaddr' if eth_number is 0).
* Args:
* base_name - base name for device (normally "eth")
* eth_number - value of %d (0 for first device of this type)
* Returns:
* 0 is success, non-zero is error status from driver.
*/
int eth_write_hwaddr(struct eth_device *dev, const char *base_name,
int eth_number);
int usb_eth_initialize(bd_t *bi);
#endif
int eth_initialize(void); /* Initialize network subsystem */
void eth_try_another(int first_restart); /* Change the device */
void eth_set_current(void); /* set nterface to ethcur var */
int eth_get_dev_index(void); /* get the device index */
void eth_parse_enetaddr(const char *addr, uchar *enetaddr);
int eth_getenv_enetaddr(const char *name, uchar *enetaddr);
int eth_setenv_enetaddr(const char *name, const uchar *enetaddr);
/**
* eth_setenv_enetaddr_by_index() - set the MAC address environment variable
*
* This sets up an environment variable with the given MAC address (@enetaddr).
* The environment variable to be set is defined by <@base_name><@index>addr.
* If @index is 0 it is omitted. For common Ethernet this means ethaddr,
* eth1addr, etc.
*
* @base_name: Base name for variable, typically "eth"
* @index: Index of interface being updated (>=0)
* @enetaddr: Pointer to MAC address to put into the variable
* @return 0 if OK, other value on error
*/
int eth_setenv_enetaddr_by_index(const char *base_name, int index,
uchar *enetaddr);
/*
* Get the hardware address for an ethernet interface .
* Args:
* base_name - base name for device (normally "eth")
* index - device index number (0 for first)
* enetaddr - returns 6 byte hardware address
* Returns:
* Return true if the address is valid.
*/
int eth_getenv_enetaddr_by_index(const char *base_name, int index,
uchar *enetaddr);
int eth_init(void); /* Initialize the device */
int eth_send(void *packet, int length); /* Send a packet */
#if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
int eth_receive(void *packet, int length); /* Receive a packet*/
extern void (*push_packet)(void *packet, int length);
#endif
int eth_rx(void); /* Check for received packets */
void eth_halt(void); /* stop SCC */
const char *eth_get_name(void); /* get name of current device */
#ifdef CONFIG_MCAST_TFTP
int eth_mcast_join(struct in_addr mcast_addr, int join);
u32 ether_crc(size_t len, unsigned char const *p);
#endif
/**********************************************************************/
/*
* Protocol headers.
*/
/*
* Ethernet header
*/
struct ethernet_hdr {
u8 et_dest[6]; /* Destination node */
u8 et_src[6]; /* Source node */
u16 et_protlen; /* Protocol or length */
};
/* Ethernet header size */
#define ETHER_HDR_SIZE (sizeof(struct ethernet_hdr))
#define ETH_FCS_LEN 4 /* Octets in the FCS */
struct e802_hdr {
u8 et_dest[6]; /* Destination node */
u8 et_src[6]; /* Source node */
u16 et_protlen; /* Protocol or length */
u8 et_dsap; /* 802 DSAP */
u8 et_ssap; /* 802 SSAP */
u8 et_ctl; /* 802 control */
u8 et_snap1; /* SNAP */
u8 et_snap2;
u8 et_snap3;
u16 et_prot; /* 802 protocol */
}__attribute__ ((packed));
/* 802 + SNAP + ethernet header size */
#define E802_HDR_SIZE (sizeof(struct e802_hdr))
/*
* Virtual LAN Ethernet header
*/
struct vlan_ethernet_hdr {
u8 vet_dest[6]; /* Destination node */
u8 vet_src[6]; /* Source node */
u16 vet_vlan_type; /* PROT_VLAN */
u16 vet_tag; /* TAG of VLAN */
u16 vet_type; /* protocol type */
}__attribute__ ((packed));
/* VLAN Ethernet header size */
#define VLAN_ETHER_HDR_SIZE (sizeof(struct vlan_ethernet_hdr))
#define PROT_IP 0x0800 /* IP protocol */
#define PROT_ARP 0x0806 /* IP ARP protocol */
#define PROT_RARP 0x8035 /* IP ARP protocol */
#define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */
#define PROT_IPV6 0x86dd /* IPv6 over bluebook */
#define PROT_PPP_SES 0x8864 /* PPPoE session messages */
#define IPPROTO_ICMP 1 /* Internet Control Message Protocol */
#define IPPROTO_TCP 6 /* Transmission Control Protocol */
#define IPPROTO_UDP 17 /* User Datagram Protocol */
/*
* Internet Protocol (IP) header.
*/
struct ip_hdr {
u8 ip_hl_v; /* header length and version */
u8 ip_tos; /* type of service */
u16 ip_len; /* total length */
u16 ip_id; /* identification */
u16 ip_off; /* fragment offset field */
u8 ip_ttl; /* time to live */
u8 ip_p; /* protocol */
u16 ip_sum; /* checksum */
struct in_addr ip_src; /* Source IP address */
struct in_addr ip_dst; /* Destination IP address */
}__attribute__ ((packed));
#define IP_OFFS 0x1fff /* ip offset *= 8 */
#define IP_FLAGS 0xe000 /* first 3 bits */
#define IP_FLAGS_RES 0x8000 /* reserved */
#define IP_FLAGS_DFRAG 0x4000 /* don't fragment */
#define IP_FLAGS_MFRAG 0x2000 /* more fragments */
#define IP_HDR_SIZE (sizeof(struct ip_hdr))
/*
* Internet Protocol (IP) + UDP header.
*/
struct ip_udp_hdr {
u8 ip_hl_v; /* header length and version */
u8 ip_tos; /* type of service */
u16 ip_len; /* total length */
u16 ip_id; /* identification */
/* Flags first 3 bits of ip_off */
u16 ip_off; /* fragment offset field */
u8 ip_ttl; /* time to live */
u8 ip_p; /* protocol */
u16 ip_sum; /* checksum */
struct in_addr ip_src; /* Source IP address */
struct in_addr ip_dst; /* Destination IP address */
u16 udp_src; /* UDP source port */
u16 udp_dst; /* UDP destination port */
u16 udp_len; /* Length of UDP packet */
u16 udp_xsum; /* Checksum */
}__attribute__ ((packed));
#define IP_UDP_HDR_SIZE (sizeof(struct ip_udp_hdr))
#define UDP_HDR_SIZE (IP_UDP_HDR_SIZE - IP_HDR_SIZE)
/*
* Internet Protocol (IP) + TCP header.
*/
struct ip_tcp_hdr {
u8 ip_hl_v; /* header length and version */
u8 ip_tos; /* type of service */
u16 ip_len; /* total length */
u16 ip_id; /* identification */
u16 ip_off; /* fragment offset field */
u8 ip_ttl; /* time to live */
u8 ip_p; /* protocol */
u16 ip_sum; /* checksum */
struct in_addr ip_src; /* Source IP address */
struct in_addr ip_dst; /* Destination IP address */
u16 tcp_src; /* TCP source port */
u16 tcp_dst; /* TCP destination port */
u32 tcp_seq; /* TCP sequence number */
u32 tcp_ack; /* TCP Acknowledgement number */
u8 tcp_hlen; /* 4 bits TCP header Length/4 */
/* 4 bits Reserved */
/* 2 more bits reserver */
u8 tcp_flags; /* see defines */
u16 tcp_win; /* TCP windows size */
u16 tcp_xsum; /* Checksum */
u16 tcp_ugr; /* Pointer to urgent data */
}__attribute__ ((packed));
#define IP_TCP_HDR_SIZE (sizeof(struct ip_tcp_hdr))
#define TCP_HDR_SIZE (IP_TCP_HDR_SIZE - IP_HDR_SIZE)
#define TCP_DATA 0x00 /* Data Packet - internal use only */
#define TCP_FIN 0x01 /* Finish flag */
#define TCP_SYN 0x02 /* start flag */
#define TCP_RST 0x04 /* reset flag */
#define TCP_PUSH 0x08 /* Push - Notify app */
#define TCP_ACK 0x10 /* Acknowledgement of data received */
#define TCP_URG 0x20 /* Urgent */
#define TCP_ECE 0x40 /* Unknown */
#define TCP_CWR 0x80 /* Unknown */
/*
* TCP header options, Seq, MSS, and SACK
*/
#define TCP_O_END 0x00 /* End of option list */
#define TCP_1_NOP 0x01 /* Single padding NOP */
#define TCP_O_NOP 0x01010101 /* NOPs pad to 32 bit boundary */
#define TCP_O_MSS 0x02 /* MSS Size option */
#define TCP_O_SCL 0x03 /* Window Scale option */
#define TCP_P_SACK 0x04 /* SACK permitted */
#define TCP_V_SACK 0x05 /* SACK values */
#define TCP_O_TS 0x08 /* Timestanp option */
#define TCP_OPT_LEN_2 0x02
#define TCP_OPT_LEN_3 0x03
#define TCP_OPT_LEN_4 0x04
#define TCP_OPT_LEN_6 0x06
#define TCP_OPT_LEN_8 0x08
#define TCP_OPT_LEN_A 0x0a /* TimestampLength */
#define TCP_MSS 1460 /* Max segment size - 1460 */
#define TCP_SCALE 0x01 /* Scale 1 */
struct tcp_mss{ /* TCP Mex Segment size */
u8 kind ; /* 0x02 */
u8 len; /* 0x04 */
u16 mss; /* 1460 - Max segment size */
}__attribute__ ((packed));
struct tcp_scale { /* TCP Windows Scale */
u8 kind; /* 0x03 */
u8 len; /* 0x03 */
u8 scale; /* win shift fat fast networks */
}__attribute__ ((packed));
struct tcp_sack_p { /* SACK permitted */
u8 kind; /* 0x04 */
u8 len; /* Length */
}__attribute__ ((packed));
struct sack_edges {
u32 l;
u32 r;
}__attribute__ ((packed));
#define TCP_STREAM_HOLES 16
#define TCP_SAK_HOLES 3
#define TCP_HOLE_AGE 4
struct tcp_sack_v {
u8 kind; /* 0x05 */
u8 len; /* Length */
struct sack_edges hole[TCP_SAK_HOLES]; /* L & R widow edges */
}__attribute__ ((packed));
struct tcp_TSopt{ /* TCP time stamps option */
u8 kind; /* 0x08 */
u8 len; /* 0x0a */
u32 TSsnd; /* Sender timestamp */
u32 TSrcv; /* Receiver timestamp */
}__attribute__ ((packed));
#define TCP_TSOPT_SIZE (sizeof(struct tcp_TSopt))
/*
* ip tcp structure with options
*/
struct ip_tcp_hdr_o {
struct ip_tcp_hdr hdr;
struct tcp_mss mss;
struct tcp_scale scale;
struct tcp_sack_p sack_p;
struct tcp_TSopt TSopt;
u8 end;
}__attribute__ ((packed));
#define IP_TCP_O_SIZE (sizeof(struct ip_tcp_hdr_o))
struct ip_tcp_hdr_s {
struct ip_tcp_hdr hdr;
struct tcp_TSopt TSopt;
struct tcp_sack_v sack_v;
u8 end;
}__attribute__ ((packed));
#define IP_TCP_SACK_SIZE (sizeof(struct ip_tcp_hdr_s))
/*
* TCP psuedo header definitions
*/
struct psuedo_hdr{
u8 padding[8]; /* psuedo header size = ip_tcp hdr size */
struct in_addr p_src;
struct in_addr p_dst;
u8 rsvd;
u8 p;
u16 len;
}__attribute__ ((packed));
#define PSUEDO_PAD_SIZE 8
#define PSUEDO_HDR_SIZE 12
/*
* union for building IP/TCP packet.
* build Psuedo header in packed bufferfirst, calculate TCP checksum
* then build IP header in packe buffer.
*/
union tcp_build_pkt{
struct psuedo_hdr ph;
struct ip_tcp_hdr_o ip;
struct ip_tcp_hdr_s sack;
uchar raw[1600];
}__attribute__ ((packed));
/*
* TCP STATE MACHINE STATES FOR SOCKET
*/
enum TCP_STATE
{
TCP_CLOSED, /* Need to send SYN to connect */
TCP_SYN_SENT, /* Trying to connect, waiting for SYN ACK */
TCP_ESTABLISHED, /* both server and client represents an open connection */
TCP_CLOSE_WAIT, /* Received FIN, passed to app for FIN, ACK response */
TCP_CLOSING, /* Received FIN, sent FIN, ACK waiting for ACK */
TCP_FIN_WAIT_1, /* Sendt FIN waiting for response */
TCP_FIN_WAIT_2 /* Received ACK from FIN sent, waitng for FIN */
};
enum TCP_STATE net_get_tcp_state( void );
/*
* TCP incoming packet handler
*/
typedef void rxhand_tcp(uchar *pkt, unsigned dport,
struct in_addr sip, unsigned sport,
unsigned len, enum TCP_STATE tcp_state);
/*
* Address Resolution Protocol (ARP) header.
*/
struct arp_hdr {
u16 ar_hrd; /* Format of hardware address */
# define ARP_ETHER 1 /* Ethernet hardware address */
u16 ar_pro; /* Format of protocol address */
u8 ar_hln; /* Length of hardware address */
# define ARP_HLEN 6
u8 ar_pln; /* Length of protocol address */
# define ARP_PLEN 4
u16 ar_op; /* Operation */
# define ARPOP_REQUEST 1 /* Request to resolve address */
# define ARPOP_REPLY 2 /* Response to previous request */
# define RARPOP_REQUEST 3 /* Request to resolve address */
# define RARPOP_REPLY 4 /* Response to previous request */
/*
* The remaining fields are variable in size, according to
* the sizes above, and are defined as appropriate for
* specific hardware/protocol combinations.
*/
u8 ar_data[0];
#define ar_sha ar_data[0]
#define ar_spa ar_data[ARP_HLEN]
#define ar_tha ar_data[ARP_HLEN + ARP_PLEN]
#define ar_tpa ar_data[ARP_HLEN + ARP_PLEN + ARP_HLEN]
#if 0
u8 ar_sha[]; /* Sender hardware address */
u8 ar_spa[]; /* Sender protocol address */
u8 ar_tha[]; /* Target hardware address */
u8 ar_tpa[]; /* Target protocol address */
#endif /* 0 */
};
#define ARP_HDR_SIZE (8+20) /* Size assuming ethernet */
/*
* ICMP stuff (just enough to handle (host) redirect messages)
*/
#define ICMP_ECHO_REPLY 0 /* Echo reply */
#define ICMP_NOT_REACH 3 /* Detination unreachable */
#define ICMP_REDIRECT 5 /* Redirect (change route) */
#define ICMP_ECHO_REQUEST 8 /* Echo request */
/* Codes for REDIRECT. */
#define ICMP_REDIR_NET 0 /* Redirect Net */
#define ICMP_REDIR_HOST 1 /* Redirect Host */
/* Codes for NOT_REACH */
#define ICMP_NOT_REACH_PORT 3 /* Port unreachable */
struct icmp_hdr {
u8 type;
u8 code;
u16 checksum;
union {
struct {
u16 id;
u16 sequence;
} echo;
u32 gateway;
struct {
u16 unused;
u16 mtu;
} frag;
u8 data[0];
} un;
};
#define ICMP_HDR_SIZE (sizeof(struct icmp_hdr))
#define IP_ICMP_HDR_SIZE (IP_HDR_SIZE + ICMP_HDR_SIZE)
/*
* Maximum packet size; used to allocate packet storage. Use
* the maxium Ethernet frame size as specified by the Ethernet
* standard including the 802.1Q tag (VLAN tagging).
* maximum packet size = 1522
* maximum packet size and multiple of 32 bytes = 1536
*/
#define PKTSIZE 1522
#define PKTSIZE_ALIGN 1536
/*
* Maximum receive ring size; that is, the number of packets
* we can buffer before overflow happens. Basically, this just
* needs to be enough to prevent a packet being discarded while
* we are processing the previous one.
*/
#define RINGSZ 4
#define RINGSZ_LOG2 2
/**********************************************************************/
/*
* Globals.
*
* Note:
*
* All variables of type struct in_addr are stored in NETWORK byte order
* (big endian).
*/
/* net.c */
/** BOOTP EXTENTIONS **/
extern struct in_addr net_gateway; /* Our gateway IP address */
extern struct in_addr net_netmask; /* Our subnet mask (0 = unknown) */
/* Our Domain Name Server (0 = unknown) */
extern struct in_addr net_dns_server;
#if defined(CONFIG_BOOTP_DNS2)
/* Our 2nd Domain Name Server (0 = unknown) */
extern struct in_addr net_dns_server2;
#endif
extern char net_nis_domain[32]; /* Our IS domain */
extern char net_hostname[32]; /* Our hostname */
extern char net_root_path[64]; /* Our root path */
/** END OF BOOTP EXTENTIONS **/
extern u8 net_ethaddr[6]; /* Our ethernet address */
extern u8 net_server_ethaddr[6]; /* Boot server enet address */
extern struct in_addr net_ip; /* Our IP addr (0 = unknown) */
extern struct in_addr net_server_ip; /* Server IP addr (0 = unknown) */
extern uchar *net_tx_packet; /* THE transmit packet */
extern uchar *net_rx_packets[PKTBUFSRX]; /* Receive packets */
extern uchar *net_rx_packet; /* Current receive packet */
extern int net_rx_packet_len; /* Current rx packet length */
extern const u8 net_bcast_ethaddr[6]; /* Ethernet broadcast address */
extern const u8 net_null_ethaddr[6];
#define VLAN_NONE 4095 /* untagged */
#define VLAN_IDMASK 0x0fff /* mask of valid vlan id */
extern ushort net_our_vlan; /* Our VLAN */
extern ushort net_native_vlan; /* Our Native VLAN */
extern int net_restart_wrap; /* Tried all network devices */
enum proto_t {
BOOTP, RARP, ARP, TFTPGET, DHCP, PING, DNS, NFS, CDP, NETCONS, SNTP,
TFTPSRV, TFTPPUT, LINKLOCAL, WGET
};
extern char net_boot_file_name[1024];/* Boot File name */
/* The actual transferred size of the bootfile (in bytes) */
extern u32 net_boot_file_size;
/* Boot file size in blocks as reported by the DHCP server */
extern u32 net_boot_file_expected_size_in_blocks;
#if defined(CONFIG_CMD_DNS)
extern char *net_dns_resolve; /* The host to resolve */
extern char *net_dns_env_var; /* the env var to put the ip into */
#endif
#if defined(CONFIG_CMD_PING)
extern struct in_addr net_ping_ip; /* the ip address to ping */
#endif
#if defined(CONFIG_CMD_CDP)
/* when CDP completes these hold the return values */
extern ushort cdp_native_vlan; /* CDP returned native VLAN */
extern ushort cdp_appliance_vlan; /* CDP returned appliance VLAN */
/*
* Check for a CDP packet by examining the received MAC address field
*/
static inline int is_cdp_packet(const uchar *ethaddr)
{
extern const u8 net_cdp_ethaddr[6];
return memcmp(ethaddr, net_cdp_ethaddr, 6) == 0;
}
#endif
#if defined(CONFIG_CMD_SNTP)
extern struct in_addr net_ntp_server; /* the ip address to NTP */
extern int net_ntp_time_offset; /* offset time from UTC */
#endif
#if defined(CONFIG_MCAST_TFTP)
extern struct in_addr net_mcast_addr;
#endif
/* Initialize the network adapter */
void net_init(void);
int net_loop(enum proto_t);
/* Load failed. Start again. */
int net_start_again(void);
/* Get size of the ethernet header when we send */
int net_eth_hdr_size(void);
/* Set ethernet header; returns the size of the header */
int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot);
int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot);
/* Set IP header */
void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
u16 pkt_len, u8 prot );
int net_set_tcp_header(uchar *pkt, int len, u8 action, u32 tcp_seq_num, u32 tcp_ack_seq_num );
void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport,
int sport, int len);
/* Set ports */
void net_set_ports( int server_port, int our_port );
/* Sequence number and SAK management */
void net_tcp_hole_contract( u32 tcp_seq_num, u32 tcp_end_num );
void net_tcp_hole_expand( u32 tcp_seq_num, u32 tcp_end_num );
/* Print packet or messsage */
void net_print_buffer( uchar raw[], int pkt_len, int payload_len,
int hdr_len, bool hide );
/* Find string in buffer */
int net_find_in_buffer( uchar raw[], int payload_len, uchar field[], int field_len );
/**
* compute_ip_checksum() - Compute IP checksum
*
* @addr: Address to check (must be 16-bit aligned)
* @nbytes: Number of bytes to check (normally a multiple of 2)
* @return 16-bit IP checksum
*/
unsigned compute_ip_checksum(const void *addr, unsigned nbytes);
/**
* add_ip_checksums() - add two IP checksums
*
* @offset: Offset of first sum (if odd we do a byte-swap)
* @sum: First checksum
* @new_sum: New checksum to add
* @return updated 16-bit IP checksum
*/
unsigned add_ip_checksums(unsigned offset, unsigned sum, unsigned new_sum);
/**
* ip_checksum_ok() - check if a checksum is correct
*
* This works by making sure the checksum sums to 0
*
* @addr: Address to check (must be 16-bit aligned)
* @nbytes: Number of bytes to check (normally a multiple of 2)
* @return true if the checksum matches, false if not
*/
int ip_checksum_ok(const void *addr, unsigned nbytes);
/* Callbacks */
rxhand_f *net_get_tcp_handler(void); /* Get TCP RX packet handler */
void net_set_tcp_handler(rxhand_f *); /* Set TCP RX packet handler */
rxhand_f *net_get_udp_handler(void); /* Get UDP RX packet handler */
void net_set_udp_handler(rxhand_f *); /* Set UDP RX packet handler */
rxhand_f *net_get_arp_handler(void); /* Get ARP RX packet handler */
void net_set_arp_handler(rxhand_f *); /* Set ARP RX packet handler */
void net_set_icmp_handler(rxhand_icmp_f *f); /* Set ICMP RX handlr*/
void net_set_timeout_handler(ulong, thand_f *); /* Set timeout handlr*/
/* Network loop state */
enum net_loop_state {
NETLOOP_CONTINUE,
NETLOOP_RESTART,
NETLOOP_SUCCESS,
NETLOOP_FAIL
};
extern enum net_loop_state net_state;
static inline void net_set_state(enum net_loop_state state)
{
debug_cond(DEBUG_INT_STATE, "--- NetState set to %d\n", state);
net_state = state;
}
/* Transmit a packet */
static inline void net_send_packet(uchar *pkt, int len)
{
/* Currently no way to return errors from eth_send() */
(void) eth_send(pkt, len);
}
/*
* Transmit "net_tx_packet" as UDP packet, performing ARP request if needed
* (ether will be populated)
*
* @param ether Raw packet buffer
* @param dest IP address to send the datagram to
* @param dport Destination UDP port
* @param sport Source UDP port
* @param payload_len Length of data after the UDP header
* Added TCP support and protocol parameter for sending ip packets, and
* shim to support existing udp interface.
*/
int net_send_ip_packet( int payload_len, int proto, u8 action, u32 tcp_seq_num, u32 tcp_ack_num );
int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport,
int sport, int payload_len);
/* Processes a received packet */
void net_process_received_packet(uchar *in_packet, int len);
#ifdef CONFIG_NETCONSOLE
void nc_start(void);
int nc_input_packet(uchar *pkt, struct in_addr src_ip, unsigned dest_port,
unsigned src_port, unsigned len);
#endif
static __always_inline int eth_is_on_demand_init(void)
{
#ifdef CONFIG_NETCONSOLE
extern enum proto_t net_loop_last_protocol;
return net_loop_last_protocol != NETCONS;
#else
return 1;
#endif
}
static inline void eth_set_last_protocol(int protocol)
{
#ifdef CONFIG_NETCONSOLE
extern enum proto_t net_loop_last_protocol;
net_loop_last_protocol = protocol;
#endif
}
/*
* Check if autoload is enabled. If so, use either NFS or TFTP to download
* the boot file.
*/
void net_auto_load(void);
/*
* The following functions are a bit ugly, but necessary to deal with
* alignment restrictions on ARM.
*
* We're using inline functions, which had the smallest memory
* footprint in our tests.
*/
/* return IP *in network byteorder* */
static inline struct in_addr net_read_ip(void *from)
{
struct in_addr ip;
memcpy((void *)&ip, (void *)from, sizeof(ip));
return ip;
}
/* return ulong *in network byteorder* */
static inline u32 net_read_u32(u32 *from)
{
u32 l;
memcpy((void *)&l, (void *)from, sizeof(l));
return l;
}
/* write IP *in network byteorder* */
static inline void net_write_ip(void *to, struct in_addr ip)
{
memcpy(to, (void *)&ip, sizeof(ip));
}
/* copy IP */
static inline void net_copy_ip(void *to, void *from)
{
memcpy((void *)to, from, sizeof(struct in_addr));
}
/* copy ulong */
static inline void net_copy_u32(u32 *to, u32 *from)
{
memcpy((void *)to, (void *)from, sizeof(u32));
}
/**
* is_zero_ethaddr - Determine if give Ethernet address is all zeros.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is all zeroes.
*/
static inline int is_zero_ethaddr(const u8 *addr)
{
return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]);
}
/**
* is_multicast_ethaddr - Determine if the Ethernet address is a multicast.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is a multicast address.
* By definition the broadcast address is also a multicast address.
*/
static inline int is_multicast_ethaddr(const u8 *addr)
{
return 0x01 & addr[0];
}
/*
* is_broadcast_ethaddr - Determine if the Ethernet address is broadcast
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is the broadcast address.
*/
static inline int is_broadcast_ethaddr(const u8 *addr)
{
return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) ==
0xff;
}
/*
* is_valid_ethaddr - Determine if the given Ethernet address is valid
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not
* a multicast address, and is not FF:FF:FF:FF:FF:FF.
*
* Return true if the address is valid.
*/
static inline int is_valid_ethaddr(const u8 *addr)
{
/* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to
* explicitly check for it here. */
return !is_multicast_ethaddr(addr) && !is_zero_ethaddr(addr);
}
/**
* net_random_ethaddr - Generate software assigned random Ethernet address
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Generate a random Ethernet address (MAC) that is not multicast
* and has the local assigned bit set.
*/
static inline void net_random_ethaddr(uchar *addr)
{
int i;
unsigned int seed = get_timer(0);
for (i = 0; i < 6; i++)
addr[i] = rand_r(&seed);
addr[0] &= 0xfe; /* clear multicast bit */
addr[0] |= 0x02; /* set local assignment bit (IEEE802) */
}
/* Convert an IP address to a string */
void ip_to_string(struct in_addr x, char *s);
/* Convert a string to ip address */
struct in_addr string_to_ip(const char *s);
/* Convert a VLAN id to a string */
void vlan_to_string(ushort x, char *s);
/* Convert a string to a vlan id */
ushort string_to_vlan(const char *s);
/* read a VLAN id from an environment variable */
ushort getenv_vlan(char *);
/* copy a filename (allow for "..." notation, limit length) */
void copy_filename(char *dst, const char *src, int size);
/* get a random source port */
unsigned int random_port(void);
/**
* update_tftp - Update firmware over TFTP (via DFU)
*
* This function updates board's firmware via TFTP
*
* @param addr - memory address where data is stored
* @param interface - the DFU medium name - e.g. "mmc"
* @param devstring - the DFU medium number - e.g. "1"
*
* @return - 0 on success, other value on failure
*/
int update_tftp(ulong addr, char *interface, char *devstring);
/**********************************************************************/
#endif /* __NET_H__ */
net/wget.c
/*
* FILE support driver - based on etherboot and U-BOOT's tftp.c
*
* Duncan Hare <dh at synoia.com> 2017
*
*/
#include <common.h>
#include <command.h>
#include <fat.h> //FAT
#include <net.h>
#include <mapmem.h>
#ifdef TCP
#define FILE_TEST 0 /* Set to 1 for debug messges */
#define FILE_RETRY_COUNT 30
#ifndef CONFIG_FILE_TIMEOUT
# define FILE_TIMEOUT 2000UL
#define SERVER_PORT 8081
#else
# define FILE_TIMEOUT CONFIG_FILE_TIMEOUT
#endif
char bootfile[50] = "GET /r.32.test/boot/cmdline.txt HTTP/1.1\r\n\r\n";
char bootfile1[10] = "GET ";
char bootfile2[30] = "/r.32.test/boot/cmdline.txt";
char bootfile3[20] = " HTTP/1.1\r\n\r\n";
uchar content[6] = "<html>";
uchar error404[3] = "404";
static unsigned int file_timeout = FILE_TIMEOUT;
static struct in_addr file_server_ip;
static int file_timeout_count;
int packets = 0;
static u32 initial_data_seq_num;
enum FILE_STATE {
FILE_CLOSED,
FILE_CONNECTING,
FILE_CONNECTED,
FILE_TRANSFERRING,
FILE_TRANSFERRED};
static enum FILE_STATE file_state;
static char *file_filename;
static char *file_path;
static char file_path_buff[2048];
int i = 0;
static void file_timeout_handler(void);
void file_fail( char * error_message, unsigned tcp_seq_num, unsigned tcp_ack_num, u8 action );
static inline int store_block(uchar *src, unsigned offset, unsigned len)
{
ulong newsize = offset + len;
#ifdef CONFIG_SYS_DIRECT_FLASH_WGET
int i, rc = 0;
for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; i++) {
/* start address in flash? */
if (load_addr + offset >= flash_info[i].start[0]) {
rc = 1;
break;
}
}
if (rc) { /* Flash is destination for this packet */
rc = flash_write((uchar *)src, (ulong)(load_addr+offset), len);
if (rc) {
flash_perror(rc);
return -1;
}
} else
#endif /* CONFIG_SYS_DIRECT_FLASH_NFS */
{
uchar *ptr = map_sysmem(load_addr + offset, len);
memcpy(ptr, src, len);
if ( i < 3 )
{
printf( "Offset %d, Length %d\n", offset, len );
net_print_buffer( src, 24, 24, 24, 0 );
i++;
net_print_buffer( src + len -24, (int)src + len -24, 24, 24, 0);
}
unmap_sysmem(ptr);
}
if (net_boot_file_size < (offset + len))
net_boot_file_size = newsize;
return 0;
}
/*
* File request dispatcher
* WARNING, This, and only this, is the place where
* SEQUENCE NUMBERS are swapped betweeen incoming (RX) and outgoing (TX)
* What is in procedure file_handler() is correct for RX traffic.
*/
static void file_send( u8 action, unsigned tcp_ack_num, unsigned tcp_seq_num, int len )
{
uchar *ptr;
uchar *offset;
tcp_ack_num = tcp_ack_num + len;
switch (file_state)
{
case FILE_CLOSED:
debug_cond( FILE_TEST, "File send: send SYN\n");
file_state = FILE_CONNECTING;
net_send_ip_packet( 0, IPPROTO_TCP, action, tcp_seq_num, tcp_ack_num );
break;
case FILE_CONNECTING:
debug_cond( FILE_TEST, "File send: send HTTP GET\n");
ptr = net_tx_packet + net_eth_hdr_size() + IP_TCP_HDR_SIZE + TCP_TSOPT_SIZE + 2;
offset = ptr;
memcpy( offset, &bootfile1, strlen(bootfile1) );
offset = offset + strlen(bootfile1);
// memcpy( offset, &bootfile2, strlen(bootfile2) );
// offset = offset + strlen(bootfile2);
memcpy( offset, file_path, strlen(file_path) );
offset = offset + strlen(file_path);
memcpy( offset, &bootfile3, strlen(bootfile3) );
offset = offset + strlen(bootfile3);
net_send_ip_packet(( offset - ptr), IPPROTO_TCP, TCP_DATA, tcp_seq_num, tcp_ack_num );
file_state = FILE_CONNECTED;
break;
case FILE_CONNECTED:
debug_cond( FILE_TEST, "File send: Header\n" );
file_state = FILE_TRANSFERRING;
break;
case FILE_TRANSFERRING:
debug_cond( FILE_TEST, "File send:Transferring \n");
net_send_ip_packet( 0, IPPROTO_TCP, action, tcp_seq_num, tcp_ack_num);
break;
case FILE_TRANSFERRED:
debug_cond( FILE_TEST, "File send:Transferred \n");
net_send_ip_packet( 0, IPPROTO_TCP, action, tcp_seq_num, tcp_ack_num);
break;
}
}
void file_success( u8 action, unsigned tcp_seq_num, unsigned tcp_ack_num, int len, int packets )
{
file_state = FILE_TRANSFERRED;
net_set_state( NETLOOP_SUCCESS );
net_set_timeout_handler( 0, NULL);
debug_cond( 1, "Packets received %d, File send:SUCCESS!!!\n", packets );
file_send( action, tcp_seq_num, tcp_ack_num, len );
}
void file_fail( char * error_message, unsigned tcp_seq_num, unsigned tcp_ack_num, u8 action )
{
debug_cond( FILE_TEST, error_message );
debug_cond( FILE_TEST, "File Fail\n" );
file_state = FILE_TRANSFERRED;
net_set_timeout_handler( 0, NULL);
net_set_state( NETLOOP_FAIL );
file_send( action | TCP_FIN, tcp_seq_num, tcp_ack_num, 0 );
}
/*
* Interfaces of U-BOOT
*/
static void file_timeout_handler(void)
{
if (++file_timeout_count > FILE_RETRY_COUNT) {
puts("\nRetry count exceeded; starting again\n");
net_start_again();
} else {
puts("T ");
net_set_timeout_handler(file_timeout +
FILE_TIMEOUT * file_timeout_count,
file_timeout_handler);
file_send( TCP_DATA, 0, 0, 0 );
}
}
/*
* In the "application push" invocation the TCP header with all its information is $
* packet pointer, and the other variable "repurposed" (or misused) to carry sequen$
* and TCP state.
*
* Parms: ((uchar *) b, tcp_ack_num, action_and_state, tcp_seq_num, payload_len );
*
*/
static void file_handler(uchar *pkt, unsigned tcp_seq_num, struct in_addr action_and_state,
unsigned tcp_ack_num, unsigned len )
{
enum TCP_STATE file_tcp_state = net_get_tcp_state();
u8 action = action_and_state.s_addr;
int offset;
net_set_timeout_handler(file_timeout, file_timeout_handler);
packets ++;
switch (file_state)
{
case FILE_CLOSED:
debug_cond( FILE_TEST, "File Handler: Error!, State wrong\n");
break;
case FILE_CONNECTING:
debug_cond(FILE_TEST, "File Connecting In len=%d, Seq=%d, Ack=%d\n",
len, tcp_seq_num, tcp_ack_num );
if ( len == 0 )
{
if ( file_tcp_state == TCP_ESTABLISHED )
{
debug_cond( FILE_TEST, "File Handler Connecting, send, len=%d\n", len );
file_send( action, tcp_seq_num, tcp_ack_num, len );
}
else file_fail( "File Handler Connected Fail\n",
tcp_seq_num, tcp_ack_num, action );
}
break;
case FILE_CONNECTED:
debug_cond(FILE_TEST, "File Connected In len=%d, seq=%d, ack=%d\n"
, len, tcp_seq_num, tcp_ack_num );
if ( len == 0 )
{
file_fail("File not found, no data returned/n" ,
tcp_seq_num, tcp_ack_num, action );
}
else if ( net_find_in_buffer( pkt, len, error404, 3) > 0 )
{
offset = net_find_in_buffer( pkt, len, content, 6 );
net_print_buffer( pkt, offset-4, offset-4, -1, 0 );
pkt[0] = 0x00;
file_fail( (char *)pkt, tcp_seq_num, tcp_ack_num, action );
}
else /* Got HTTP Header */
{
net_print_buffer( pkt, len, len, -1, 0 );
file_state = FILE_TRANSFERRING;
initial_data_seq_num = tcp_seq_num + len;
file_send( action, tcp_seq_num, tcp_ack_num, len );
}
break;
case FILE_TRANSFERRING:
debug_cond(FILE_TEST, "File Transferring, seq=%d, ack=%d,len=%d\n"
, tcp_seq_num, tcp_ack_num, len );
if ( len > 0 )
{
offset = tcp_seq_num - initial_data_seq_num;
if ( store_block( pkt, offset, len) != 0 )
file_fail( "File store error\n",
tcp_seq_num, tcp_ack_num, action );
else switch (file_tcp_state)
{
case TCP_SYN_SENT:
case TCP_CLOSING:
case TCP_FIN_WAIT_1:
case TCP_FIN_WAIT_2:
case TCP_CLOSED:
net_set_state(NETLOOP_FAIL);
break;
case TCP_ESTABLISHED:
file_send( TCP_ACK, tcp_seq_num, tcp_ack_num, len );
break;
case TCP_CLOSE_WAIT: /* End of file */
file_success( action | TCP_ACK,
tcp_seq_num, tcp_ack_num, len, packets );
break;
}
}
else file_send( action , tcp_seq_num, tcp_ack_num, len );
break;
case FILE_TRANSFERRED:
file_send( TCP_ACK, tcp_seq_num, tcp_ack_num, len );
break;
}
}
void wget_start(void)
{
debug("%s\n", __func__);
file_server_ip = net_server_ip;
file_path = (char *)file_path_buff;
if (file_path == NULL) {
net_set_state(NETLOOP_FAIL);
debug("*** ERROR: Fail allocate memory\n");
return;
}
if (net_boot_file_name[0] == '\0') {
sprintf(file_path, "/fileroot/%02X%02X%02X%02X.img",
net_ip.s_addr & 0xFF,
(net_ip.s_addr >> 8) & 0xFF,
(net_ip.s_addr >> 16) & 0xFF,
(net_ip.s_addr >> 24) & 0xFF);
debug("*** Warning: no boot file name; using '%s'\n",
file_path);
} else {
char *p = net_boot_file_name;
p = strchr(p, ':');
if (p != NULL) {
file_server_ip = string_to_ip(net_boot_file_name);
++p;
strcpy(file_path, p);
} else {
strcpy(file_path, net_boot_file_name);
}
}
debug_cond( FILE_TEST, "Using %s device\n", eth_get_name());
debug_cond( FILE_TEST, "File transfer via HTTP from server %pI4; our IP address is %pI4\n",
&file_server_ip, &net_ip);
/* Check if we need to send across this subnet */
if (net_gateway.s_addr && net_netmask.s_addr) {
struct in_addr our_net;
struct in_addr server_net;
our_net.s_addr = net_ip.s_addr & net_netmask.s_addr;
server_net.s_addr = net_server_ip.s_addr & net_netmask.s_addr;
if (our_net.s_addr != server_net.s_addr)
debug("; sending through gateway %pI4",
&net_gateway);
}
debug_cond(FILE_TEST, "Filename '%s, %s'.\n", file_path, file_filename);
if (net_boot_file_expected_size_in_blocks) {
debug(" Size is 0x%x Bytes = ",
net_boot_file_expected_size_in_blocks << 9);
print_size(net_boot_file_expected_size_in_blocks << 9, "");
}
debug("\nLoad address: 0x%lx\nLoading: *\b", load_addr);
net_set_timeout_handler(file_timeout, file_timeout_handler);
net_set_tcp_handler(file_handler);
file_timeout_count = 0;
file_state = FILE_CLOSED;
net_set_ports( SERVER_PORT, 4096 + (get_ticks() % 3072));
/* zero out server ether in case the server ip has changed */
memset(net_server_ethaddr, 0, 6);
file_send( TCP_SYN, 0, 0, 0 );
}
#endif
wget.h
/*
* Duncan Hare Copyright 2017
*/
void wget_start(void); /* Begin NFS */
net/ping.c changes
struct icmp_hdr *icmp = (struct icmp_hdr *)(pkt + IP_HDR_SIZE);
net_set_ip_header(pkt, dest, net_ip, IP_ICMP_HDR_SIZE, IPPROTO_ICMP);
icmp->type = ICMP_ECHO_REQUEST;
icmp->code = 0;
icmp->checksum = 0;
icmp->un.echo.id = 0;
icmp->un.echo.sequence = htons(ping_seq_number++);
icmp->checksum = compute_ip_checksum(icmp, ICMP_HDR_SIZE);
n Hare
714 931 7952
More information about the U-Boot
mailing list