[v1 12/17] ddr: altera: Add SDRAM driver for Intel N5X device
Tan, Ley Foon
ley.foon.tan at intel.com
Wed Apr 14 12:30:18 CEST 2021
> -----Original Message-----
> From: Lim, Elly Siew Chin <elly.siew.chin.lim at intel.com>
> Sent: Wednesday, March 31, 2021 10:39 PM
> To: u-boot at lists.denx.de
> Cc: Marek Vasut <marex at denx.de>; Tan, Ley Foon
> <ley.foon.tan at intel.com>; See, Chin Liang <chin.liang.see at intel.com>;
> Simon Goldschmidt <simon.k.r.goldschmidt at gmail.com>; Chee, Tien Fong
> <tien.fong.chee at intel.com>; Westergreen, Dalon
> <dalon.westergreen at intel.com>; Simon Glass <sjg at chromium.org>; Gan,
> Yau Wai <yau.wai.gan at intel.com>; Lim, Elly Siew Chin
> <elly.siew.chin.lim at intel.com>
> Subject: [v1 12/17] ddr: altera: Add SDRAM driver for Intel N5X device
>
> The DDR subsystem in Diamond Mesa is consisted of controller, PHY,
> memory reset manager and memory clock manager.
>
> Configuration settings of controller, PHY and memory reset manager
> is come from DDR handoff data in bitstream, which contain the register
> base addresses and user settings from Quartus.
>
> Configuration settings of memory clock manager is come from the HPS
> handoff data in bitstream, however the register base address is defined
> in device tree.
>
> The calibration is fully done in HPS, which requires IMEM and DMEM
> binaries loading to PHY SRAM for running this calibration, both
> IMEM and DMEM binaries are also part of bitstream, this bitstream
> would be loaded to OCRAM by SDM, and configured by DDR driver.
>
> Signed-off-by: Siew Chin Lim <elly.siew.chin.lim at intel.com>
> Signed-off-by: Tien Fong Chee <tien.fong.chee at intel.com>
> ---
> arch/arm/mach-socfpga/include/mach/firewall.h | 6 +
> .../include/mach/system_manager_soc64.h | 10 +-
> drivers/ddr/altera/Makefile | 3 +-
> drivers/ddr/altera/sdram_n5x.c | 2316 ++++++++++++++++++++
> drivers/ddr/altera/sdram_soc64.c | 10 +-
> 5 files changed, 2342 insertions(+), 3 deletions(-)
> create mode 100644 drivers/ddr/altera/sdram_n5x.c
[...]
> --- /dev/null
> +++ b/drivers/ddr/altera/sdram_n5x.c
> @@ -0,0 +1,2316 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (C) 2020-2021 Intel Corporation <www.intel.com>
> + *
> + */
> +
> +#include <common.h>
Sorting this.
> +#include <asm/arch/firewall.h>
> +#include <asm/arch/handoff_soc64.h>
> +#include <asm/arch/misc.h>
> +#include <asm/arch/reset_manager.h>
> +#include <asm/arch/system_manager.h>
> +#include <asm/global_data.h>
> +#include <asm/io.h>
> +#include <clk.h>
> +#include <div64.h>
> +#include <dm.h>
> +#include <errno.h>
> +#include <fdtdec.h>
> +#include <hang.h>
> +#include <linux/err.h>
> +#include <linux/sizes.h>
> +#include <ram.h>
> +#include <reset.h>
> +#include "sdram_soc64.h"
> +#include <wait_bit.h>
> +
> +DECLARE_GLOBAL_DATA_PTR;
> +
> +/* MPFE NOC registers */
> +#define FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0
> 0xF8024050
> +
> +/* Memory reset manager */
> +#define MEM_RST_MGR_STATUS 0x8
> +
> +/* Register and bit in memory reset manager */
> +#define MEM_RST_MGR_STATUS_RESET_COMPLETE BIT(0)
> +#define MEM_RST_MGR_STATUS_PWROKIN_STATUS BIT(1)
> +#define MEM_RST_MGR_STATUS_CONTROLLER_RST BIT(2)
> +#define MEM_RST_MGR_STATUS_AXI_RST BIT(3)
> +
> +#define TIMEOUT_200MS 200
> +#define TIMEOUT_5000MS 5000
> +
> +/* DDR4 umctl2 */
> +#define DDR4_MSTR_OFFSET 0x0
> +#define DDR4_FREQ_RATIO BIT(22)
> +
> +#define DDR4_STAT_OFFSET 0x4
> +#define DDR4_STAT_SELFREF_TYPE (BIT(5) | BIT(4))
> +#define DDR4_STAT_SELFREF_TYPE_SHIFT 4
> +#define DDR4_STAT_OPERATING_MODE (BIT(2) | BIT(1) | BIT(0))
> +
> +#define DDR4_MRCTRL0_OFFSET 0x10
> +#define DDR4_MRCTRL0_MR_TYPE BIT(0)
> +#define DDR4_MRCTRL0_MPR_EN BIT(1)
> +#define DDR4_MRCTRL0_MR_RANK (BIT(5) | BIT(4))
> +#define DDR4_MRCTRL0_MR_RANK_SHIFT 4
> +#define DDR4_MRCTRL0_MR_ADDR (BIT(15) | BIT(14) | BIT(13) |
> BIT(12))
This is mask value? If yes, can use GENMASK() macro.
Same for the defines below.
> +#define DDR4_MRCTRL0_MR_ADDR_SHIFT 12
> +#define DDR4_MRCTRL0_MR_WR BIT(31)
> +
> +#define DDR4_MRCTRL1_OFFSET 0x14
> +#define DDR4_MRCTRL1_MR_DATA 0x3FFFF
> +
> +#define DDR4_MRSTAT_OFFSET 0x18
> +#define DDR4_MRSTAT_MR_WR_BUSY BIT(0)
> +
> +#define DDR4_MRCTRL2_OFFSET 0x1C
> +
> +#define DDR4_PWRCTL_OFFSET 0x30
> +#define DDR4_PWRCTL_SELFREF_EN BIT(0)
> +#define DDR4_PWRCTL_POWERDOWN_EN BIT(1)
> +#define DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3)
> +#define DDR4_PWRCTL_SELFREF_SW BIT(5)
> +
> +#define DDR4_PWRTMG_OFFSET 0x34
> +#define DDR4_HWLPCTL_OFFSET 0x38
> +#define DDR4_RFSHCTL0_OFFSET 0x50
> +#define DDR4_RFSHCTL1_OFFSET 0x54
> +
> +#define DDR4_RFSHCTL3_OFFSET 0x60
> +#define DDR4_RFSHCTL3_DIS_AUTO_REFRESH BIT(0)
> +#define DDR4_RFSHCTL3_REFRESH_MODE (BIT(6) | BIT(5) |
> BIT(4))
> +#define DDR4_RFSHCTL3_REFRESH_MODE_SHIFT 4
> +
> +#define DDR4_ECCCFG0_OFFSET 0x70
> +#define DDR4_ECC_MODE (BIT(2) | BIT(1) | BIT(0))
> +#define DDR4_DIS_SCRUB BIT(4)
> +#define LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT 30
> +#define LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT 8
> +
> +#define DDR4_ECCCFG1_OFFSET 0x74
> +#define LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK BIT(4)
> +
> +#define DDR4_CRCPARCTL0_OFFSET 0xC0
> +#define DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR BIT(1)
> +
> +#define DDR4_CRCPARCTL1_OFFSET 0xC4
> +#define DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE BIT(8)
> +#define DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW BIT(9)
> +
> +#define DDR4_CRCPARSTAT_OFFSET 0xCC
> +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT BIT(16)
> +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT BIT(17)
> +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW BIT(19)
> +#define DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW BIT(29)
> +
> +#define DDR4_INIT0_OFFSET 0xD0
> +#define DDR4_INIT0_SKIP_RAM_INIT (BIT(31) | BIT(30))
> +
> +#define DDR4_RANKCTL_OFFSET 0xF4
> +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP (BIT(7) | BIT(6)
> | BIT(5) | \
> + BIT(4))
> +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP (BIT(11) |
> BIT(10) | BIT(9) | \
> + BIT(8))
> +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB BIT(24)
> +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB BIT(26)
> +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT 4
> +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT 8
> +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB_SHIFT 24
> +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB_SHIFT 26
> +
> +#define DDR4_RANKCTL1_OFFSET 0xF8
> +#define DDR4_RANKCTL1_WR2RD_DR (BIT(5) | BIT(4) | BIT(3) |
> BIT(2) | BIT(1) | \
> + BIT(0))
> +
> +#define DDR4_DRAMTMG2_OFFSET 0x108
> +#define DDR4_DRAMTMG2_WR2RD (BIT(5) | BIT(4) | BIT(3) | BIT(2) |
> BIT(1) | \
> + BIT(0))
> +#define DDR4_DRAMTMG2_RD2WR (BIT(13) | BIT(12) | BIT(11) | BIT(10) |
> \
> + BIT(9) | BIT(8))
> +#define DDR4_DRAMTMG2_RD2WR_SHIFT 8
> +
> +#define DDR4_DRAMTMG9_OFFSET 0x124
> +#define DDR4_DRAMTMG9_W2RD_S (BIT(5) | BIT(4) | BIT(3) | BIT(2) |
> BIT(1) | \
> + BIT(0))
> +
> +#define DDR4_DFITMG1_OFFSET 0x194
> +#define DDR4_DFITMG1_DFI_T_WRDATA_DELAY (BIT(20) | BIT(19) |
> BIT(18) | \
> + BIT(17) | BIT(16))
> +#define DDR4_DFITMG1_DFI_T_WRDATA_SHIFT 16
> +
> +#define DDR4_DFIMISC_OFFSET 0x1B0
> +#define DDR4_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0)
> +#define DDR4_DFIMISC_DFI_INIT_START BIT(5)
> +
> +#define DDR4_DFISTAT_OFFSET 0x1BC
> +#define DDR4_DFI_INIT_COMPLETE BIT(0)
> +
> +#define DDR4_DBG0_OFFSET 0x300
> +
> +#define DDR4_DBG1_OFFSET 0x304
> +#define DDR4_DBG1_DISDQ BIT(0)
> +#define DDR4_DBG1_DIS_HIF BIT(1)
> +
> +#define DDR4_DBGCAM_OFFSET 0x308
> +#define DDR4_DBGCAM_DBG_RD_Q_EMPTY BIT(25)
> +#define DDR4_DBGCAM_DBG_WR_Q_EMPTY BIT(26)
> +#define DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY BIT(28)
> +#define DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY BIT(29)
> +
> +#define DDR4_SWCTL_OFFSET 0x320
> +#define DDR4_SWCTL_SW_DONE BIT(0)
> +
> +#define DDR4_SWSTAT_OFFSET 0x324
> +#define DDR4_SWSTAT_SW_DONE_ACK BIT(0)
> +
> +#define DDR4_PSTAT_OFFSET 0x3FC
> +#define DDR4_PSTAT_RD_PORT_BUSY_0 BIT(0)
> +#define DDR4_PSTAT_WR_PORT_BUSY_0 BIT(16)
> +
> +#define DDR4_PCTRL0_OFFSET 0x490
> +#define DDR4_PCTRL0_PORT_EN BIT(0)
> +
> +#define DDR4_SBRCTL_OFFSET 0xF24
> +#define DDR4_SBRCTL_SCRUB_INTERVAL 0x1FFF00
> +#define DDR4_SBRCTL_SCRUB_EN BIT(0)
> +#define DDR4_SBRCTL_SCRUB_WRITE BIT(2)
> +#define DDR_SBRCTL_SCRUB_BURST_1 BIT(4)
This should be "DDR4" prefix?
> +
> +#define DDR4_SBRSTAT_OFFSET 0xF28
> +#define DDR4_SBRSTAT_SCRUB_BUSY BIT(0)
> +#define DDR4_SBRSTAT_SCRUB_DONE BIT(1)
> +
> +#define DDR4_SBRWDATA0_OFFSET 0xF2C
> +#define DDR4_SBRWDATA1_OFFSET 0xF30
> +#define DDR4_SBRSTART0_OFFSET 0xF38
> +#define DDR4_SBRSTART1_OFFSET 0xF3C
> +#define DDR4_SBRRANGE0_OFFSET 0xF40
> +#define DDR4_SBRRANGE1_OFFSET 0xF44
> +
> +/* DDR PHY */
> +#define DDR_PHY_TXODTDRVSTREN_B0_P0 0x2009A
> +#define DDR_PHY_RXPBDLYTG0_R0 0x200D0
> +#define DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0 0x201A0
> +
> +#define DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0 0x203A0
> +#define DDR_PHY_DBYTE1_TXDQDLYTG0_U0_P0 0x221A0
> +#define DDR_PHY_DBYTE1_TXDQDLYTG0_U1_P0 0x223A0
> +#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY (BIT(9) | BIT(8) | BIT(7)
> | BIT(6))
> +#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT 6
> +
> +#define DDR_PHY_CALRATE_OFFSET 0x40110
> +#define DDR_PHY_CALZAP_OFFSET 0x40112
> +#define DDR_PHY_SEQ0BDLY0_P0_OFFSET 0x40016
> +#define DDR_PHY_SEQ0BDLY1_P0_OFFSET 0x40018
> +#define DDR_PHY_SEQ0BDLY2_P0_OFFSET 0x4001A
> +#define DDR_PHY_SEQ0BDLY3_P0_OFFSET 0x4001C
> +
> +#define DDR_PHY_MEMRESETL_OFFSET 0x400C0
> +#define DDR_PHY_MEMRESETL_VALUE BIT(0)
> +#define DDR_PHY_PROTECT_MEMRESET BIT(1)
> +
> +#define DDR_PHY_CALBUSY_OFFSET 0x4012E
> +#define DDR_PHY_CALBUSY BIT(0)
> +
> +#define DDR_PHY_TRAIN_IMEM_OFFSET 0xA0000
> +#define DDR_PHY_TRAIN_DMEM_OFFSET 0xA8000
> +
> +#define DMEM_MB_CDD_RR_1_0_OFFSET 0xA802C
> +#define DMEM_MB_CDD_RR_0_1_OFFSET 0xA8030
> +#define DMEM_MB_CDD_WW_1_0_OFFSET 0xA8038
> +#define DMEM_MB_CDD_WW_0_1_OFFSET 0xA803C
> +#define DMEM_MB_CDD_RW_1_1_OFFSET 0xA8046
> +#define DMEM_MB_CDD_RW_1_0_OFFSET 0xA8048
> +#define DMEM_MB_CDD_RW_0_1_OFFSET 0xA804A
> +#define DMEM_MB_CDD_RW_0_0_OFFSET 0xA804C
> +
> +#define DMEM_MB_CDD_CHA_RR_1_0_OFFSET 0xA8026
> +#define DMEM_MB_CDD_CHA_RR_0_1_OFFSET 0xA8026
> +#define DMEM_MB_CDD_CHB_RR_1_0_OFFSET 0xA8058
> +#define DMEM_MB_CDD_CHB_RR_0_1_OFFSET 0xA805A
> +#define DMEM_MB_CDD_CHA_WW_1_0_OFFSET 0xA8030
> +#define DMEM_MB_CDD_CHA_WW_0_1_OFFSET 0xA8030
> +#define DMEM_MB_CDD_CHB_WW_1_0_OFFSET 0xA8062
> +#define DMEM_MB_CDD_CHB_WW_0_1_OFFSET 0xA8064
> +
> +#define DMEM_MB_CDD_CHA_RW_1_1_OFFSET 0xA8028
> +#define DMEM_MB_CDD_CHA_RW_1_0_OFFSET 0xA8028
> +#define DMEM_MB_CDD_CHA_RW_0_1_OFFSET 0xA802A
> +#define DMEM_MB_CDD_CHA_RW_0_0_OFFSET 0xA802A
> +
> +#define DMEM_MB_CDD_CHB_RW_1_1_OFFSET 0xA805A
> +#define DMEM_MB_CDD_CHB_RW_1_0_OFFSET 0xA805C
> +#define DMEM_MB_CDD_CHB_RW_0_1_OFFSET 0xA805c
> +#define DMEM_MB_CDD_CHB_RW_0_0_OFFSET 0xA805E
> +
> +#define DDR_PHY_SEQ0DISABLEFLAG0_OFFSET 0x120018
> +#define DDR_PHY_SEQ0DISABLEFLAG1_OFFSET 0x12001A
> +#define DDR_PHY_SEQ0DISABLEFLAG2_OFFSET 0x12001C
> +#define DDR_PHY_SEQ0DISABLEFLAG3_OFFSET 0x12001E
> +#define DDR_PHY_SEQ0DISABLEFLAG4_OFFSET 0x120020
> +#define DDR_PHY_SEQ0DISABLEFLAG5_OFFSET 0x120022
> +#define DDR_PHY_SEQ0DISABLEFLAG6_OFFSET 0x120024
> +#define DDR_PHY_SEQ0DISABLEFLAG7_OFFSET 0x120026
> +
> +#define DDR_PHY_UCCLKHCLKENABLES_OFFSET 0x180100
> +#define DDR_PHY_UCCLKHCLKENABLES_UCCLKEN BIT(0)
> +#define DDR_PHY_UCCLKHCLKENABLES_HCLKEN BIT(1)
> +
> +#define DDR_PHY_UCTWRITEPROT_OFFSET 0x180066
> +#define DDR_PHY_UCTWRITEPROT BIT(0)
> +
> +#define DDR_PHY_APBONLY0_OFFSET 0x1A0000
> +#define DDR_PHY_MICROCONTMUXSEL BIT(0)
> +
> +#define DDR_PHY_UCTSHADOWREGS_OFFSET
> 0x1A0008
> +#define DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW BIT(0)
> +
> +#define DDR_PHY_DCTWRITEPROT_OFFSET 0x1A0062
> +#define DDR_PHY_DCTWRITEPROT BIT(0)
> +
> +#define DDR_PHY_UCTWRITEONLYSHADOW_OFFSET 0x1A0064
> +#define DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET 0x1A0068
> +
> +#define DDR_PHY_MICRORESET_OFFSET 0x1A0132
> +#define DDR_PHY_MICRORESET_STALL BIT(0)
> +#define DDR_PHY_MICRORESET_RESET BIT(3)
> +
> +#define DDR_PHY_TXODTDRVSTREN_B0_P1 0x22009A
> +
> +/* For firmware training */
> +#define HW_DBG_TRACE_CONTROL_OFFSET 0x18
> +#define FW_TRAINING_COMPLETED_STAT 0x07
> +#define FW_TRAINING_FAILED_STAT 0xFF
> +#define FW_COMPLETION_MSG_ONLY_MODE 0xFF
> +#define FW_STREAMING_MSG_ID 0x08
> +#define GET_LOWHW_DATA(x) ((x) & 0xFFFF)
> +#define GET_LOWB_DATA(x) ((x) & 0xFF)
> +#define GET_HIGHB_DATA(x) (((x) & 0xFF00) >> 8)
> +
> +/* Operating mode */
> +#define INIT_OPM 0x000
> +#define NORMAL_OPM 0x001
> +#define PWR_D0WN_OPM 0x010
> +#define SELF_SELFREF_OPM 0x011
> +#define DDR4_DEEP_PWR_DOWN_OPM 0x100
> +
> +/* Refresh mode */
> +#define FIXED_1X 0
> +#define FIXED_2X BIT(0)
> +#define FIXED_4X BIT(4)
> +
> +/* Address of mode register */
> +#define MR0 0x0000
> +#define MR1 0x0001
> +#define MR2 0x0010
> +#define MR3 0x0011
> +#define MR4 0x0100
> +#define MR5 0x0101
> +#define MR6 0x0110
> +#define MR7 0x0111
> +
> +/* MR rank */
> +#define RANK0 0x1
> +#define RANK1 0x2
> +#define ALL_RANK 0x3
> +
> +#define MR5_BIT4 BIT(4)
> +
> +/* Value for ecc_region_map */
> +#define ALL_PROTECTED 0x7F
> +
> +/* Region size for ECCCFG0.ecc_region_map */
> +enum region_size {
> + ONE_EIGHT,
> + ONE_SIXTEENTH,
> + ONE_THIRTY_SECOND,
> + ONE_SIXTY_FOURTH
> +};
> +
> +enum ddr_type {
> + DDRTYPE_LPDDR4_0,
> + DDRTYPE_LPDDR4_1,
> + DDRTYPE_DDR4,
> + DDRTYPE_UNKNOWN
> +};
> +
> +/* DDR handoff structure */
> +struct ddr_handoff {
> + /* Memory reset manager base */
> + phys_addr_t mem_reset_base;
> +
> + /* First controller attributes */
> + phys_addr_t cntlr_handoff_base;
> + phys_addr_t cntlr_base;
> + size_t cntlr_total_length;
> + enum ddr_type cntlr_t;
> + size_t cntlr_handoff_length;
> +
> + /* Second controller attributes*/
> + phys_addr_t cntlr2_handoff_base;
> + phys_addr_t cntlr2_base;
> + size_t cntlr2_total_length;
> + enum ddr_type cntlr2_t;
> + size_t cntlr2_handoff_length;
> +
> + /* PHY attributes */
> + phys_addr_t phy_handoff_base;
> + phys_addr_t phy_base;
> + size_t phy_total_length;
> + size_t phy_handoff_length;
> +
> + /* PHY engine attributes */
> + phys_addr_t phy_engine_handoff_base;
> + size_t phy_engine_total_length;
> + size_t phy_engine_handoff_length;
> +
> + /* Calibration attributes */
> + phys_addr_t train_imem_base;
> + phys_addr_t train_dmem_base;
> + size_t train_imem_length;
> + size_t train_dmem_length;
> +};
> +
> +/* Message mode */
> +enum message_mode {
> + MAJOR_MESSAGE,
> + STREAMING_MESSAGE
> +};
> +
> +static int clr_ca_parity_error_status(phys_addr_t umctl2_base)
> +{
> + int ret;
> +
> + debug("%s: Clear C/A parity error status in MR5[4]\n", __func__);
> +
> + /* Set mode register MRS */
> + clrbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
> DDR4_MRCTRL0_MPR_EN);
> +
> + /* Set mode register to write operation */
> + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
> DDR4_MRCTRL0_MR_TYPE);
> +
> + /* Set the address of mode rgister to 0x101(MR5) */
> + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
> + (MR5 << DDR4_MRCTRL0_MR_ADDR_SHIFT) &
> + DDR4_MRCTRL0_MR_ADDR);
> +
> + /* Set MR rank to rank 1 */
> + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
> + (RANK1 << DDR4_MRCTRL0_MR_RANK_SHIFT) &
> + DDR4_MRCTRL0_MR_RANK);
> +
> + /* Clear C/A parity error status in MR5[4] */
> + clrbits_le32(umctl2_base + DDR4_MRCTRL1_OFFSET, MR5_BIT4);
> +
> + /* Trigger mode register read or write operation */
> + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
> DDR4_MRCTRL0_MR_WR);
> +
> + /* Wait for retry done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_MRSTAT_OFFSET),
> DDR4_MRSTAT_MR_WR_BUSY,
> + false, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" no outstanding MR transaction\n");
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static int ddr_retry_software_sequence(phys_addr_t umctl2_base)
> +{
> + u32 value;
> + int ret;
> +
> + /* Check software can perform MRS/MPR/PDA? */
> + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
> + DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW;
> +
> + if (value) {
> + debug("%s: Software can't perform MRS/MPR/PDA\n",
> __func__);
> +
> + /* Clear interrupt bit for DFI alert error */
> + setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
> + DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
> +
> + /* Wait for retry done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_MRSTAT_OFFSET),
> + DDR4_MRSTAT_MR_WR_BUSY,
> + false, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" no outstanding MR transaction\n");
> + return ret;
> + }
> +
> + if (clr_ca_parity_error_status(umctl2_base))
> + return ret;
Should return return value from clr_ca_parity_error_status()?
> + } else {
> + debug("%s: Software can perform MRS/MPR/PDA\n",
> __func__);
> +
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_MRSTAT_OFFSET),
> + DDR4_MRSTAT_MR_WR_BUSY,
> + false, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" no outstanding MR transaction\n");
> + return ret;
> + }
> +
> + if (clr_ca_parity_error_status(umctl2_base))
> + return ret;
Same here.
> +
> + /* Clear interrupt bit for DFI alert error */
> + setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
> + DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
> + }
Can combine if...else ?
> +
> + return 0;
> +}
> +
> +static int ensure_retry_procedure_complete(phys_addr_t umctl2_base)
> +{
> + u32 value;
> + u32 start = get_timer(0);
> + int ret;
> +
> + /* Check parity/crc/error window is emptied ? */
> + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
> + DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;
> +
> + /* Polling until parity/crc/error window is emptied */
> + while (value) {
> + if (get_timer(start) > TIMEOUT_200MS) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" parity/crc/error window empty\n");
> + return -ETIMEDOUT;
> + }
> +
> + /* Check software intervention is enabled? */
> + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
> + DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW;
> + if (value) {
> + debug("%s: Software intervention is enabled\n",
> + __func__);
> +
> + /* Check dfi alert error interrupt is set? */
> + value = readl(umctl2_base +
> DDR4_CRCPARSTAT_OFFSET) &
> + DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT;
> +
> + if (value) {
> + ret =
> ddr_retry_software_sequence(umctl2_base);
> + debug("%s: DFI alert error interrupt ",
> + __func__);
> + debug("is set\n");
> +
> + if (ret)
> + return ret;
> + }
> +
> + /*
> + * Check fatal parity error interrupt is set?
> + */
> + value = readl(umctl2_base +
> DDR4_CRCPARSTAT_OFFSET) &
> +
> DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT;
> + if (value) {
> + printf("%s: Fatal parity error ",
> + __func__);
> + printf("interrupt is set, Hang it!!\n");
> + hang();
> + }
> + }
> +
> + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
> + DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;
> +
> + udelay(1);
> + WATCHDOG_RESET();
> + }
> +
> + return 0;
> +}
> +
> +static int enable_quasi_dynamic_reg_grp3(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + u32 i, value, backup;
> + int ret;
> +
> + /* Disable input traffic per port */
> + clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET,
> DDR4_PCTRL0_PORT_EN);
> +
> + /* Polling AXI port until idle */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_PSTAT_OFFSET),
> + DDR4_PSTAT_WR_PORT_BUSY_0 |
> + DDR4_PSTAT_RD_PORT_BUSY_0, false,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" controller idle\n");
> + return ret;
> + }
> +
> + /* Backup user setting */
> + backup = readl(umctl2_base + DDR4_DBG1_OFFSET);
> +
> + /* Disable input traffic to the controller */
> + setbits_le32(umctl2_base + DDR4_DBG1_OFFSET,
> DDR4_DBG1_DIS_HIF);
> +
> + /*
> + * Ensure CAM/data pipelines are empty.
> + * Poll until CAM/data pipelines are set at least twice,
> + * timeout at 200ms
> + */
> + for (i = 0; i < 2; i++) {
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_DBGCAM_OFFSET),
> +
> DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY |
> +
> DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY |
> + DDR4_DBGCAM_DBG_WR_Q_EMPTY
> |
> + DDR4_DBGCAM_DBG_RD_Q_EMPTY,
> true,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: loop(%u): Timeout while waiting for",
> + __func__, i + 1);
> + debug(" CAM/data pipelines are empty\n");
> +
> + /* Restore user setting */
> + writel(backup, umctl2_base + DDR4_DBG1_OFFSET);
> +
Can use goto, go route to same exit path that include restore user setting.
> + return ret;
> + }
> + }
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + /* Check DDR4 retry is enabled ? */
> + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
> + DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;
> +
> + if (value) {
> + debug("%s: DDR4 retry is enabled\n", __func__);
> +
> + ret =
> ensure_retry_procedure_complete(umctl2_base);
> + if (ret) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" retry procedure complete\n");
> +
> + /* Restore user setting */
> + writel(backup, umctl2_base +
> DDR4_DBG1_OFFSET);
Same here.
> +
> + return ret;
> + }
> + }
> + }
> +
> + /* Restore user setting */
> + writel(backup, umctl2_base + DDR4_DBG1_OFFSET);
> +
> + debug("%s: Quasi-dynamic group 3 registers are enabled\n",
> __func__);
> +
> + return 0;
> +}
> +
> +static enum ddr_type get_ddr_type(phys_addr_t ddr_type_location)
> +{
> + u32 ddr_type_magic = readl(ddr_type_location);
> +
> + if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_DDR4_TYPE)
> + return DDRTYPE_DDR4;
> +
> + if (ddr_type_magic ==
> SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_0_TYPE)
> + return DDRTYPE_LPDDR4_0;
> +
> + if (ddr_type_magic ==
> SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_1_TYPE)
> + return DDRTYPE_LPDDR4_1;
> +
> + return DDRTYPE_UNKNOWN;
> +}
> +
> +static void use_lpddr4_interleaving(bool set)
> +{
> + if (set) {
> + printf("Starting LPDDR4 interleaving configuration ...\n");
> +
> setbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUT
> SET0,
> + BIT(5));
> + } else {
> + printf("Starting LPDDR4 non-interleaving configuration ...\n");
> +
> clrbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTS
> ET0,
> + BIT(5));
> + }
> +}
> +
> +static void use_ddr4(enum ddr_type type)
> +{
> + if (type == DDRTYPE_DDR4) {
> + printf("Starting DDR4 configuration ...\n");
> + setbits_le32(socfpga_get_sysmgr_addr() +
> SYSMGR_SOC64_DDR_MODE,
> + SYSMGR_SOC64_DDR_MODE_MSK);
> + } else if (type == DDRTYPE_LPDDR4_0) {
> + printf("Starting LPDDR4 configuration ...\n");
> + clrbits_le32(socfpga_get_sysmgr_addr() +
> SYSMGR_SOC64_DDR_MODE,
> + SYSMGR_SOC64_DDR_MODE_MSK);
> +
> + use_lpddr4_interleaving(false);
> + }
> +}
> +
> +static int scrubber_ddr_config(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + u32 backup[9];
> + int ret;
> +
> + /* Reset to default value, prevent scrubber stop due to lower power
> */
> + writel(0, umctl2_base + DDR4_PWRCTL_OFFSET);
> +
> + /* Backup user settings */
> + backup[0] = readl(umctl2_base + DDR4_SBRCTL_OFFSET);
> + backup[1] = readl(umctl2_base + DDR4_SBRWDATA0_OFFSET);
> + backup[2] = readl(umctl2_base + DDR4_SBRSTART0_OFFSET);
> + if (umctl2_type == DDRTYPE_DDR4) {
> + backup[3] = readl(umctl2_base +
> DDR4_SBRWDATA1_OFFSET);
> + backup[4] = readl(umctl2_base + DDR4_SBRSTART1_OFFSET);
> + }
> + backup[5] = readl(umctl2_base + DDR4_SBRRANGE0_OFFSET);
> + backup[6] = readl(umctl2_base + DDR4_SBRRANGE1_OFFSET);
> + backup[7] = readl(umctl2_base + DDR4_ECCCFG0_OFFSET);
> + backup[8] = readl(umctl2_base + DDR4_ECCCFG1_OFFSET);
> +
> + if (umctl2_type != DDRTYPE_DDR4) {
> + /* Lock ECC region, ensure this regions is not being accessed
> */
> + setbits_le32(umctl2_base + DDR4_ECCCFG1_OFFSET,
> + LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK);
> + }
> + /* Disable input traffic per port */
> + clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET,
> DDR4_PCTRL0_PORT_EN);
> + /* Disables scrubber */
> + clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
> DDR4_SBRCTL_SCRUB_EN);
> + /* Polling all scrub writes data have been sent */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SBRSTAT_OFFSET),
> DDR4_SBRSTAT_SCRUB_BUSY,
> + false, TIMEOUT_5000MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" sending all scrub data\n");
> + return ret;
> + }
> +
> + /* LPDDR4 supports inline ECC only */
> + if (umctl2_type != DDRTYPE_DDR4) {
> + /*
> + * Setting all regions for protected, this is required for
> + * srubber to init whole LPDDR4 expect ECC region
> + */
> + writel(((ONE_EIGHT <<
> + LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT) |
> + (ALL_PROTECTED <<
> LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT)),
> + umctl2_base + DDR4_ECCCFG0_OFFSET);
> + }
> +
> + /* Scrub_burst = 1, scrub_mode = 1(performs writes) */
> + writel(DDR_SBRCTL_SCRUB_BURST_1 |
> DDR4_SBRCTL_SCRUB_WRITE,
> + umctl2_base + DDR4_SBRCTL_OFFSET);
> +
> + /* Zeroing whole DDR */
> + writel(0, umctl2_base + DDR4_SBRWDATA0_OFFSET);
> + writel(0, umctl2_base + DDR4_SBRSTART0_OFFSET);
> + if (umctl2_type == DDRTYPE_DDR4) {
> + writel(0, umctl2_base + DDR4_SBRWDATA1_OFFSET);
> + writel(0, umctl2_base + DDR4_SBRSTART1_OFFSET);
> + }
> + writel(0, umctl2_base + DDR4_SBRRANGE0_OFFSET);
> + writel(0, umctl2_base + DDR4_SBRRANGE1_OFFSET);
> +
> + /* Enables scrubber */
> + setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
> DDR4_SBRCTL_SCRUB_EN);
> + /* Polling all scrub writes commands have been sent */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SBRSTAT_OFFSET),
> DDR4_SBRSTAT_SCRUB_DONE,
> + true, TIMEOUT_5000MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" sending all scrub commands\n");
> + return ret;
> + }
> +
> + /* Polling all scrub writes data have been sent */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SBRSTAT_OFFSET),
> DDR4_SBRSTAT_SCRUB_BUSY,
> + false, TIMEOUT_5000MS, false);
> + if (ret) {
> + printf("%s: Timeout while waiting for", __func__);
> + printf(" sending all scrub data\n");
> + return ret;
> + }
> +
> + /* Disables scrubber */
> + clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
> DDR4_SBRCTL_SCRUB_EN);
> +
> + /* Restore user settings */
> + writel(backup[0], umctl2_base + DDR4_SBRCTL_OFFSET);
> + writel(backup[1], umctl2_base + DDR4_SBRWDATA0_OFFSET);
> + writel(backup[2], umctl2_base + DDR4_SBRSTART0_OFFSET);
> + if (umctl2_type == DDRTYPE_DDR4) {
> + writel(backup[3], umctl2_base +
> DDR4_SBRWDATA1_OFFSET);
> + writel(backup[4], umctl2_base + DDR4_SBRSTART1_OFFSET);
> + }
> + writel(backup[5], umctl2_base + DDR4_SBRRANGE0_OFFSET);
> + writel(backup[6], umctl2_base + DDR4_SBRRANGE1_OFFSET);
> + writel(backup[7], umctl2_base + DDR4_ECCCFG0_OFFSET);
> + writel(backup[8], umctl2_base + DDR4_ECCCFG1_OFFSET);
> +
> + /* Enables ECC scrub on scrubber */
> + if (!(readl(umctl2_base + DDR4_SBRCTL_OFFSET) &
> + DDR4_SBRCTL_SCRUB_WRITE)) {
> + /* Enables scrubber */
> + setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
> + DDR4_SBRCTL_SCRUB_EN);
> + }
> +
> + return 0;
> +}
> +
> +static int init_umctl2(phys_addr_t umctl2_handoff_base,
> + phys_addr_t umctl2_base, enum ddr_type umctl2_type,
> + size_t umctl2_handoff_length,
> + u32 *user_backup)
> +{
> + u32 handoff_table[umctl2_handoff_length];
> + u32 i;
> + int ret;
> +
> + if (umctl2_type == DDRTYPE_DDR4)
> + printf("Initializing DDR4 controller ...\n");
> + else if (umctl2_type == DDRTYPE_LPDDR4_0)
> + printf("Initializing LPDDR4_0 controller ...\n");
> + else if (umctl2_type == DDRTYPE_LPDDR4_1)
> + printf("Initializing LPDDR4_1 controller ...\n");
> +
> + /* Prevent controller from issuing read/write to SDRAM */
> + setbits_le32(umctl2_base + DDR4_DBG1_OFFSET,
> DDR4_DBG1_DISDQ);
> +
> + /* Put SDRAM into self-refresh */
> + setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
> DDR4_PWRCTL_SELFREF_EN);
> +
> + /* Enable quasi-dynamic programing of the controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Ensure the controller is in initialization mode */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> DDR4_STAT_OFFSET),
> + DDR4_STAT_OPERATING_MODE, false,
> TIMEOUT_200MS,
> + false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" init operating mode\n");
> + return ret;
> + }
> +
> + debug("%s: UMCTL2 handoff base address = 0x%p table length =
> 0x%08x\n",
> + __func__, (u32 *)umctl2_handoff_base,
> + (u32)umctl2_handoff_length);
> +
> + socfpga_handoff_read((void *)umctl2_handoff_base, handoff_table,
> + umctl2_handoff_length, LITTLE_ENDIAN);
> +
> + for (i = 0; i < umctl2_handoff_length; i = i + 2) {
> + debug("%s: Absolute addr: 0x%08llx APB offset: 0x%08x",
> + __func__, handoff_table[i] + umctl2_base,
> + handoff_table[i]);
> + debug(" wr = 0x%08x ", handoff_table[i + 1]);
> +
> + writel(handoff_table[i + 1], (uintptr_t)(handoff_table[i] +
> + umctl2_base));
> +
> + debug("rd = 0x%08x\n", readl((uintptr_t)(handoff_table[i] +
> + umctl2_base)));
> + }
> +
> + /* Backup user settings, restore after DDR up running */
> + *user_backup = readl(umctl2_base + DDR4_PWRCTL_OFFSET);
> +
> + /* Disable self resfresh */
> + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
> DDR4_PWRCTL_SELFREF_EN);
> +
> + if (umctl2_type == DDRTYPE_LPDDR4_0 ||
> + umctl2_type == DDRTYPE_LPDDR4_1) {
> + /* Setting selfref_sw to 1, based on lpddr4 requirement */
> + setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
> + DDR4_PWRCTL_SELFREF_SW);
> +
> + /* Backup user settings, restore after DDR up running */
> + user_backup++;
> + *user_backup = readl(umctl2_base + DDR4_INIT0_OFFSET) &
> + DDR4_INIT0_SKIP_RAM_INIT;
> +
> + /*
> + * Setting INIT0.skip_dram_init to 0x3, based on lpddr4
> + * requirement
> + */
> + setbits_le32(umctl2_base + DDR4_INIT0_OFFSET,
> + DDR4_INIT0_SKIP_RAM_INIT);
> + }
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Enable controller from issuing read/write to SDRAM */
> + clrbits_le32(umctl2_base + DDR4_DBG1_OFFSET,
> DDR4_DBG1_DISDQ);
> +
> + return 0;
> +}
> +
> +static int phy_pre_handoff_config(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret;
> + u32 value;
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + /* Check DDR4 retry is enabled ? */
> + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
> + DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;
> +
> + if (value) {
> + debug("%s: DDR4 retry is enabled\n", __func__);
> + debug("%s: Disable auto refresh is not supported\n",
> + __func__);
> + } else {
> + /* Disable auto refresh */
> + setbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
> + DDR4_RFSHCTL3_DIS_AUTO_REFRESH);
> + }
> + }
> +
> + /* Disable selfref_en & powerdown_en, nvr disable dfi dram clk */
> + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
> + DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE |
> + DDR4_PWRCTL_POWERDOWN_EN |
> DDR4_PWRCTL_SELFREF_EN);
> +
> + /* Enable quasi-dynamic programing of the controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
> + if (ret)
> + return ret;
> +
> + /* Masking dfi init complete */
> + clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
> + DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Polling programming done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SWSTAT_OFFSET),
> DDR4_SWSTAT_SW_DONE_ACK,
> + true, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" programming done\n");
> + }
> +
> + return ret;
> +}
> +
> +static int init_phy(struct ddr_handoff *ddr_handoff_info)
> +{
> + u32 handoff_table[ddr_handoff_info->phy_handoff_length];
> + u32 i, value;
> + int ret;
> +
> + printf("Initializing DDR PHY ...\n");
> +
> + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
> + ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
> + ret = phy_pre_handoff_config(ddr_handoff_info-
> >cntlr_base,
> + ddr_handoff_info->cntlr_t);
> + if (ret)
> + return ret;
> + }
> +
> + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
If it is DDRTYPE_DDR4 Or DDRTYPE_LPDDR4_0, it shouldn't DDRTYPE_LPDDR4_1 anymore?
If yes, then can use "if...else".
> + ret = phy_pre_handoff_config
> + (ddr_handoff_info->cntlr2_base,
> + ddr_handoff_info->cntlr2_t);
> + if (ret)
> + return ret;
> + }
> +
> + /* Execute PHY configuration handoff */
> + socfpga_handoff_read((void *)ddr_handoff_info-
> >phy_handoff_base,
> + handoff_table,
> + (u32)ddr_handoff_info->phy_handoff_length,
> + LITTLE_ENDIAN);
> +
> + for (i = 0; i < ddr_handoff_info->phy_handoff_length; i = i + 2) {
> + /*
> + * Convert PHY odd offset to even offset that supported by
> + * ARM processor.
> + */
> + value = handoff_table[i] << 1;
> + debug("%s: Absolute addr: 0x%08llx, APB offset: 0x%08x ",
> + __func__, value + ddr_handoff_info->phy_base, value);
> + debug("PHY offset: 0x%08x", handoff_table[i]);
> + debug(" wr = 0x%08x ", handoff_table[i + 1]);
> + writew(handoff_table[i + 1], (uintptr_t)(value +
> + ddr_handoff_info->phy_base));
> + debug("rd = 0x%08x\n", readw((uintptr_t)(value +
> + ddr_handoff_info->phy_base)));
> + }
> +
> + printf("DDR PHY configuration is completed\n");
> +
> + return 0;
> +}
> +
> +static void phy_init_engine(struct ddr_handoff *handoff)
> +{
> + u32 i, value;
> + u32 handoff_table[handoff->phy_engine_handoff_length];
> +
> + printf("Load PHY Init Engine ...\n");
> +
> + /* Execute PIE production code handoff */
> + socfpga_handoff_read((void *)handoff->phy_engine_handoff_base,
> + handoff_table,
> + (u32)handoff->phy_engine_handoff_length,
> + LITTLE_ENDIAN);
> +
> + for (i = 0; i < handoff->phy_engine_handoff_length; i = i + 2) {
> + debug("Handoff addr: 0x%8llx ", handoff_table[i] +
> + handoff->phy_base);
> +
> + /*
> + * Convert PHY odd offset to even offset that supported by
> + * ARM processor.
> + */
> + value = handoff_table[i] << 1;
> + debug("%s: Absolute addr: 0x%08llx, APB offset: 0x%08x ",
> + __func__, value + handoff->phy_base, value);
> + debug("PHY offset: 0x%08x", handoff_table[i]);
> + debug(" wr = 0x%08x ", handoff_table[i + 1]);
> +
> + writew(handoff_table[i + 1], (uintptr_t)(value +
> + handoff->phy_base));
> +
> + debug("rd = 0x%08x\n", readw((uintptr_t)(value +
> + handoff->phy_base)));
> + }
> +
> + printf("End of loading PHY Init Engine\n");
> +}
> +
> +int populate_ddr_handoff(struct ddr_handoff *handoff)
> +{
> + phys_addr_t next_section_header;
> +
> + /* DDR handoff */
> + handoff->mem_reset_base =
> SOC64_HANDOFF_DDR_MEMRESET_BASE;
> + debug("%s: DDR memory reset base = 0x%x\n", __func__,
> + (u32)handoff->mem_reset_base);
> + debug("%s: DDR memory reset address = 0x%x\n", __func__,
> + readl(handoff->mem_reset_base));
> +
> + /* Beginning of DDR controller handoff */
> + handoff->cntlr_handoff_base =
> SOC64_HANDOFF_DDR_UMCTL2_SECTION;
> + debug("%s: cntlr handoff base = 0x%x\n", __func__,
> + (u32)handoff->cntlr_handoff_base);
> +
> + /* Get 1st DDR type */
> + handoff->cntlr_t = get_ddr_type(handoff->cntlr_handoff_base +
> +
> SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
> + if (handoff->cntlr_t == DDRTYPE_LPDDR4_1 ||
> + handoff->cntlr_t == DDRTYPE_UNKNOWN) {
> + debug("%s: Wrong DDR handoff format, the 1st DDR ",
> __func__);
> + debug("type must be DDR4 or LPDDR4_0\n");
> + return -ENOEXEC;
> + }
> +
> + /* 1st cntlr base physical address */
> + handoff->cntlr_base = readl(handoff->cntlr_handoff_base +
> +
> SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
> + debug("%s: cntlr base = 0x%x\n", __func__, (u32)handoff-
> >cntlr_base);
> +
> + /* Get the total length of DDR cntlr handoff section */
> + handoff->cntlr_total_length = readl(handoff->cntlr_handoff_base +
> +
> SOC64_HANDOFF_OFFSET_LENGTH);
> + debug("%s: Umctl2 total length in byte = 0x%x\n", __func__,
> + (u32)handoff->cntlr_total_length);
> +
> + /* Get the length of user setting data in DDR cntlr handoff section */
> + handoff->cntlr_handoff_length = socfpga_get_handoff_size((void *)
> + handoff-
> >cntlr_handoff_base,
> + LITTLE_ENDIAN);
> + debug("%s: Umctl2 handoff length in word(32-bit) = 0x%x\n",
> __func__,
> + (u32)handoff->cntlr_handoff_length);
> +
> + /* Wrong format on user setting data */
> + if (handoff->cntlr_handoff_length < 0) {
> + debug("%s: Wrong format on user setting data\n",
> __func__);
> + return -ENOEXEC;
> + }
> +
> + /* Get the next handoff section address */
> + next_section_header = handoff->cntlr_handoff_base +
> + handoff->cntlr_total_length;
> + debug("%s: Next handoff section header location = 0x%llx\n",
> __func__,
> + next_section_header);
> +
> + /*
> + * Checking next section handoff is cntlr or PHY, and changing
> + * subsequent implementation accordingly
> + */
> + if (readl(next_section_header) ==
> SOC64_HANDOFF_DDR_UMCTL2_MAGIC) {
> + /* Get the next cntlr handoff section address */
> + handoff->cntlr2_handoff_base = next_section_header;
> + debug("%s: umctl2 2nd handoff base = 0x%x\n", __func__,
> + (u32)handoff->cntlr2_handoff_base);
> +
> + /* Get 2nd DDR type */
> + handoff->cntlr2_t = get_ddr_type(handoff-
> >cntlr2_handoff_base +
> +
> SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
> + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_0 ||
> + handoff->cntlr2_t == DDRTYPE_UNKNOWN) {
> + debug("%s: Wrong DDR handoff format, the 2nd DDR
> ",
> + __func__);
> + debug("type must be LPDDR4_1\n");
> + return -ENOEXEC;
> + }
> +
> + /* 2nd umctl2 base physical address */
> + handoff->cntlr2_base =
> + readl(handoff->cntlr2_handoff_base +
> +
> SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
> + debug("%s: cntlr2 base = 0x%x\n", __func__,
> + (u32)handoff->cntlr2_base);
> +
> + /* Get the total length of 2nd DDR umctl2 handoff section */
> + handoff->cntlr2_total_length =
> + readl(handoff->cntlr2_handoff_base +
> + SOC64_HANDOFF_OFFSET_LENGTH);
> + debug("%s: Umctl2_2nd total length in byte = 0x%x\n",
> __func__,
> + (u32)handoff->cntlr2_total_length);
> +
> + /*
> + * Get the length of user setting data in DDR umctl2 handoff
> + * section
> + */
> + handoff->cntlr2_handoff_length =
> + socfpga_get_handoff_size((void *)
> + handoff-
> >cntlr2_handoff_base,
> + LITTLE_ENDIAN);
> + debug("%s: cntlr2 handoff length in word(32-bit) = 0x%x\n",
> + __func__,
> + (u32)handoff->cntlr2_handoff_length);
> +
> + /* Wrong format on user setting data */
> + if (handoff->cntlr2_handoff_length < 0) {
> + debug("%s: Wrong format on umctl2 user setting
> data\n",
> + __func__);
> + return -ENOEXEC;
> + }
> +
> + /* Get the next handoff section address */
> + next_section_header = handoff->cntlr2_handoff_base +
> + handoff->cntlr2_total_length;
> + debug("%s: Next handoff section header location = 0x%llx\n",
> + __func__, next_section_header);
> + }
> +
> + /* Checking next section handoff is PHY ? */
> + if (readl(next_section_header) ==
> SOC64_HANDOFF_DDR_PHY_MAGIC) {
> + /* DDR PHY handoff */
> + handoff->phy_handoff_base = next_section_header;
> + debug("%s: PHY handoff base = 0x%x\n", __func__,
> + (u32)handoff->phy_handoff_base);
> +
> + /* PHY base physical address */
> + handoff->phy_base = readl(handoff->phy_handoff_base +
> +
> SOC64_HANDOFF_DDR_PHY_BASE_OFFSET);
> + debug("%s: PHY base = 0x%x\n", __func__,
> + (u32)handoff->phy_base);
> +
> + /* Get the total length of PHY handoff section */
> + handoff->phy_total_length = readl(handoff-
> >phy_handoff_base +
> +
> SOC64_HANDOFF_OFFSET_LENGTH);
> + debug("%s: PHY total length in byte = 0x%x\n", __func__,
> + (u32)handoff->phy_total_length);
> +
> + /*
> + * Get the length of user setting data in DDR PHY handoff
> + * section
> + */
> + handoff->phy_handoff_length =
> socfpga_get_handoff_size((void *)
> + handoff->phy_handoff_base,
> + LITTLE_ENDIAN);
> + debug("%s: PHY handoff length in word(32-bit) = 0x%x\n",
> + __func__, (u32)handoff->phy_handoff_length);
> +
> + /* Wrong format on PHY user setting data */
> + if (handoff->phy_handoff_length < 0) {
> + debug("%s: Wrong format on PHY user setting
> data\n",
> + __func__);
> + return -ENOEXEC;
> + }
> +
> + /* Get the next handoff section address */
> + next_section_header = handoff->phy_handoff_base +
> + handoff->phy_total_length;
> + debug("%s: Next handoff section header location = 0x%llx\n",
> + __func__, next_section_header);
> + } else {
> + debug("%s: Wrong format for DDR handoff, expect PHY",
> + __func__);
> + debug(" handoff section after umctl2 handoff section\n");
> + return -ENOEXEC;
> + }
> +
> + /* Checking next section handoff is PHY init Engine ? */
> + if (readl(next_section_header) ==
> + SOC64_HANDOFF_DDR_PHY_INIT_ENGINE_MAGIC) {
> + /* DDR PHY Engine handoff */
> + handoff->phy_engine_handoff_base =
> next_section_header;
> + debug("%s: PHY init engine handoff base = 0x%x\n",
> __func__,
> + (u32)handoff->phy_engine_handoff_base);
> +
> + /* Get the total length of PHY init engine handoff section */
> + handoff->phy_engine_total_length =
> + readl(handoff->phy_engine_handoff_base +
> + SOC64_HANDOFF_OFFSET_LENGTH);
> + debug("%s: PHY engine total length in byte = 0x%x\n",
> __func__,
> + (u32)handoff->phy_engine_total_length);
> +
> + /*
> + * Get the length of user setting data in DDR PHY init engine
> + * handoff section
> + */
> + handoff->phy_engine_handoff_length =
> + socfpga_get_handoff_size((void *)
> + handoff-
> >phy_engine_handoff_base,
> + LITTLE_ENDIAN);
> + debug("%s: PHY engine handoff length in word(32-bit) =
> 0x%x\n",
> + __func__, (u32)handoff->phy_engine_handoff_length);
> +
> + /* Wrong format on PHY init engine setting data */
> + if (handoff->phy_engine_handoff_length < 0) {
> + debug("%s: Wrong format on PHY init engine ",
> + __func__);
> + debug("user setting data\n");
> + return -ENOEXEC;
> + }
> + } else {
> + debug("%s: Wrong format for DDR handoff, expect PHY",
> + __func__);
> + debug(" init engine handoff section after PHY handoff\n");
> + debug(" section\n");
> + return -ENOEXEC;
> + }
> +
> + handoff->train_imem_base = handoff->phy_base +
> +
> DDR_PHY_TRAIN_IMEM_OFFSET;
> + debug("%s: PHY train IMEM base = 0x%x\n",
> + __func__, (u32)handoff->train_imem_base);
> +
> + handoff->train_dmem_base = handoff->phy_base +
> +
> DDR_PHY_TRAIN_DMEM_OFFSET;
> + debug("%s: PHY train DMEM base = 0x%x\n",
> + __func__, (u32)handoff->train_dmem_base);
> +
> + handoff->train_imem_length =
> SOC64_HANDOFF_DDR_TRAIN_IMEM_LENGTH;
> + debug("%s: PHY train IMEM length = 0x%x\n",
> + __func__, (u32)handoff->train_imem_length);
> +
> + handoff->train_dmem_length =
> SOC64_HANDOFF_DDR_TRAIN_DMEM_LENGTH;
> + debug("%s: PHY train DMEM length = 0x%x\n",
> + __func__, (u32)handoff->train_dmem_length);
> +
> + return 0;
> +}
> +
> +int enable_ddr_clock(struct udevice *dev)
> +{
> + struct clk *ddr_clk;
> + int ret;
> +
> + /* Enable clock before init DDR */
> + ddr_clk = devm_clk_get(dev, "mem_clk");
> + if (!IS_ERR(ddr_clk)) {
> + ret = clk_enable(ddr_clk);
> + if (ret) {
> + printf("%s: Failed to enable DDR clock\n", __func__);
> + return ret;
> + }
> + } else {
> + ret = PTR_ERR(ddr_clk);
> + debug("%s: Failed to get DDR clock from dts\n", __func__);
> + return ret;
> + }
> +
> + printf("%s: DDR clock is enabled\n", __func__);
> +
> + return 0;
> +}
> +
> +static int ddr_start_dfi_init(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret;
> +
> + debug("%s: Start DFI init\n", __func__);
> +
> + /* Enable quasi-dynamic programing of controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
> + if (ret)
> + return ret;
> +
> + /* Start DFI init sequence */
> + setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
> + DDR4_DFIMISC_DFI_INIT_START);
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Polling programming done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SWSTAT_OFFSET),
> + DDR4_SWSTAT_SW_DONE_ACK, true,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" programming done\n");
> + }
> +
> + return ret;
> +}
> +
> +static int ddr_check_dfi_init_complete(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret;
> +
> + /* Polling DFI init complete */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_DFISTAT_OFFSET),
> + DDR4_DFI_INIT_COMPLETE, true,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" DFI init done\n");
> + return ret;
> + }
> +
> + debug("%s: DFI init completed.\n", __func__);
> +
> + /* Enable quasi-dynamic programing of controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
> + if (ret)
> + return ret;
> +
> + /* Stop DFI init sequence */
> + clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
> + DDR4_DFIMISC_DFI_INIT_START);
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Polling programming done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SWSTAT_OFFSET),
> + DDR4_SWSTAT_SW_DONE_ACK, true,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" programming done\n");
> + return ret;
> + }
> +
> + debug("%s:DDR programming done\n", __func__);
> +
> + return ret;
> +}
> +
> +static int ddr_trigger_sdram_init(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret;
> +
> + /* Enable quasi-dynamic programing of controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
> + if (ret)
> + return ret;
> +
> + /* Unmasking dfi init complete */
> + setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
> + DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);
> +
> + /* Software exit from self-refresh */
> + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
> DDR4_PWRCTL_SELFREF_SW);
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Polling programming done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SWSTAT_OFFSET),
> + DDR4_SWSTAT_SW_DONE_ACK, true,
> + TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" programming done\n");
> + return ret;
> + }
> +
> + debug("%s:DDR programming done\n", __func__);
> + return ret;
> +}
> +
> +static int ddr_post_handoff_config(phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret = 0;
> + u32 value;
> + u32 start = get_timer(0);
> +
> + /* Polling until SDRAM entered normal operating mode */
> + value = readl(umctl2_base + DDR4_STAT_OFFSET) &
> + DDR4_STAT_OPERATING_MODE;
> + while (value != NORMAL_OPM) {
> + if (get_timer(start) > TIMEOUT_200MS) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" DDR enters normal operating mode\n");
> + return -ETIMEDOUT;
> + }
> +
> + value = readl(umctl2_base + DDR4_STAT_OFFSET) &
> + DDR4_STAT_OPERATING_MODE;
> +
> + udelay(1);
> + WATCHDOG_RESET();
> + }
> +
> + printf("DDR entered normal operating mode\n");
> +
> + /* Enabling auto refresh */
> + clrbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
> + DDR4_RFSHCTL3_DIS_AUTO_REFRESH);
> +
> + /* Checking ECC is enabled? */
> + value = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) &
> DDR4_ECC_MODE;
> + if (value) {
> + printf("ECC is enabled\n");
> + ret = scrubber_ddr_config(umctl2_base, umctl2_type);
> + if (ret)
> + printf("Failed to enable ECC\n");
> + }
> +
> + return ret;
> +}
> +
> +static int configure_1d_training_firmware(struct ddr_handoff
> *ddr_handoff_info)
Can merge with configure_2d_training_firmware():
> +{
> + int ret = 0;
> +
> + printf("Configuring 1D training firmware ...\n");
> +
> + /* Reset SDRAM */
> + writew(DDR_PHY_PROTECT_MEMRESET,
> + (uintptr_t)(ddr_handoff_info->phy_base +
> + DDR_PHY_MEMRESETL_OFFSET));
> +
> + /* Enable access to the PHY configuration registers */
> + clrbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + /* Copy 1D train IMEM bin */
> + memcpy((void *)ddr_handoff_info->train_imem_base,
> + (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION,
> + ddr_handoff_info->train_imem_length);
> +
> + ret = memcmp((void *)ddr_handoff_info->train_imem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION,
> + ddr_handoff_info->train_imem_length);
> + if (ret) {
> + debug("%s: Failed to copy 1D train IMEM binary\n",
> __func__);
> + /* Isolate the APB access from internal CSRs */
> + setbits_le16(ddr_handoff_info->phy_base +
> + DDR_PHY_APBONLY0_OFFSET,
> DDR_PHY_MICROCONTMUXSEL);
> + return ret;
> + }
> +
> + memcpy((void *)ddr_handoff_info->train_dmem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION,
> + ddr_handoff_info->train_dmem_length);
> +
> + ret = memcmp((void *)ddr_handoff_info->train_dmem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION,
> + ddr_handoff_info->train_dmem_length);
> + if (ret)
> + debug("%s: Failed to copy 1D train DMEM binary\n",
> __func__);
> +
> + /* Isolate the APB access from internal CSRs */
> + setbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + return ret;
> +}
> +
> +static int configure_2d_training_firmware(struct ddr_handoff
> *ddr_handoff_info)
> +{
> + int ret = 0;
> +
> + printf("Configuring 2D training firmware ...\n");
> +
> + /* Reset SDRAM */
> + writew(DDR_PHY_PROTECT_MEMRESET,
> + (uintptr_t)(ddr_handoff_info->phy_base +
> + DDR_PHY_MEMRESETL_OFFSET));
> +
> + /* Enable access to the PHY configuration registers */
> + clrbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + /* Copy 2D train IMEM bin */
> + memcpy((void *)ddr_handoff_info->train_imem_base,
> + (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION,
> + ddr_handoff_info->train_imem_length);
> +
> + ret = memcmp((void *)ddr_handoff_info->train_imem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION,
> + ddr_handoff_info->train_imem_length);
> + if (ret) {
> + debug("%s: Failed to copy 2D train IMEM binary\n",
> __func__);
> + /* Isolate the APB access from internal CSRs */
> + setbits_le16(ddr_handoff_info->phy_base +
> + DDR_PHY_APBONLY0_OFFSET,
> DDR_PHY_MICROCONTMUXSEL);
> + return ret;
> + }
> +
> + memcpy((void *)ddr_handoff_info->train_dmem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION,
> + ddr_handoff_info->train_dmem_length);
> +
> + ret = memcmp((void *)ddr_handoff_info->train_dmem_base,
> + (const void
> *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION,
> + ddr_handoff_info->train_dmem_length);
> + if (ret)
> + debug("%s: Failed to copy 2D train DMEM binary\n",
> __func__);
> +
> + /* Isolate the APB access from internal CSRs */
> + setbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + return ret;
> +}
> +
> +static void calibrating_sdram(struct ddr_handoff *ddr_handoff_info)
> +{
> + /* Init mailbox protocol */
> + setbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_DCTWRITEPROT_OFFSET,
> + DDR_PHY_DCTWRITEPROT);
> +
> + /* Init mailbox protocol */
This same with previous? Also init mailbox?
> + setbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_UCTWRITEPROT_OFFSET,
> + DDR_PHY_UCTWRITEPROT);
> +
> + /* Reset and stalling ARC processor */
> + setbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_MICRORESET_OFFSET,
> + DDR_PHY_MICRORESET_RESET |
> DDR_PHY_MICRORESET_STALL);
> +
> + /* Release ARC processor */
> + clrbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_MICRORESET_OFFSET,
> + DDR_PHY_MICRORESET_RESET);
> +
> + /* Starting PHY firmware execution */
> + clrbits_le16(ddr_handoff_info->phy_base +
> DDR_PHY_MICRORESET_OFFSET,
> + DDR_PHY_MICRORESET_STALL);
> +}
> +
> +static int get_mail(struct ddr_handoff *handoff, enum message_mode
> mode,
> + u32 *message_id)
> +{
> + int ret;
> +
> + /* Polling major messages from PMU */
> + ret = wait_for_bit_le16((const void *)(handoff->phy_base +
> + DDR_PHY_UCTSHADOWREGS_OFFSET),
> +
> DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
> + false, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" major messages from PMU\n");
> + return ret;
> + }
> +
> + *message_id = readw((uintptr_t)(handoff->phy_base +
> + DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));
> +
> + if (mode == STREAMING_MESSAGE)
> + *message_id |= readw((uintptr_t)((handoff->phy_base +
> +
> DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
> + SZ_16;
> +
> + /* Ack the receipt of the major message */
> + clrbits_le16(handoff->phy_base +
> DDR_PHY_DCTWRITEPROT_OFFSET,
> + DDR_PHY_DCTWRITEPROT);
> +
> + ret = wait_for_bit_le16((const void *)(handoff->phy_base +
> + DDR_PHY_UCTSHADOWREGS_OFFSET),
> +
> DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
> + true, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" ack the receipt of the major message completed\n");
> + return ret;
> + }
> +
> + /* Complete protocol */
> + setbits_le16(handoff->phy_base +
> DDR_PHY_DCTWRITEPROT_OFFSET,
> + DDR_PHY_DCTWRITEPROT);
> +
> + return ret;
> +}
> +
> +static int get_mail_streaming(struct ddr_handoff *handoff,
> + enum message_mode mode, u32 *index)
> +{
> + int ret;
> +
> + *index = readw((uintptr_t)(handoff->phy_base +
> + DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));
> +
> + if (mode == STREAMING_MESSAGE)
> + *index |= readw((uintptr_t)((handoff->phy_base +
> +
> DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
> + SZ_16;
> +
> + /* Ack the receipt of the major message */
> + clrbits_le16(handoff->phy_base +
> DDR_PHY_DCTWRITEPROT_OFFSET,
> + DDR_PHY_DCTWRITEPROT);
> +
> + ret = wait_for_bit_le16((const void *)(handoff->phy_base +
> + DDR_PHY_UCTSHADOWREGS_OFFSET),
> +
> DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
> + true, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for",
> + __func__);
> + debug(" ack the receipt of the major message completed\n");
> + return ret;
> + }
> +
> + /* Complete protocol */
> + setbits_le16(handoff->phy_base +
> DDR_PHY_DCTWRITEPROT_OFFSET,
> + DDR_PHY_DCTWRITEPROT);
> +
> + return 0;
> +}
> +
> +static int decode_streaming_message(struct ddr_handoff
> *ddr_handoff_info,
> + u32 *streaming_index)
> +{
> + int i = 0, ret;
> + u32 temp;
> +
> + temp = *streaming_index;
> +
> + while (i < GET_LOWHW_DATA(temp)) {
You want to read again temp = *streaming_index? Otherwise, temp is always constants.
> + ret = get_mail(ddr_handoff_info, STREAMING_MESSAGE,
> + streaming_index);
> + if (ret)
> + return ret;
> +
> + printf("args[%d]: 0x%x ", i, *streaming_index);
> + i++;
> + }
> +
> + return 0;
> +}
> +
> +static int poll_for_training_complete(struct ddr_handoff
> *ddr_handoff_info)
> +{
> + int ret;
> + u32 message_id = 0;
> + u32 streaming_index = 0;
> +
> + while ((message_id != FW_TRAINING_COMPLETED_STAT) &&
> + (message_id != FW_TRAINING_FAILED_STAT)) {
Should use do...while since message_id is default 0.
> + ret = get_mail(ddr_handoff_info, MAJOR_MESSAGE,
> &message_id);
> + if (ret)
> + return ret;
> +
> + printf("Major message id = 0%x\n", message_id);
> +
> + if (message_id == FW_STREAMING_MSG_ID) {
> + ret = get_mail_streaming(ddr_handoff_info,
> + STREAMING_MESSAGE,
> + &streaming_index);
> + if (ret)
> + return ret;
> +
> + printf("streaming index 0%x : ", streaming_index);
> +
> + decode_streaming_message(ddr_handoff_info,
> + &streaming_index);
> +
What is the usage of streaming_index after you got the value?
> + printf("\n");
> + }
> + }
> +
> + if (message_id == FW_TRAINING_COMPLETED_STAT) {
> + printf("DDR firmware training completed\n");
> + } else if (message_id == FW_TRAINING_FAILED_STAT) {
> + printf("DDR firmware training failed\n");
> + hang();
> + }
> +
> + return 0;
> +}
> +
> +static void enable_phy_clk_for_csr_access(struct ddr_handoff *handoff,
> + bool enable)
> +{
> + if (enable) {
> + /* Enable PHY clk */
> + setbits_le16((uintptr_t)(handoff->phy_base +
> + DDR_PHY_UCCLKHCLKENABLES_OFFSET),
> + DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
> + DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
> + } else {
> + /* Disable PHY clk */
> + clrbits_le16((uintptr_t)(handoff->phy_base +
> + DDR_PHY_UCCLKHCLKENABLES_OFFSET),
> + DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
> + DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
> + }
> +}
> +
> +/* helper function for updating train result to umctl2 RANKCTL register */
> +static void set_cal_res_to_rankctrl(u32 reg_addr, u16 update_value,
> + u32 mask, u32 msb_mask, u32 shift)
> +{
> + u32 reg, value;
> +
> + reg = readl((uintptr_t)reg_addr);
> +
> + debug("max value divided by 2 is 0x%x\n", update_value);
> + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
> + debug("update with train result\n");
> +
> + value = (reg & mask) >> shift;
> +
> + value += update_value + 3;
> +
> + /* reg value greater than 0xF, set one to diff_rank_wr_gap_msb */
> + if (value > 0xF)
> + setbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);
> + else
> + clrbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);
> +
> + reg = readl((uintptr_t)reg_addr);
> +
> + value = (value << shift) & mask;
> +
> + /* update register */
> + writel((reg & (~mask)) | value, (uintptr_t)reg_addr);
> +
> + reg = readl((uintptr_t)reg_addr);
> + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
> + debug("update with train result\n");
> +}
> +
> +/* helper function for updating train result to register */
> +static void set_cal_res_to_reg(u32 reg_addr, u16 update_value, u32 mask,
> + u32 shift)
> +{
> + u32 reg, value;
> +
> + reg = readl((uintptr_t)reg_addr);
> +
> + debug("max value divided by 2 is 0x%x\n", update_value);
> + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
> + debug("update with train result\n");
> +
> + value = (reg & mask) >> shift;
> +
> + value = ((value + update_value + 3) << shift) & mask;
> +
> + /* update register */
> + writel((reg & (~mask)) | value, (uintptr_t)reg_addr);
> +
> + reg = readl((uintptr_t)reg_addr);
> + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
> + debug("update with train result\n");
> +}
> +
> +static u16 get_max_txdqsdlytg0_ux_p0(struct ddr_handoff *handoff, u32
> reg,
> + u8 numdbyte, u16 upd_val)
> +{
> + u32 b_addr;
> + u16 val;
> + u8 byte;
> +
> + /* Getting max value from DBYTEx TxDqsDlyTg0_ux_p0 */
> + for (byte = 0; byte < numdbyte; byte++) {
> + b_addr = byte << 13;
> +
> + /* TxDqsDlyTg0[9:6] is the coarse delay */
> + val = (readw((uintptr_t)(handoff->phy_base +
> + reg + b_addr)) &
> + DDR_PHY_TXDQDLYTG0_COARSE_DELAY) >>
> + DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT;
> +
> + upd_val = max(val, upd_val);
> + }
> +
> + return upd_val;
> +}
> +
> +static int set_cal_res_to_umctl2(struct ddr_handoff *handoff,
> + phys_addr_t umctl2_base,
> + enum ddr_type umctl2_type)
> +{
> + int ret;
> + u8 numdbyte = 0x8;
> + u16 upd_val, val;
> + u32 dramtmg2_reg_addr, rankctl_reg_addr, reg_addr;
> +
> + /* Enable quasi-dynamic programing of the controller registers */
> + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
> + if (ret)
> + return ret;
> +
> + /* Enable access to the PHY configuration registers */
> + clrbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_WW_1_0_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_WW_0_1_OFFSET)));
> + } else if (umctl2_type == DDRTYPE_LPDDR4_0) {
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHA_WW_1_0_OFFSET)));
> +
> + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHA_WW_0_1_OFFSET)));
> + } else if (umctl2_type == DDRTYPE_LPDDR4_1) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_WW_1_0_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_WW_0_1_OFFSET)));
> + }
> +
> + upd_val = max(val, upd_val);
> + debug("max value is 0x%x\n", upd_val);
> +
> + /* Divided by two is required when running in freq ratio 1:2 */
> + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) &
> DDR4_FREQ_RATIO))
> + upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
> +
> + debug("Update train value to umctl2 RANKCTL.diff_rank_wr_gap\n");
> + rankctl_reg_addr = umctl2_base + DDR4_RANKCTL_OFFSET;
> + /* Update train value to umctl2 RANKCTL.diff_rank_wr_gap */
> + set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
> + DDR4_RANKCTL_DIFF_RANK_WR_GAP,
> + DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB,
> +
> DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT);
> +
> + debug("Update train value to umctl2 DRAMTMG2.W2RD\n");
> + dramtmg2_reg_addr = umctl2_base + DDR4_DRAMTMG2_OFFSET;
> + /* Update train value to umctl2 dramtmg2.wr2rd */
> + set_cal_res_to_reg(dramtmg2_reg_addr, upd_val,
> DDR4_DRAMTMG2_WR2RD, 0);
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + debug("Update train value to umctl2
> DRAMTMG9.W2RD_S\n");
> + reg_addr = umctl2_base + DDR4_DRAMTMG9_OFFSET;
> + /* Update train value to umctl2 dramtmg9.wr2rd_s */
> + set_cal_res_to_reg(reg_addr, upd_val,
> DDR4_DRAMTMG9_W2RD_S, 0);
> + }
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_RR_1_0_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_RR_0_1_OFFSET)));
> + } else if (umctl2_type == DDRTYPE_LPDDR4_0) {
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_CHA_RR_1_0_OFFSET)));
> +
> + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHA_RR_0_1_OFFSET)));
> + } else if (umctl2_type == DDRTYPE_LPDDR4_1) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_CHB_RR_1_0_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_RR_0_1_OFFSET)));
> + }
> +
> + upd_val = max(val, upd_val);
> + debug("max value is 0x%x\n", upd_val);
> +
> + /* Divided by two is required when running in freq ratio 1:2 */
> + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) &
> DDR4_FREQ_RATIO))
> + upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
> +
> + debug("Update train value to umctl2 RANKCTL.diff_rank_rd_gap\n");
> + /* Update train value to umctl2 RANKCTL.diff_rank_rd_gap */
> + set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
> + DDR4_RANKCTL_DIFF_RANK_RD_GAP,
> + DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB,
> +
> DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT);
> +
> + if (umctl2_type == DDRTYPE_DDR4) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_RW_1_1_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_RW_1_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_RW_0_1_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_RW_0_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> + } else if (umctl2_type == DDRTYPE_LPDDR4_0) {
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_CHA_RW_1_1_OFFSET)));
> +
> + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHA_RW_1_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_CHA_RW_0_1_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHA_RW_0_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> + } else if (umctl2_type == DDRTYPE_LPDDR4_1) {
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_RW_1_1_OFFSET)));
> +
> + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_RW_1_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> +
> DMEM_MB_CDD_CHB_RW_0_1_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> +
> + val = GET_LOWB_DATA(readw((uintptr_t)(handoff-
> >phy_base +
> + DMEM_MB_CDD_CHB_RW_0_0_OFFSET)));
> +
> + upd_val = max(val, upd_val);
> + }
> +
> + debug("max value is 0x%x\n", upd_val);
> +
> + /* Divided by two is required when running in freq ratio 1:2 */
> + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) &
> DDR4_FREQ_RATIO))
> + upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
> +
> + debug("Update train value to umctl2 dramtmg2.rd2wr\n");
> + /* Update train value to umctl2 dramtmg2.rd2wr */
> + set_cal_res_to_reg(dramtmg2_reg_addr, upd_val,
> DDR4_DRAMTMG2_RD2WR,
> + DDR4_DRAMTMG2_RD2WR_SHIFT);
> +
> + /* Checking ECC is enabled?, lpddr4 using inline ECC */
> + val = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) &
> DDR4_ECC_MODE;
> + if (val && umctl2_type == DDRTYPE_DDR4)
> + numdbyte = 0x9;
> +
> + upd_val = 0;
> +
> + /* Getting max value from DBYTEx TxDqsDlyTg0_u0_p0 */
> + upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
> +
> DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0,
> + numdbyte, upd_val);
> +
> + /* Getting max value from DBYTEx TxDqsDlyTg0_u1_p0 */
> + upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
> +
> DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0,
> + numdbyte, upd_val);
> +
> + debug("TxDqsDlyTg0 max value is 0x%x\n", upd_val);
> +
> + /* Divided by two is required when running in freq ratio 1:2 */
> + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) &
> DDR4_FREQ_RATIO))
> + upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
> +
> + reg_addr = umctl2_base + DDR4_DFITMG1_OFFSET;
> + /* Update train value to umctl2 dfitmg1.dfi_wrdata_delay */
> + set_cal_res_to_reg(reg_addr, upd_val,
> DDR4_DFITMG1_DFI_T_WRDATA_DELAY,
> + DDR4_DFITMG1_DFI_T_WRDATA_SHIFT);
> +
> + /* Complete quasi-dynamic register programming */
> + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET,
> DDR4_SWCTL_SW_DONE);
> +
> + /* Polling programming done */
> + ret = wait_for_bit_le32((const void *)(umctl2_base +
> + DDR4_SWSTAT_OFFSET),
> DDR4_SWSTAT_SW_DONE_ACK,
> + true, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" programming done\n");
> + }
> +
> + /* Isolate the APB access from internal CSRs */
> + setbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
> + DDR_PHY_MICROCONTMUXSEL);
> +
> + return ret;
> +}
> +
> +static int start_ddr_calibration(struct ddr_handoff *ddr_handoff_info)
> +{
> + int ret;
> +
> + /* Implement 1D training firmware */
> + ret = configure_1d_training_firmware(ddr_handoff_info);
> + if (ret) {
> + debug("%s: Failed to configure 1D training firmware\n",
> + __func__);
> + return ret;
> + }
> +
> + calibrating_sdram(ddr_handoff_info);
> +
> + ret = poll_for_training_complete(ddr_handoff_info);
> + if (ret) {
> + debug("%s: Failed to get FW training completed\n",
> + __func__);
> + return ret;
> + }
> +
> + /* Updating training result to DDR controller */
> + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4) {
> + ret = set_cal_res_to_umctl2(ddr_handoff_info,
> + ddr_handoff_info->cntlr_base,
> + ddr_handoff_info->cntlr_t);
> + if (ret) {
> + debug("%s: Failed to update train result to ",
> + __func__);
> + debug("DDR controller\n");
> + return ret;
> + }
> + }
> +
> + /* Implement 2D training firmware */
> + ret = configure_2d_training_firmware(ddr_handoff_info);
> + if (ret) {
> + if (ret) {
> + debug("%s: Failed to update train result to ",
> + __func__);
> + debug("DDR controller\n");
> + return ret;
> + }
> + }
> +
> + calibrating_sdram(ddr_handoff_info);
> +
> + ret = poll_for_training_complete(ddr_handoff_info);
> + if (ret)
> + debug("%s: Failed to get FW training completed\n",
> + __func__);
> +
> + return ret;
> +}
> +
> +static int init_controller(struct ddr_handoff *ddr_handoff_info,
> + u32 *user_backup, u32 *user_backup_2nd)
> +{
> + int ret = 0;
> +
> + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
> + ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
> + /* Initialize 1st DDR controller */
> + ret = init_umctl2(ddr_handoff_info->cntlr_handoff_base,
> + ddr_handoff_info->cntlr_base,
> + ddr_handoff_info->cntlr_t,
> + ddr_handoff_info->cntlr_handoff_length,
> + user_backup);
> + if (ret) {
> + debug("%s: Failed to inilialize first controller\n",
> + __func__);
> + return ret;
> + }
> + }
> +
> + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
> + /* Initialize 2nd DDR controller */
> + ret = init_umctl2(ddr_handoff_info->cntlr2_handoff_base,
> + ddr_handoff_info->cntlr2_base,
> + ddr_handoff_info->cntlr2_t,
> + ddr_handoff_info->cntlr2_handoff_length,
> + user_backup_2nd);
> + if (ret)
> + debug("%s: Failed to inilialize 2nd controller\n",
> + __func__);
> + }
> +
> + return ret;
> +}
> +
> +static int dfi_init(struct ddr_handoff *ddr_handoff_info)
> +{
> + int ret;
> +
> + ret = ddr_start_dfi_init(ddr_handoff_info->cntlr_base,
> + ddr_handoff_info->cntlr_t);
> + if (ret)
> + return ret;
> +
> + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1)
> + ret = ddr_start_dfi_init(ddr_handoff_info->cntlr2_base,
> + ddr_handoff_info->cntlr2_t);
> +
> + return ret;
> +}
> +
> +static int check_dfi_init(struct ddr_handoff *handoff)
> +{
> + int ret;
> +
> + ret = ddr_check_dfi_init_complete(handoff->cntlr_base,
> + handoff->cntlr_t);
> + if (ret)
> + return ret;
> +
> + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
> + ret = ddr_check_dfi_init_complete(handoff->cntlr2_base,
> + handoff->cntlr2_t);
> +
> + return ret;
> +}
> +
> +static int trigger_sdram_init(struct ddr_handoff *handoff)
> +{
> + int ret;
> +
> + ret = ddr_trigger_sdram_init(handoff->cntlr_base,
> + handoff->cntlr_t);
> + if (ret)
> + return ret;
> +
> + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
> + ret = ddr_trigger_sdram_init(handoff->cntlr2_base,
> + handoff->cntlr2_t);
> +
> + return ret;
> +}
> +
> +static int ddr_post_config(struct ddr_handoff *handoff)
> +{
> + int ret;
> +
> + ret = ddr_post_handoff_config(handoff->cntlr_base,
> + handoff->cntlr_t);
> + if (ret)
> + return ret;
> +
> + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
> + ret = ddr_post_handoff_config(handoff->cntlr2_base,
> + handoff->cntlr2_t);
> +
> + return ret;
> +}
> +
> +int sdram_mmr_init_full(struct udevice *dev)
> +{
> + u32 user_backup[2], user_backup_2nd[2];
> + int ret;
> + struct bd_info bd;
> + struct ddr_handoff ddr_handoff_info;
> + struct altera_sdram_priv *priv = dev_get_priv(dev);
> +
> + printf("Checking SDRAM configuration in progress ...\n");
> + ret = populate_ddr_handoff(&ddr_handoff_info);
> + if (ret) {
> + debug("%s: Failed to populate DDR handoff\n",
> + __func__);
> + return ret;
> + }
> +
> + /* Set the MPFE NoC mux to correct DDR controller type */
> + use_ddr4(ddr_handoff_info.cntlr_t);
> +
> + if (!is_ddr_init_skipped()) {
> + printf("SDRAM init in progress ...\n");
> +
> + /*
> + * Polling reset complete, must be high to ensure DDR
> subsystem
> + * in complete reset state before init DDR clock and DDR
> + * controller
> + */
> + ret = wait_for_bit_le32((const void *)((uintptr_t)(readl
> + (ddr_handoff_info.mem_reset_base)
> +
> + MEM_RST_MGR_STATUS)),
> +
> MEM_RST_MGR_STATUS_RESET_COMPLETE,
> + true, TIMEOUT_200MS, false);
> + if (ret) {
> + debug("%s: Timeout while waiting for", __func__);
> + debug(" reset complete done\n");
> + return ret;
> + }
> +
> + ret = enable_ddr_clock(dev);
> + if (ret)
> + return ret;
> +
> + ret = init_controller(&ddr_handoff_info, user_backup,
> + user_backup_2nd);
> + if (ret) {
> + debug("%s: Failed to inilialize DDR controller\n",
> + __func__);
> + return ret;
> + }
> +
> + /* Release the controller from reset */
> + setbits_le32((uintptr_t)
> + (readl(ddr_handoff_info.mem_reset_base) +
> + MEM_RST_MGR_STATUS),
> MEM_RST_MGR_STATUS_AXI_RST |
> + MEM_RST_MGR_STATUS_CONTROLLER_RST |
> + MEM_RST_MGR_STATUS_RESET_COMPLETE);
> +
> + printf("DDR controller configuration is completed\n");
> +
> + /* Initialize DDR PHY */
> + ret = init_phy(&ddr_handoff_info);
> + if (ret) {
> + debug("%s: Failed to inilialize DDR PHY\n", __func__);
> + return ret;
> + }
> +
> + enable_phy_clk_for_csr_access(&ddr_handoff_info, true);
> +
> + ret = start_ddr_calibration(&ddr_handoff_info);
> + if (ret) {
> + debug("%s: Failed to calibrate DDR\n", __func__);
> + return ret;
> + }
> +
> + enable_phy_clk_for_csr_access(&ddr_handoff_info, false);
> +
> + /* Reset ARC processor when no using for security purpose
> */
> + setbits_le16(ddr_handoff_info.phy_base +
> + DDR_PHY_MICRORESET_OFFSET,
> + DDR_PHY_MICRORESET_RESET);
> +
> + /* DDR freq set to support DDR4-3200 */
> + phy_init_engine(&ddr_handoff_info);
> +
> + ret = dfi_init(&ddr_handoff_info);
> + if (ret)
> + return ret;
> +
> + ret = check_dfi_init(&ddr_handoff_info);
> + if (ret)
> + return ret;
> +
> + ret = trigger_sdram_init(&ddr_handoff_info);
> + if (ret)
> + return ret;
> +
> + ret = ddr_post_config(&ddr_handoff_info);
> + if (ret)
> + return ret;
> +
> + /* Restore user settings */
> + writel(user_backup[0], ddr_handoff_info.cntlr_base +
> + DDR4_PWRCTL_OFFSET);
> +
> + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_0)
> + setbits_le32(ddr_handoff_info.cntlr_base +
> + DDR4_INIT0_OFFSET, user_backup[1]);
> +
> + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
> + /* Restore user settings */
> + writel(user_backup_2nd[0],
> + ddr_handoff_info.cntlr2_base +
> + DDR4_PWRCTL_OFFSET);
> +
> + setbits_le32(ddr_handoff_info.cntlr2_base +
> + DDR4_INIT0_OFFSET,
> user_backup_2nd[1]);
> + }
> +
> + /* Enable input traffic per port */
> + setbits_le32(ddr_handoff_info.cntlr_base +
> DDR4_PCTRL0_OFFSET,
> + DDR4_PCTRL0_PORT_EN);
> +
> + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
> + /* Enable input traffic per port */
> + setbits_le32(ddr_handoff_info.cntlr2_base +
> + DDR4_PCTRL0_OFFSET,
> DDR4_PCTRL0_PORT_EN);
> + }
> +
> + printf("DDR init success\n");
> + }
> +
> + /* Get bank configuration from devicetree */
> + ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL,
> + (phys_size_t *)&gd->ram_size, &bd);
> + if (ret) {
> + debug("%s: Failed to decode memory node\n", __func__);
> + return -1;
> + }
> +
> + printf("DDR: %lld MiB\n", gd->ram_size >> 20);
> +
> + priv->info.base = bd.bi_dram[0].start;
> + priv->info.size = gd->ram_size;
> +
> + sdram_size_check(&bd);
> +
> + /* This enables nonsecure access to DDR */
> + /* mpuregion0addr_limit */
> + FW_MPU_DDR_SCR_WRITEL(gd->ram_size - 1,
> + FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT);
> + FW_MPU_DDR_SCR_WRITEL(0x1F,
> FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT);
gd->ram_size - 1 is wrong because we use alias address for second bank.
> +
> + /* nonmpuregion0addr_limit */
> + FW_MPU_DDR_SCR_WRITEL(gd->ram_size - 1,
> +
> FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT);
> +
> + /* Enable mpuregion0enable and nonmpuregion0enable */
> + FW_MPU_DDR_SCR_WRITEL(MPUREGION0_ENABLE |
> NONMPUREGION0_ENABLE,
> + FW_MPU_DDR_SCR_EN_SET);
> +
> + return 0;
> +}
> diff --git a/drivers/ddr/altera/sdram_soc64.c
> b/drivers/ddr/altera/sdram_soc64.c
> index 171cde0e6b..002aa08673 100644
> --- a/drivers/ddr/altera/sdram_soc64.c
> +++ b/drivers/ddr/altera/sdram_soc64.c
> @@ -1,6 +1,6 @@
> // SPDX-License-Identifier: GPL-2.0
> /*
> - * Copyright (C) 2016-2019 Intel Corporation <www.intel.com>
> + * Copyright (C) 2016-2021 Intel Corporation <www.intel.com>
> *
> */
>
> @@ -100,12 +100,14 @@ int emif_reset(struct altera_sdram_plat *plat)
> return 0;
> }
>
> +#if !IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
> int poll_hmc_clock_status(void)
> {
> return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr()
> +
> SYSMGR_SOC64_HMC_CLK),
> SYSMGR_HMC_CLK_STATUS_MSK, true,
> 1000, false);
> }
> +#endif
>
> void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
> {
> @@ -250,6 +252,11 @@ static int altera_sdram_of_to_plat(struct udevice
> *dev)
> struct altera_sdram_plat *plat = dev_get_plat(dev);
> fdt_addr_t addr;
>
> + /* These regs info are part of DDR handoff in bitstream */
> +#if IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
> + return 0;
> +#endif
> +
> addr = dev_read_addr_index(dev, 0);
> if (addr == FDT_ADDR_T_NONE)
> return -EINVAL;
> @@ -310,6 +317,7 @@ static struct ram_ops altera_sdram_ops = {
> static const struct udevice_id altera_sdram_ids[] = {
> { .compatible = "altr,sdr-ctl-s10" },
> { .compatible = "intel,sdr-ctl-agilex" },
> + { .compatible = "intel,sdr-ctl-dm" },
Should change dm to n5x.
> { /* sentinel */ }
> };
>
> --
> 2.13.0
More information about the U-Boot
mailing list