[U-Boot] [PATCH v8 01/10] test: add test for lib/lmb.c

Simon Goldschmidt simon.k.r.goldschmidt at gmail.com
Mon Dec 17 20:08:21 UTC 2018


Add basic tests for the lmb memory allocation code used to reserve and
allocate memory during boot.

Signed-off-by: Simon Goldschmidt <simon.k.r.goldschmidt at gmail.com>
---

Changes in v8: None
Changes in v7: None
Changes in v6: None
Changes in v5:
- this patch is new in v5

Changes in v4: None
Changes in v2: None

 test/lib/Makefile |   1 +
 test/lib/lmb.c    | 297 ++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 298 insertions(+)
 create mode 100644 test/lib/lmb.c

diff --git a/test/lib/Makefile b/test/lib/Makefile
index ea68fae566..5a636aac74 100644
--- a/test/lib/Makefile
+++ b/test/lib/Makefile
@@ -3,3 +3,4 @@
 # (C) Copyright 2018
 # Mario Six, Guntermann & Drunck GmbH, mario.six at gdsys.cc
 obj-y += hexdump.o
+obj-y += lmb.o
diff --git a/test/lib/lmb.c b/test/lib/lmb.c
new file mode 100644
index 0000000000..dd7ba14b34
--- /dev/null
+++ b/test/lib/lmb.c
@@ -0,0 +1,297 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2018 Simon Goldschmidt
+ */
+
+#include <common.h>
+#include <lmb.h>
+#include <dm/test.h>
+#include <test/ut.h>
+
+static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
+		     phys_addr_t ram_base, phys_size_t ram_size,
+		     unsigned long num_reserved,
+		     phys_addr_t base1, phys_size_t size1,
+		     phys_addr_t base2, phys_size_t size2,
+		     phys_addr_t base3, phys_size_t size3)
+{
+	ut_asserteq(lmb->memory.cnt, 1);
+	ut_asserteq(lmb->memory.region[0].base, ram_base);
+	ut_asserteq(lmb->memory.region[0].size, ram_size);
+
+	ut_asserteq(lmb->reserved.cnt, num_reserved);
+	if (num_reserved > 0) {
+		ut_asserteq(lmb->reserved.region[0].base, base1);
+		ut_asserteq(lmb->reserved.region[0].size, size1);
+	}
+	if (num_reserved > 1) {
+		ut_asserteq(lmb->reserved.region[1].base, base2);
+		ut_asserteq(lmb->reserved.region[1].size, size2);
+	}
+	if (num_reserved > 2) {
+		ut_asserteq(lmb->reserved.region[2].base, base3);
+		ut_asserteq(lmb->reserved.region[2].size, size3);
+	}
+	return 0;
+}
+
+#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
+		   base2, size2, base3, size3) \
+		   ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
+			     num_reserved, base1, size1, base2, size2, base3, \
+			     size3))
+
+/*
+ * Test helper function that reserves 64 KiB somewhere in the simulated RAM and
+ * then does some alloc + free tests.
+ */
+static int test_multi_alloc(struct unit_test_state *uts,
+			    const phys_addr_t ram, const phys_size_t ram_size,
+			    const phys_addr_t alloc_64k_addr)
+{
+	const phys_addr_t ram_end = ram + ram_size;
+	const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
+
+	struct lmb lmb;
+	long ret;
+	phys_addr_t a, a2, b, b2, c, d;
+
+	/* check for overflow */
+	ut_assert(ram_end == 0 || ram_end > ram);
+	ut_assert(alloc_64k_end > alloc_64k_addr);
+	/* check input addresses + size */
+	ut_assert(alloc_64k_addr >= ram + 8);
+	ut_assert(alloc_64k_end <= ram_end - 8);
+
+	lmb_init(&lmb);
+
+	ret = lmb_add(&lmb, ram, ram_size);
+	ut_asserteq(ret, 0);
+
+	/* reserve 64KiB somewhere */
+	ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+		   0, 0, 0, 0);
+
+	/* allocate somewhere, should be at the end of RAM */
+	a = lmb_alloc(&lmb, 4, 1);
+	ut_asserteq(a, ram_end - 4);
+	ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000,
+		   ram_end - 4, 4, 0, 0);
+	/* alloc below end of reserved region -> below reserved region */
+	b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+	ut_asserteq(b, alloc_64k_addr - 4);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
+
+	/* 2nd time */
+	c = lmb_alloc(&lmb, 4, 1);
+	ut_asserteq(c, ram_end - 8);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
+	d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+	ut_asserteq(d, alloc_64k_addr - 8);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+
+	ret = lmb_free(&lmb, a, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+	/* allocate again to ensure we get the same address */
+	a2 = lmb_alloc(&lmb, 4, 1);
+	ut_asserteq(a, a2);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+	ret = lmb_free(&lmb, a2, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+
+	ret = lmb_free(&lmb, b, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 3,
+		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+		   ram_end - 8, 4);
+	/* allocate again to ensure we get the same address */
+	b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+	ut_asserteq(b, b2);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+	ret = lmb_free(&lmb, b2, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 3,
+		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+		   ram_end - 8, 4);
+
+	ret = lmb_free(&lmb, c, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 2,
+		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
+	ret = lmb_free(&lmb, d, 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+		   0, 0, 0, 0);
+
+	return 0;
+}
+
+static int test_multi_alloc_512mb(struct unit_test_state *uts,
+				  const phys_addr_t ram)
+{
+	return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000);
+}
+
+/* Create a memory region with one reserved region and allocate */
+static int lib_test_lmb_simple(struct unit_test_state *uts)
+{
+	/* simulate 512 MiB RAM beginning at 1GiB */
+	return test_multi_alloc_512mb(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
+static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
+{
+	const phys_size_t ram_size = 0x20000000;
+	const phys_size_t big_block_size = 0x10000000;
+	const phys_addr_t ram_end = ram + ram_size;
+	const phys_addr_t alloc_64k_addr = ram + 0x10000000;
+	struct lmb lmb;
+	long ret;
+	phys_addr_t a, b;
+
+	/* check for overflow */
+	ut_assert(ram_end == 0 || ram_end > ram);
+
+	lmb_init(&lmb);
+
+	ret = lmb_add(&lmb, ram, ram_size);
+	ut_asserteq(ret, 0);
+
+	/* reserve 64KiB in the middle of RAM */
+	ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+		   0, 0, 0, 0);
+
+	/* allocate a big block, should be below reserved */
+	a = lmb_alloc(&lmb, big_block_size, 1);
+	ut_asserteq(a, ram);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+		   big_block_size + 0x10000, 0, 0, 0, 0);
+	/* allocate 2nd big block */
+	/* This should fail, printing an error */
+	b = lmb_alloc(&lmb, big_block_size, 1);
+	ut_asserteq(b, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+		   big_block_size + 0x10000, 0, 0, 0, 0);
+
+	ret = lmb_free(&lmb, a, big_block_size);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+		   0, 0, 0, 0);
+
+	/* allocate too big block */
+	/* This should fail, printing an error */
+	a = lmb_alloc(&lmb, ram_size, 1);
+	ut_asserteq(a, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+		   0, 0, 0, 0);
+
+	return 0;
+}
+
+static int lib_test_lmb_big(struct unit_test_state *uts)
+{
+	return test_bigblock(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_big, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate a block without previous reservation */
+static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram)
+{
+	const phys_size_t ram_size = 0x20000000;
+	const phys_addr_t ram_end = ram + ram_size;
+	struct lmb lmb;
+	long ret;
+	phys_addr_t a, b;
+
+	/* check for overflow */
+	ut_assert(ram_end == 0 || ram_end > ram);
+
+	lmb_init(&lmb);
+
+	ret = lmb_add(&lmb, ram, ram_size);
+	ut_asserteq(ret, 0);
+
+	/* allocate a block */
+	a = lmb_alloc(&lmb, 4, 1);
+	ut_assert(a != 0);
+	/* and free it */
+	ret = lmb_free(&lmb, a, 4);
+	ut_asserteq(ret, 0);
+
+	/* allocate a block with base*/
+	b = lmb_alloc_base(&lmb, 4, 1, ram_end);
+	ut_assert(a == b);
+	/* and free it */
+	ret = lmb_free(&lmb, b, 4);
+	ut_asserteq(ret, 0);
+
+	return 0;
+}
+
+static int lib_test_lmb_noreserved(struct unit_test_state *uts)
+{
+	return test_noreserved(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_noreserved, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/*
+ * Simulate a RAM that starts at 0 and allocate down to address 0, which must
+ * fail as '0' means failure for the lmb_alloc functions.
+ */
+static int lib_test_lmb_at_0(struct unit_test_state *uts)
+{
+	const phys_addr_t ram = 0;
+	const phys_size_t ram_size = 0x20000000;
+	struct lmb lmb;
+	long ret;
+	phys_addr_t a, b;
+
+	lmb_init(&lmb);
+
+	ret = lmb_add(&lmb, ram, ram_size);
+	ut_asserteq(ret, 0);
+
+	/* allocate nearly everything */
+	a = lmb_alloc(&lmb, ram_size - 4, 1);
+	ut_asserteq(a, ram + 4);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+		   0, 0, 0, 0);
+	/* allocate the rest */
+	/* This should fail as the allocated address would be 0 */
+	b = lmb_alloc(&lmb, 4, 1);
+	ut_asserteq(b, 0);
+	/* check that this was an error by checking lmb */
+	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+		   0, 0, 0, 0);
+	/* check that this was an error by freeing b */
+	ret = lmb_free(&lmb, b, 4);
+	ut_asserteq(ret, -1);
+	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+		   0, 0, 0, 0);
+
+	ret = lmb_free(&lmb, a, ram_size - 4);
+	ut_asserteq(ret, 0);
+	ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+	return 0;
+}
+
+DM_TEST(lib_test_lmb_at_0, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
-- 
2.17.1



More information about the U-Boot mailing list