[PATCH v3] mtd: rawnand: Meson NAND controller support
Michael Nazzareno Trimarchi
michael at amarulasolutions.com
Mon Feb 12 11:18:47 CET 2024
Hi
On Sat, Feb 10, 2024 at 11:48 PM Arseniy Krasnov
<avkrasnov at salutedevices.com> wrote:
>
> Basic support for Amlogic Meson NAND controller on AXG. This version
> works at only first EDO mode.
>
> Based on Linux version 6.7.0-rc4.
>
> Signed-off-by: Arseniy Krasnov <avkrasnov at salutedevices.com>
> ---
> Changelog:
> v1 -> v2:
> * Update commit message with 'Based on Linux ...'.
> * Add Linux driver author to .c file header.
> * Add comment for defines 'NFC_DEFAULT_BUS_CYCLE' and
> 'NFC_DEFAULT_BUS_TIMING'.
> * Use 'dev_read_addr_index_ptr()' instead of 'dev_read_addr()'.
> v2 -> v3:
> * Update commit message about EDO mode limitation.
> * Fix scrambling bit value in CMDRWGEN macro.
> * Add scrambling support for reading.
>
> drivers/mtd/nand/raw/Kconfig | 9 +
> drivers/mtd/nand/raw/Makefile | 1 +
> drivers/mtd/nand/raw/meson_nand.c | 1248 +++++++++++++++++++++++++++++
> 3 files changed, 1258 insertions(+)
> create mode 100644 drivers/mtd/nand/raw/meson_nand.c
>
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 46a1460746..e946305ccc 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -479,6 +479,15 @@ config NAND_ARASAN
> controller. This uses the hardware ECC for read and
> write operations.
>
> +config NAND_MESON
> + bool "Meson NAND support"
> + select SYS_NAND_SELF_INIT
> + depends on DM_MTD && ARCH_MESON
> + imply CMD_NAND
> + help
> + This enables Nand driver support for Meson raw NAND flash
> + controller.
> +
> config NAND_MXC
> bool "MXC NAND support"
> depends on CPU_ARM926EJS || CPU_ARM1136 || MX5
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index add2b4cf65..5b4efd52c9 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -61,6 +61,7 @@ obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
> obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o
> obj-$(CONFIG_NAND_LPC32XX_SLC) += lpc32xx_nand_slc.o
> obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
> +obj-$(CONFIG_NAND_MESON) += meson_nand.o
> obj-$(CONFIG_NAND_MXC) += mxc_nand.o
> obj-$(CONFIG_NAND_MXS) += mxs_nand.o
> obj-$(CONFIG_NAND_MXS_DT) += mxs_nand_dt.o
> diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c
> new file mode 100644
> index 0000000000..5d411c4594
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/meson_nand.c
> @@ -0,0 +1,1248 @@
> +// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
> +/*
> + * Amlogic Meson Nand Flash Controller Driver
> + *
> + * Copyright (c) 2018 Amlogic, inc.
> + * Author: Liang Yang <liang.yang at amlogic.com>
> + *
> + * Copyright (c) 2023 SaluteDevices, Inc.
> + * Author: Arseniy Krasnov <avkrasnov at salutedevices.com>
> + */
> +
> +#include <common.h>
> +#include <nand.h>
> +#include <asm/io.h>
> +#include <dm.h>
> +#include <dm/device_compat.h>
> +#include <dm/ofnode.h>
> +#include <dm/uclass.h>
> +#include <linux/bug.h>
> +#include <linux/clk-provider.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/iopoll.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/sizes.h>
> +
> +#define NFC_CMD_IDLE (0xc << 14)
> +#define NFC_CMD_CLE (0x5 << 14)
> +#define NFC_CMD_ALE (0x6 << 14)
> +#define NFC_CMD_DWR (0x4 << 14)
> +#define NFC_CMD_DRD (0x8 << 14)
> +#define NFC_CMD_ADL ((0 << 16) | (3 << 20))
> +#define NFC_CMD_ADH ((1 << 16) | (3 << 20))
> +#define NFC_CMD_AIL ((2 << 16) | (3 << 20))
> +#define NFC_CMD_AIH ((3 << 16) | (3 << 20))
> +#define NFC_CMD_SEED ((8 << 16) | (3 << 20))
> +#define NFC_CMD_M2N ((0 << 17) | (2 << 20))
> +#define NFC_CMD_N2M ((1 << 17) | (2 << 20))
> +#define NFC_CMD_RB BIT(20)
> +#define NFC_CMD_SCRAMBLER_ENABLE BIT(19)
> +#define NFC_CMD_SCRAMBLER_DISABLE 0
> +#define NFC_CMD_SHORTMODE_DISABLE 0
> +#define NFC_CMD_RB_INT BIT(14)
> +#define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16))
> +
> +#define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0))
> +
> +#define NFC_REG_CMD 0x00
> +#define NFC_REG_CFG 0x04
> +#define NFC_REG_DADR 0x08
> +#define NFC_REG_IADR 0x0c
> +#define NFC_REG_BUF 0x10
> +#define NFC_REG_INFO 0x14
> +#define NFC_REG_DC 0x18
> +#define NFC_REG_ADR 0x1c
> +#define NFC_REG_DL 0x20
> +#define NFC_REG_DH 0x24
> +#define NFC_REG_CADR 0x28
> +#define NFC_REG_SADR 0x2c
> +#define NFC_REG_PINS 0x30
> +#define NFC_REG_VER 0x38
> +
> +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \
> + ( \
> + (cmd_dir) | \
> + (ran) | \
> + ((bch) << 14) | \
> + ((short_mode) << 13) | \
> + (((page_size) & 0x7f) << 6) | \
> + ((pages) & 0x3f) \
> + )
> +
> +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff))
> +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff))
> +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff))
> +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff))
> +
> +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
> +
> +#define ECC_CHECK_RETURN_FF -1
> +
> +#define NAND_CE0 (0xe << 10)
> +#define NAND_CE1 (0xd << 10)
> +
> +#define DMA_BUSY_TIMEOUT_US 1000000
> +#define CMD_DRAIN_TIMEOUT_US 1000
> +#define ECC_POLL_TIMEOUT_US 15
> +
> +#define MAX_CE_NUM 2
> +
> +/* eMMC clock register, misc control */
> +#define CLK_SELECT_NAND BIT(31)
> +#define CLK_ALWAYS_ON_NAND BIT(24)
> +#define CLK_ENABLE_VALUE 0x245
> +
> +#define DIRREAD 1
> +#define DIRWRITE 0
> +
> +#define ECC_PARITY_BCH8_512B 14
> +#define ECC_COMPLETE BIT(31)
> +#define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0))
> +#define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0))
> +#define ECC_UNCORRECTABLE 0x3f
> +
> +#define PER_INFO_BYTE 8
> +
> +#define NFC_SEND_CMD(host, cmd) \
> + (writel((cmd), (host)->reg_base + NFC_REG_CMD))
> +
> +#define NFC_GET_CMD(host) \
> + (readl((host)->reg_base + NFC_REG_CMD))
> +
> +#define NFC_CMDFIFO_SIZE(host) ((NFC_GET_CMD((host)) >> 22) & GENMASK(4, 0))
> +
> +#define NFC_CMD_MAKE_IDLE(ce, delay) ((ce) | NFC_CMD_IDLE | ((delay) & 0x3ff))
> +#define NFC_CMD_MAKE_DRD(ce, size) ((ce) | NFC_CMD_DRD | (size))
> +#define NFC_CMD_MAKE_DWR(ce, data) ((ce) | NFC_CMD_DWR | ((data) & 0xff))
> +#define NFC_CMD_MAKE_CLE(ce, cmd_val) ((ce) | NFC_CMD_CLE | ((cmd_val) & 0xff))
> +#define NFC_CMD_MAKE_ALE(ce, addr) ((ce) | NFC_CMD_ALE | ((addr) & 0xff))
> +
> +#define NAND_TWB_TIME_CYCLE 10
> +
> +#define NFC_DEV_READY_TICK_MAX 5000
> +
> +/* Both values are recommended by vendor, as the most
> + * tested with almost all SLC NAND flash. Second value
> + * could be calculated dynamically from timing parameters,
> + * but we need both values for initial start of the NAND
> + * controller (e.g. before NAND subsystem processes timings),
> + * so use hardcoded constants.
> + */
> +#define NFC_DEFAULT_BUS_CYCLE 6
> +#define NFC_DEFAULT_BUS_TIMING 7
> +
> +#define NFC_SEED_OFFSET 0xc2
> +#define NFC_SEED_MASK 0x7fff
> +
> +#define DMA_ADDR_ALIGN 8
> +
> +struct meson_nfc_nand_chip {
> + struct list_head node;
> + struct nand_chip nand;
> +
> + u32 bch_mode;
> + u8 *data_buf;
> + __le64 *info_buf;
> + u32 nsels;
> + u8 sels[];
> +};
> +
> +struct meson_nfc_param {
> + u32 chip_select;
> + u32 rb_select;
> +};
> +
> +struct meson_nfc {
> + void __iomem *reg_base;
> + void __iomem *reg_clk;
> + struct list_head chips;
> + struct meson_nfc_param param;
> + struct udevice *dev;
> + dma_addr_t daddr;
> + dma_addr_t iaddr;
> + u32 data_bytes;
> + u32 info_bytes;
> + u64 assigned_cs;
> +};
> +
> +struct meson_nand_ecc {
> + u32 bch;
> + u32 strength;
> + u32 size;
> +};
> +
> +enum {
> + NFC_ECC_BCH8_512 = 1,
> + NFC_ECC_BCH8_1K,
> + NFC_ECC_BCH24_1K,
> + NFC_ECC_BCH30_1K,
> + NFC_ECC_BCH40_1K,
> + NFC_ECC_BCH50_1K,
> + NFC_ECC_BCH60_1K,
> +};
> +
> +#define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) }
> +
> +static struct meson_nand_ecc meson_ecc[] = {
> + MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512),
> + MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024),
> +};
> +
> +static int meson_nand_calc_ecc_bytes(int step_size, int strength)
> +{
> + int ecc_bytes;
> +
> + if (step_size == 512 && strength == 8)
> + return ECC_PARITY_BCH8_512B;
> +
> + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
> + ecc_bytes = ALIGN(ecc_bytes, 2);
> +
> + return ecc_bytes;
> +}
> +
> +static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
> +{
> + return container_of(nand, struct meson_nfc_nand_chip, nand);
> +}
> +
> +static void meson_nfc_nand_select_chip(struct mtd_info *mtd, int chip)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> +
> + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
> +}
> +
> +static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
> +{
> + writel(NFC_CMD_MAKE_IDLE(nfc->param.chip_select, time),
> + nfc->reg_base + NFC_REG_CMD);
> +}
> +
> +static void meson_nfc_cmd_seed(const struct meson_nfc *nfc, u32 seed)
> +{
> + writel(NFC_CMD_SEED | (NFC_SEED_OFFSET + (seed & NFC_SEED_MASK)),
> + nfc->reg_base + NFC_REG_CMD);
> +}
> +
> +static void meson_nfc_cmd_access(struct nand_chip *nand, bool raw, bool dir,
> + int scrambler)
> +{
> + struct mtd_info *mtd = nand_to_mtd(nand);
> + const struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
> + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + u32 bch = meson_chip->bch_mode, cmd;
> + int len = mtd->writesize, pagesize, pages;
> +
> + pagesize = nand->ecc.size;
> +
> + if (raw) {
> + len = mtd->writesize + mtd->oobsize;
> + cmd = len | scrambler | DMA_DIR(dir);
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> + return;
> + }
> +
> + pages = len / nand->ecc.size;
> +
> + cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
> + NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
> +
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +}
> +
> +static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
> +{
> + /*
> + * Insert two commands to make sure all valid commands are finished.
> + *
> + * The Nand flash controller is designed as two stages pipleline -
> + * a) fetch and b) execute.
> + * There might be cases when the driver see command queue is empty,
> + * but the Nand flash controller still has two commands buffered,
> + * one is fetched into NFC request queue (ready to run), and another
> + * is actively executing. So pushing 2 "IDLE" commands guarantees that
> + * the pipeline is emptied.
> + */
> + meson_nfc_cmd_idle(nfc, 0);
> + meson_nfc_cmd_idle(nfc, 0);
> +}
> +
> +static int meson_nfc_wait_cmd_finish(const struct meson_nfc *nfc,
> + unsigned int timeout_us)
> +{
> + u32 cmd_size = 0;
> +
> + /* wait cmd fifo is empty */
> + return readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
> + !NFC_CMD_GET_SIZE(cmd_size),
> + timeout_us);
> +}
> +
> +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
> +{
> + meson_nfc_drain_cmd(nfc);
> +
> + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT_US);
> +}
> +
> +static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
> +{
> + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + int len;
> +
> + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
> +
> + return meson_chip->data_buf + len;
> +}
> +
> +static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
> +{
> + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + int len, temp;
> +
> + temp = nand->ecc.size + nand->ecc.bytes;
> + len = (temp + 2) * i;
> +
> + return meson_chip->data_buf + len;
> +}
> +
> +static void meson_nfc_get_data_oob(struct nand_chip *nand,
> + u8 *buf, u8 *oobbuf)
> +{
> + u8 *dsrc, *osrc;
> + int i, oob_len;
> +
> + oob_len = nand->ecc.bytes + 2;
> + for (i = 0; i < nand->ecc.steps; i++) {
> + if (buf) {
> + dsrc = meson_nfc_data_ptr(nand, i);
> + memcpy(buf, dsrc, nand->ecc.size);
> + buf += nand->ecc.size;
> + }
> +
> + if (oobbuf) {
> + osrc = meson_nfc_oob_ptr(nand, i);
> + memcpy(oobbuf, osrc, oob_len);
> + oobbuf += oob_len;
> + }
> + }
> +}
> +
> +static void meson_nfc_set_data_oob(struct nand_chip *nand,
> + const u8 *buf, u8 *oobbuf)
> +{
> + int i, oob_len;
> +
> + oob_len = nand->ecc.bytes + 2;
> + for (i = 0; i < nand->ecc.steps; i++) {
> + u8 *osrc;
> +
> + if (buf) {
> + u8 *dsrc;
> +
> + dsrc = meson_nfc_data_ptr(nand, i);
> + memcpy(dsrc, buf, nand->ecc.size);
> + buf += nand->ecc.size;
> + }
> +
> + osrc = meson_nfc_oob_ptr(nand, i);
> + memcpy(osrc, oobbuf, oob_len);
> + oobbuf += oob_len;
> + }
> +}
> +
> +static void meson_nfc_set_user_byte(struct nand_chip *nand, const u8 *oob_buf)
> +{
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + int i, count;
> +
> + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
> + __le64 *info = &meson_chip->info_buf[i];
> +
> + *info |= oob_buf[count];
> + *info |= oob_buf[count + 1] << 8;
> + }
> +}
> +
> +static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
> +{
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + int i, count;
> +
> + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
> + const __le64 *info = &meson_chip->info_buf[i];
> +
> + oob_buf[count] = *info;
> + oob_buf[count + 1] = *info >> 8;
> + }
> +}
> +
> +static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
> + u64 *correct_bitmap)
> +{
> + struct mtd_info *mtd = nand_to_mtd(nand);
> + int ret = 0, i;
> +
> + for (i = 0; i < nand->ecc.steps; i++) {
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + const __le64 *info = &meson_chip->info_buf[i];
> +
> + if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
> + mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
> + *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
> + *correct_bitmap |= BIT_ULL(i);
> + continue;
> + }
> +
> + if ((nand->options & NAND_NEED_SCRAMBLING) &&
> + ECC_ZERO_CNT(*info) < nand->ecc.strength) {
> + mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
> + *bitflips = max_t(u32, *bitflips,
> + ECC_ZERO_CNT(*info));
> + ret = ECC_CHECK_RETURN_FF;
> + } else {
> + ret = -EBADMSG;
> + }
> + }
> +
> + return ret;
> +}
> +
> +static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
> + int datalen, void *infobuf, int infolen,
> + enum dma_data_direction dir)
> +{
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> + int ret;
> + u32 cmd;
> +
> + nfc->daddr = dma_map_single(databuf, datalen, DMA_BIDIRECTIONAL);
> + ret = dma_mapping_error(nfc->dev, nfc->daddr);
> + if (ret)
> + return ret;
> +
> + cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + if (infobuf) {
> + nfc->iaddr = dma_map_single(infobuf, infolen,
> + DMA_BIDIRECTIONAL);
> + ret = dma_mapping_error(nfc->dev, nfc->iaddr);
> + if (ret) {
> + dma_unmap_single(nfc->daddr, datalen, dir);
> + return ret;
> + }
> +
> + nfc->info_bytes = infolen;
> + cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> + }
> +
> + return 0;
> +}
> +
> +static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
> + int datalen, int infolen,
> + enum dma_data_direction dir)
> +{
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> +
> + dma_unmap_single(nfc->daddr, datalen, dir);
> +
> + if (infolen) {
> + dma_unmap_single(nfc->iaddr, infolen, dir);
> + nfc->info_bytes = 0;
> + }
> +}
> +
> +static void meson_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int size)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + u8 *dma_buf;
> + int ret;
> + u32 cmd;
> +
> + if ((uintptr_t)buf % DMA_ADDR_ALIGN) {
> + unsigned long tmp_addr;
> +
> + dma_buf = dma_alloc_coherent(size, &tmp_addr);
> + if (!dma_buf)
> + return;
> + } else {
> + dma_buf = buf;
> + }
> +
> + ret = meson_nfc_dma_buffer_setup(nand, dma_buf, size, meson_chip->info_buf,
> + PER_INFO_BYTE, DMA_FROM_DEVICE);
> + if (ret) {
> + pr_err("Failed to setup DMA buffer %p/%p\n", dma_buf,
> + meson_chip->info_buf);
> + return;
> + }
> +
> + cmd = NFC_CMD_N2M | size;
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + meson_nfc_drain_cmd(nfc);
> + meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US);
> + meson_nfc_dma_buffer_release(nand, size, PER_INFO_BYTE, DMA_FROM_DEVICE);
> +
> + if (buf != dma_buf) {
> + memcpy(buf, dma_buf, size);
> + dma_free_coherent(dma_buf);
> + }
> +}
> +
> +static void meson_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int size)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> + u8 *dma_buf;
> + int ret;
> + u32 cmd;
> +
> + if ((uintptr_t)buf % DMA_ADDR_ALIGN) {
> + unsigned long tmp_addr;
> +
> + dma_buf = dma_alloc_coherent(size, &tmp_addr);
> + if (!dma_buf)
> + return;
> +
> + memcpy(dma_buf, buf, size);
> + } else {
> + dma_buf = (u8 *)buf;
> + }
> +
> + ret = meson_nfc_dma_buffer_setup(nand, (void *)dma_buf, size, NULL,
> + 0, DMA_TO_DEVICE);
> + if (ret) {
> + pr_err("Failed to setup DMA buffer %p\n", dma_buf);
> + return;
> + }
> +
> + cmd = NFC_CMD_M2N | size;
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + meson_nfc_drain_cmd(nfc);
> + meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US);
> + meson_nfc_dma_buffer_release(nand, size, 0, DMA_TO_DEVICE);
> +
> + if (buf != dma_buf)
> + dma_free_coherent(dma_buf);
> +}
> +
> +static int meson_nfc_write_page_sub(struct nand_chip *nand,
> + int page, bool raw)
> +{
> + const struct mtd_info *mtd = nand_to_mtd(nand);
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> + int data_len, info_len;
> + int ret;
> + u32 cmd;
> +
> + data_len = mtd->writesize + mtd->oobsize;
> + info_len = nand->ecc.steps * PER_INFO_BYTE;
> +
> + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
> + data_len, meson_chip->info_buf,
> + info_len, DMA_TO_DEVICE);
> + if (ret) {
> + pr_err("Failed to setup DMA buffer %p/%p\n",
> + meson_chip->data_buf, meson_chip->info_buf);
> + return ret;
> + }
> +
> + if (nand->options & NAND_NEED_SCRAMBLING) {
> + meson_nfc_cmd_seed(nfc, page);
> + meson_nfc_cmd_access(nand, raw, DIRWRITE,
> + NFC_CMD_SCRAMBLER_ENABLE);
> + } else {
> + meson_nfc_cmd_access(nand, raw, DIRWRITE,
> + NFC_CMD_SCRAMBLER_DISABLE);
> + }
> +
> + cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +
> + meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
> +
> + return 0;
> +}
> +
> +static int meson_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + const u8 *buf, int oob_required, int page)
> +{
> + meson_nfc_set_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL);
> +
> + return meson_nfc_write_page_sub(chip, page, true);
> +}
> +
> +static int meson_nfc_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
> + const u8 *buf, int oob_required, int page)
> +{
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip);
> +
> + if (buf)
> + memcpy(meson_chip->data_buf, buf, mtd->writesize);
> +
> + memset(meson_chip->info_buf, 0, chip->ecc.steps * PER_INFO_BYTE);
> +
> + if (oob_required)
> + meson_nfc_set_user_byte(chip, chip->oob_poi);
> +
> + return meson_nfc_write_page_sub(chip, page, false);
> +}
> +
> +static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
> + struct nand_chip *nand, bool raw)
> +{
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + __le64 *info;
> + u32 neccpages;
> + int ret;
> +
> + neccpages = raw ? 1 : nand->ecc.steps;
> + info = &meson_chip->info_buf[neccpages - 1];
> + do {
> + udelay(ECC_POLL_TIMEOUT_US);
> + /* info is updated by nfc dma engine*/
> + rmb();
> + invalidate_dcache_range(nfc->iaddr, nfc->iaddr + nfc->info_bytes);
> + ret = *info & ECC_COMPLETE;
> + } while (!ret);
> +}
> +
> +static int meson_nfc_read_page_sub(struct nand_chip *nand,
> + int page, bool raw)
> +{
> + struct mtd_info *mtd = nand_to_mtd(nand);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + u32 data_len, info_len;
> + int ret;
> +
> + data_len = mtd->writesize + mtd->oobsize;
> + info_len = nand->ecc.steps * PER_INFO_BYTE;
> +
> + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len,
> + meson_chip->info_buf, info_len,
> + DMA_FROM_DEVICE);
> + if (ret)
> + return ret;
> +
> + if (nand->options & NAND_NEED_SCRAMBLING) {
> + meson_nfc_cmd_seed(nfc, page);
> + meson_nfc_cmd_access(nand, raw, DIRREAD,
> + NFC_CMD_SCRAMBLER_ENABLE);
> + } else {
> + meson_nfc_cmd_access(nand, raw, DIRREAD,
> + NFC_CMD_SCRAMBLER_DISABLE);
> + }
> +
> + meson_nfc_wait_dma_finish(nfc);
> + meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
> +
> + meson_nfc_dma_buffer_release(nand, data_len, info_len,
> + DMA_FROM_DEVICE);
> +
> + return 0;
> +}
> +
> +static int meson_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + u8 *buf, int oob_required, int page)
> +{
> + int ret;
> +
> + ret = meson_nfc_read_page_sub(chip, page, true);
> + if (ret)
> + return ret;
> +
> + meson_nfc_get_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL);
> +
> + return 0;
> +}
> +
> +static int meson_nfc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
> + u8 *buf, int oob_required, int page)
> +{
> + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip);
> + u64 correct_bitmap = 0;
> + u32 bitflips = 0;
> + int ret;
> +
> + ret = meson_nfc_read_page_sub(chip, page, false);
> + if (ret)
> + return ret;
> +
> + if (oob_required)
> + meson_nfc_get_user_byte(chip, chip->oob_poi);
> +
> + ret = meson_nfc_ecc_correct(chip, &bitflips, &correct_bitmap);
> +
> + if (ret == ECC_CHECK_RETURN_FF) {
> + if (buf)
> + memset(buf, 0xff, mtd->writesize);
> +
> + if (oob_required)
> + memset(chip->oob_poi, 0xff, mtd->oobsize);
> + } else if (ret < 0) {
> + struct nand_ecc_ctrl *ecc;
> + int i;
> +
> + if ((chip->options & NAND_NEED_SCRAMBLING) || !buf) {
> + mtd->ecc_stats.failed++;
> + return bitflips;
> + }
> +
> + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
> +
> + ret = meson_nfc_read_page_raw(mtd, chip, buf, 1, page);
> + if (ret)
> + return ret;
> +
> + ecc = &chip->ecc;
> +
> + for (i = 0; i < chip->ecc.steps ; i++) {
> + u8 *data = buf + i * ecc->size;
> + u8 *oob = chip->oob_poi + i * (ecc->bytes + 2);
> +
> + if (correct_bitmap & BIT_ULL(i))
> + continue;
> +
> + ret = nand_check_erased_ecc_chunk(data, ecc->size,
> + oob, ecc->bytes + 2,
> + NULL, 0,
> + ecc->strength);
> + if (ret < 0) {
> + mtd->ecc_stats.failed++;
> + } else {
> + mtd->ecc_stats.corrected += ret;
> + bitflips = max_t(u32, bitflips, ret);
> + }
> + }
> + } else if (buf && buf != meson_chip->data_buf) {
> + memcpy(buf, meson_chip->data_buf, mtd->writesize);
> + }
> +
> + return bitflips;
> +}
> +
> +static int meson_nfc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + int ret;
> +
> + ret = nand_read_page_op(chip, page, 0, NULL, 0);
> + if (ret)
> + return ret;
> +
> + return meson_nfc_read_page_raw(mtd, chip, NULL, 1, page);
> +}
> +
> +static int meson_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + int ret;
> +
> + ret = nand_read_page_op(chip, page, 0, NULL, 0);
> + if (ret)
> + return ret;
> +
> + return meson_nfc_read_page_hwecc(mtd, chip, NULL, 1, page);
> +}
> +
> +static int meson_nfc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + int ret;
> +
> + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> + if (ret)
> + return ret;
> +
> + ret = meson_nfc_write_page_raw(mtd, chip, NULL, 1, page);
> + if (ret)
> + return ret;
> +
> + return nand_prog_page_end_op(chip);
> +}
> +
> +static int meson_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + int ret;
> +
> + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> + if (ret)
> + return ret;
> +
> + ret = meson_nfc_write_page_hwecc(mtd, chip, NULL, 1, page);
> + if (ret)
> + return ret;
> +
> + return nand_prog_page_end_op(chip);
> +}
> +
> +static void meson_nfc_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
> + int column, int page_addr)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
> +
> + if (column != -1 || page_addr != -1) {
> + int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
> +
> + /* Serially input address */
> + if (column != -1) {
> + /* Adjust columns for 16 bit buswidth */
> + if (chip->options & NAND_BUSWIDTH_16 &&
> + !nand_opcode_8bits(command))
> + column >>= 1;
> +
> + chip->cmd_ctrl(mtd, column, ctrl);
> + ctrl &= ~NAND_CTRL_CHANGE;
> + /* Only output a single addr cycle for 8bits
> + * opcodes.
> + */
> + if (!nand_opcode_8bits(command))
> + chip->cmd_ctrl(mtd, column >> 8, ctrl);
> + }
> +
> + if (page_addr != -1) {
> + chip->cmd_ctrl(mtd, page_addr, ctrl);
> + chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE |
> + NAND_ALE);
> + /* One more address cycle for devices > 128MiB */
> + if (chip->chipsize > SZ_128M)
> + chip->cmd_ctrl(mtd, page_addr >> 16,
> + NAND_NCE | NAND_ALE);
> + }
> +
> + switch (command) {
> + case NAND_CMD_READ0:
> + chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
> + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
> + fallthrough;
> + case NAND_CMD_PARAM:
> + nand_wait_ready(mtd);
> + nand_exit_status_op(chip);
> + }
> + }
> +}
> +
> +static void meson_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> +
> + if (cmd == NAND_CMD_NONE)
> + return;
> +
> + if (ctrl & NAND_CLE)
> + cmd = NFC_CMD_MAKE_CLE(nfc->param.chip_select, cmd);
> + else
> + cmd = NFC_CMD_MAKE_ALE(nfc->param.chip_select, cmd);
> +
> + writel(cmd, nfc->reg_base + NFC_REG_CMD);
> +}
> +
> +static void meson_nfc_wait_cmd_fifo(struct meson_nfc *nfc)
> +{
> + while ((NFC_GET_CMD(nfc) >> 22) & GENMASK(4, 0))
> + ;
> +}
> +
> +static u8 meson_nfc_nand_read_byte(struct mtd_info *mtd)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> +
> + writel(NFC_CMD_MAKE_DRD(nfc->param.chip_select, 0), nfc->reg_base + NFC_REG_CMD);
> +
> + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
> + meson_nfc_cmd_idle(nfc, 0);
> + meson_nfc_cmd_idle(nfc, 0);
> +
> + meson_nfc_wait_cmd_fifo(nfc);
> +
> + return readl(nfc->reg_base + NFC_REG_BUF);
> +}
> +
> +static void meson_nfc_nand_write_byte(struct mtd_info *mtd, u8 val)
> +{
> + struct nand_chip *nand = mtd_to_nand(mtd);
> + struct meson_nfc *nfc = nand_get_controller_data(nand);
> +
> + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
> +
> + writel(NFC_CMD_MAKE_DWR(nfc->param.chip_select, val), nfc->reg_base + NFC_REG_CMD);
> +
> + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
> + meson_nfc_cmd_idle(nfc, 0);
> + meson_nfc_cmd_idle(nfc, 0);
> +
> + meson_nfc_wait_cmd_fifo(nfc);
> +}
> +
> +static int meson_nfc_dev_ready(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + unsigned int time_out_cnt = 0;
> +
> + chip->select_chip(mtd, 0);
> +
> + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
> +
> + do {
> + int status;
> +
> + status = (int)chip->read_byte(mtd);
> + if (status & NAND_STATUS_READY)
> + break;
> + } while (time_out_cnt++ < NFC_DEV_READY_TICK_MAX);
> +
> + return time_out_cnt != NFC_DEV_READY_TICK_MAX;
> +}
> +
> +static int meson_chip_buffer_init(struct nand_chip *nand)
> +{
> + const struct mtd_info *mtd = nand_to_mtd(nand);
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> + u32 page_bytes, info_bytes, nsectors;
> + unsigned long tmp_addr;
> +
> + nsectors = mtd->writesize / nand->ecc.size;
> +
> + page_bytes = mtd->writesize + mtd->oobsize;
> + info_bytes = nsectors * PER_INFO_BYTE;
> +
> + meson_chip->data_buf = dma_alloc_coherent(page_bytes, &tmp_addr);
> + if (!meson_chip->data_buf)
> + return -ENOMEM;
> +
> + meson_chip->info_buf = dma_alloc_coherent(info_bytes, &tmp_addr);
> + if (!meson_chip->info_buf) {
> + dma_free_coherent(meson_chip->data_buf);
> + return -ENOMEM;
> + }
> +
> + return 0;
> +}
> +
> +static const int axg_stepinfo_strengths[] = { 8 };
> +static const struct nand_ecc_step_info axg_stepinfo_1024 = {
> + .stepsize = 1024,
> + .strengths = axg_stepinfo_strengths,
> + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
> +};
> +
> +static const struct nand_ecc_step_info axg_stepinfo_512 = {
> + .stepsize = 512,
> + .strengths = axg_stepinfo_strengths,
> + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
> +};
> +
> +static const struct nand_ecc_step_info axg_stepinfo[] = { axg_stepinfo_1024, axg_stepinfo_512 };
> +
> +static const struct nand_ecc_caps meson_axg_ecc_caps = {
> + .stepinfos = axg_stepinfo,
> + .nstepinfos = ARRAY_SIZE(axg_stepinfo),
> + .calc_ecc_bytes = meson_nand_calc_ecc_bytes,
> +};
> +
> +/*
> + * OOB layout:
> + *
> + * For ECC with 512 bytes step size:
> + * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB
> + * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC
> + * 0x20:
> + * 0x30:
> + *
> + * For ECC with 1024 bytes step size:
> + * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB
> + * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC
> + * 0x20: AA AA DD DD DD DD DD DD DD DD DD DD DD DD DD DD
> + * 0x30: AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE
> + *
> + * AA - user bytes.
> + * BB, CC, DD, EE - ECC code bytes for each step.
> + */
> +static struct nand_ecclayout nand_oob;
> +
> +static void meson_nfc_init_nand_oob(struct nand_chip *nand)
> +{
> + int section_size = 2 + nand->ecc.bytes;
> + int i;
> + int k;
> +
> + nand_oob.eccbytes = nand->ecc.steps * nand->ecc.bytes;
> + k = 0;
> +
> + for (i = 0; i < nand->ecc.steps; i++) {
> + int j;
> +
> + for (j = 0; j < nand->ecc.bytes; j++)
> + nand_oob.eccpos[k++] = (i * section_size) + 2 + j;
> +
> + nand_oob.oobfree[i].offset = (i * section_size);
> + nand_oob.oobfree[i].length = 2;
> + }
> +
> + nand_oob.oobavail = 2 * nand->ecc.steps;
> + nand->ecc.layout = &nand_oob;
> +}
> +
> +static int meson_nfc_init_ecc(struct nand_chip *nand, ofnode node)
> +{
> + const struct mtd_info *mtd = nand_to_mtd(nand);
> + int ret;
> + int i;
> +
> + ret = nand_check_ecc_caps(nand, &meson_axg_ecc_caps, mtd->oobsize - 2);
> + if (ret)
> + return ret;
> +
> + for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
> + if (meson_ecc[i].strength == nand->ecc.strength &&
> + meson_ecc[i].size == nand->ecc.size) {
> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
> +
> + nand->ecc.steps = mtd->writesize / nand->ecc.size;
> + meson_chip->bch_mode = meson_ecc[i].bch;
> +
> + meson_nfc_init_nand_oob(nand);
> +
> + return 0;
> + }
> + }
> +
> + return -EINVAL;
> +}
> +
> +static int meson_nfc_nand_chip_init(struct udevice *dev, struct meson_nfc *nfc,
> + ofnode node)
> +{
> + struct meson_nfc_nand_chip *meson_chip;
> + struct nand_chip *nand;
> + struct mtd_info *mtd;
> + u32 cs[MAX_CE_NUM];
> + u32 nsels;
> + int ret;
> + int i;
> +
> + if (!ofnode_get_property(node, "reg", &nsels)) {
> + dev_err(dev, "\"reg\" property is not found\n");
> + return -ENODEV;
> + }
> +
> + nsels /= sizeof(u32);
> + if (nsels >= MAX_CE_NUM) {
> + dev_err(dev, "invalid size of CS array, max is %d\n",
> + MAX_CE_NUM);
> + return -EINVAL;
> + }
> +
> + ret = ofnode_read_u32_array(node, "reg", cs, nsels);
> + if (ret < 0) {
> + dev_err(dev, "failed to read \"reg\" property\n");
> + return ret;
> + }
> +
> + for (i = 0; i < nsels; i++) {
> + if (test_and_set_bit(cs[i], &nfc->assigned_cs)) {
> + dev_err(dev, "CS %d already assigned\n", cs[i]);
> + return -EINVAL;
> + }
> + }
> +
> + meson_chip = malloc(sizeof(*meson_chip) + nsels * sizeof(meson_chip->sels[0]));
> + if (!meson_chip) {
> + dev_err(dev, "failed to allocate memory for chip\n");
> + return -ENOMEM;
> + }
> +
> + meson_chip->nsels = nsels;
> + nand = &meson_chip->nand;
> +
> + nand->flash_node = node;
> + nand_set_controller_data(nand, nfc);
> + /* Set the driver entry points for MTD */
> + nand->cmdfunc = meson_nfc_nand_cmd_function;
> + nand->cmd_ctrl = meson_nfc_cmd_ctrl;
> + nand->select_chip = meson_nfc_nand_select_chip;
> + nand->read_byte = meson_nfc_nand_read_byte;
> + nand->write_byte = meson_nfc_nand_write_byte;
> + nand->dev_ready = meson_nfc_dev_ready;
> +
> + /* Buffer read/write routines */
> + nand->read_buf = meson_nfc_read_buf;
> + nand->write_buf = meson_nfc_write_buf;
> + nand->options |= NAND_NO_SUBPAGE_WRITE;
> +
> + nand->ecc.mode = NAND_ECC_HW;
> + nand->ecc.hwctl = NULL;
> + nand->ecc.read_page = meson_nfc_read_page_hwecc;
> + nand->ecc.write_page = meson_nfc_write_page_hwecc;
> + nand->ecc.read_page_raw = meson_nfc_read_page_raw;
> + nand->ecc.write_page_raw = meson_nfc_write_page_raw;
> +
> + nand->ecc.read_oob = meson_nfc_read_oob;
> + nand->ecc.write_oob = meson_nfc_write_oob;
> + nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
> + nand->ecc.write_oob_raw = meson_nfc_write_oob_raw;
> +
> + nand->ecc.algo = NAND_ECC_BCH;
> +
> + mtd = nand_to_mtd(nand);
> +
> + ret = nand_scan_ident(mtd, 1, NULL);
> + if (ret) {
> + dev_err(dev, "'nand_scan_ident()' failed: %d\n", ret);
> + goto err_chip_free;
> + }
> +
> + ret = meson_nfc_init_ecc(nand, node);
> + if (ret) {
> + dev_err(dev, "failed to init ECC settings: %d\n", ret);
> + goto err_chip_free;
> + }
> +
> + ret = meson_chip_buffer_init(nand);
> + if (ret) {
> + dev_err(dev, "failed to init DMA buffers: %d\n", ret);
> + goto err_chip_free;
> + }
> +
> + /* 'nand_scan_tail()' needs ECC parameters to be already
> + * set and correct.
> + */
> + ret = nand_scan_tail(mtd);
> + if (ret) {
> + dev_err(dev, "'nand_scan_tail()' failed: %d\n", ret);
> + goto err_chip_buf_free;
> + }
> +
> + ret = nand_register(0, mtd);
> + if (ret) {
> + dev_err(dev, "'nand_register()' failed: %d\n", ret);
> + goto err_chip_buf_free;
> + }
> +
> + list_add_tail(&meson_chip->node, &nfc->chips);
> +
> + return 0;
> +
> +err_chip_buf_free:
> + dma_free_coherent(meson_chip->info_buf);
> + dma_free_coherent(meson_chip->data_buf);
> +
> +err_chip_free:
> + free(meson_chip);
> +
> + return ret;
> +}
> +
> +static int meson_nfc_nand_chips_init(struct udevice *dev,
> + struct meson_nfc *nfc)
> +{
> + ofnode parent = dev_ofnode(dev);
> + ofnode node;
> +
> + ofnode_for_each_subnode(node, parent) {
> + int ret = meson_nfc_nand_chip_init(dev, nfc, node);
> +
> + if (ret)
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static void meson_nfc_clk_init(struct meson_nfc *nfc)
> +{
> + u32 bus_cycle = NFC_DEFAULT_BUS_CYCLE;
> + u32 bus_timing = NFC_DEFAULT_BUS_TIMING;
> + u32 bus_cfg_val;
> +
> + writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_ENABLE_VALUE, nfc->reg_clk);
> + writel(0, nfc->reg_base + NFC_REG_CFG);
> +
> + bus_cfg_val = (((bus_cycle - 1) & 31) | ((bus_timing & 31) << 5));
> + writel(bus_cfg_val, nfc->reg_base + NFC_REG_CFG);
> + writel(BIT(31), nfc->reg_base + NFC_REG_CMD);
> +}
> +
> +static int meson_probe(struct udevice *dev)
> +{
> + struct meson_nfc *nfc = dev_get_priv(dev);
> + void *addr;
> + int ret;
> +
> + addr = dev_read_addr_ptr(dev);
> + if (!addr) {
> + dev_err(dev, "base register address not found\n");
> + return -EINVAL;
> + }
> +
> + nfc->reg_base = addr;
> +
> + addr = dev_read_addr_index_ptr(dev, 1);
> + if (!addr) {
> + dev_err(dev, "clk register address not found\n");
> + return -EINVAL;
> + }
> +
> + nfc->reg_clk = addr;
> + nfc->dev = dev;
> +
> + meson_nfc_clk_init(nfc);
> +
> + ret = meson_nfc_nand_chips_init(dev, nfc);
> + if (ret) {
> + dev_err(nfc->dev, "failed to init chips\n");
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static const struct udevice_id meson_nand_dt_ids[] = {
> + {.compatible = "amlogic,meson-axg-nfc",},
> + { /* sentinel */ }
> +};
> +
> +U_BOOT_DRIVER(meson_nand) = {
> + .name = "meson_nand",
> + .id = UCLASS_MTD,
> + .of_match = meson_nand_dt_ids,
> + .probe = meson_probe,
> + .priv_auto = sizeof(struct meson_nfc),
> +};
> +
Reviewed-by: Michael Trimarchi <michael at amarulasolutions.com>
> +void board_nand_init(void)
> +{
> + struct udevice *dev;
> + int ret;
> +
> + ret = uclass_get_device_by_driver(UCLASS_MTD,
> + DM_DRIVER_GET(meson_nand), &dev);
> +
> + if (ret && ret != -ENODEV)
> + pr_err("Failed to initialize: %d\n", ret);
> +}
> --
> 2.35.0
>
--
Michael Nazzareno Trimarchi
Co-Founder & Chief Executive Officer
M. +39 347 913 2170
michael at amarulasolutions.com
__________________________________
Amarula Solutions BV
Joop Geesinkweg 125, 1114 AB, Amsterdam, NL
T. +31 (0)85 111 9172
info at amarulasolutions.com
www.amarulasolutions.com
More information about the U-Boot
mailing list