[U-Boot] [PATCH] powerpc/85xx: Integrated Flash Controller NAND support

Dipen Dudhat Dipen.Dudhat at freescale.com
Thu Apr 21 06:31:31 CEST 2011


Add nand_spl and 8-bit NAND support on IFC controller.

Signed-off-by: Dipen Dudhat <Dipen.Dudhat at freescale.com>
---
Changes from v1:
- Integrated Scott's comments
 arch/powerpc/cpu/mpc85xx/cpu_init_nand.c     |   10 +
 arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds |   18 +-
 drivers/mtd/nand/Makefile                    |    1 +
 drivers/mtd/nand/fsl_ifc_nand.c              |  638 ++++++++++++++++++++++++++
 nand_spl/nand_boot_fsl_ifc.c                 |  225 +++++++++
 5 files changed, 889 insertions(+), 3 deletions(-)
 create mode 100644 drivers/mtd/nand/fsl_ifc_nand.c
 create mode 100644 nand_spl/nand_boot_fsl_ifc.c

diff --git a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
index 796d398..6d01479 100644
--- a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
+++ b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
@@ -21,10 +21,12 @@
  */
 
 #include <common.h>
+#include <asm/fsl_ifc.h>
 #include <asm/io.h>
 
 void cpu_init_f(void)
 {
+#ifdef CONFIG_FSL_LBC
 	fsl_lbc_t *lbc = LBC_BASE_ADDR;
 
 	/*
@@ -39,6 +41,14 @@ void cpu_init_f(void)
 #else
 #error  CONFIG_SYS_NAND_BR_PRELIM, CONFIG_SYS_NAND_OR_PRELIM must be defined
 #endif
+#endif
+#ifdef CONFIG_FSL_IFC
+#if defined(CONFIG_SYS_CSPR0) && defined(CONFIG_SYS_CSOR0)
+	set_ifc_cspr(IFC_CS0, CONFIG_SYS_CSPR0);
+	set_ifc_amask(IFC_CS0, CONFIG_SYS_AMASK0);
+	set_ifc_csor(IFC_CS0, CONFIG_SYS_CSOR0);
+#endif
+#endif
 
 #if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L2_ADDR)
 	ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR;
diff --git a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
index 8410bd7..852f9aa 100644
--- a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
+++ b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
@@ -23,6 +23,8 @@
  * MA 02111-1307 USA
  */
 
+#include "config.h"	/* CONFIG_BOARDDIR */
+
 OUTPUT_ARCH(powerpc)
 SECTIONS
 {
@@ -52,8 +54,18 @@ SECTIONS
 	. = ALIGN(8);
 	__init_begin = .;
 	__init_end = .;
-
-	.resetvec ADDR(.text) + 0xffc : {
+#if defined(CONFIG_FSL_IFC) /* Restrict bootpg at 4K boundry for IFC */
+	.bootpg ADDR(.text) + 0x1000 :
+	{
+		start.o	(.bootpg)
+	}
+#define RESET_VECTOR_OFFSET 0x1ffc /* IFC has 8K sram */
+#elif defined(CONFIG_FSL_ELBC)
+#define RESET_VECTOR_OFFSET 0xffc /* LBC has 4k sram */
+#else
+#error unknown NAND controller
+#endif
+	.resetvec ADDR(.text) + RESET_VECTOR_OFFSET : {
 		KEEP(*(.resetvec))
 	} = 0xffff
 
@@ -64,4 +76,4 @@ SECTIONS
 	}
 	__bss_end__ = .;
 }
-ASSERT(__init_end <= 0xfff00ffc, "NAND bootstrap too big");
+ASSERT(__init_end <= (0xfff00000 + RESET_VECTOR_OFFSET), "NAND bootstrap too big");
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8b598f6..3353dcd 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -37,6 +37,7 @@ COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o
 COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
 COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
 COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
+COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
 COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
 COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
 COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
new file mode 100644
index 0000000..3c4d0aa
--- /dev/null
+++ b/drivers/mtd/nand/fsl_ifc_nand.c
@@ -0,0 +1,638 @@
+/*
+ * Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+#include <asm/fsl_ifc.h>
+
+#define MAX_BANKS	4
+#define ERR_BYTE	0xFF /* Value returned for read bytes
+				when read failed */
+#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC
+				NAND Machine */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+	struct mtd_info mtd;
+	struct nand_chip chip;
+	struct fsl_ifc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;               /* Chip select bank number                */
+	u8 __iomem *vbase;      /* Chip select base virtual address       */
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_ctrl {
+	struct nand_hw_control controller;
+	struct fsl_ifc_mtd *chips[MAX_BANKS];
+
+	/* device info */
+	struct fsl_ifc *regs;
+	uint8_t __iomem *addr;   /* Address of assigned IFC buffer        */
+	unsigned int cs_nand;    /* On which chipsel NAND is connected	  */
+	unsigned int page;       /* Last page written to / read from      */
+	unsigned int read_bytes; /* Number of bytes read during command   */
+	unsigned int column;     /* Saved column from SEQIN               */
+	unsigned int index;      /* Pointer to next byte to 'read'        */
+	unsigned int status;     /* status read from NEESR after last op  */
+	unsigned int mdr;        /* IFC Data Register value               */
+	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
+	unsigned int oob;        /* Non zero if operating on OOB data     */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	0,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc *ifc = ctrl->regs;
+	int buf_num;
+
+	ctrl->page = page_addr;
+
+	/* Program ROW0/COL0 */
+	out_be32(&ifc->ifc_nand.row0, page_addr);
+	out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+	if (mtd->writesize == 4096)
+		buf_num = page_addr & 0x1;
+	else if (mtd->writesize == 2048)
+		buf_num = page_addr & 0x3;
+	else
+		buf_num = page_addr & 0xf;
+
+	ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+	ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ctrl->index += mtd->writesize;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static int fsl_ifc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc *ifc = ctrl->regs;
+	long long end_tick;
+	u32 nand_evter_stat = 0, pgrdcmpl_evt_stat = 0;
+
+	if (ctrl->use_mdr)
+		out_be32(&ifc->ifc_nand.nand_mdr, ctrl->mdr);
+
+	out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+	/* start read/write seq */
+	out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
+
+	/* wait for NAND Machine complete flag or timeout */
+	end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();
+
+	while (end_tick > get_ticks()) {
+		nand_evter_stat = in_be32(&ifc->ifc_nand.nand_evter_stat);
+		pgrdcmpl_evt_stat = in_be32(&ifc->ifc_nand.pgrdcmpl_evt_stat);
+
+		if (nand_evter_stat & IFC_NAND_EVTER_STAT_OPC) {
+			out_be32(&ifc->ifc_nand.nand_evter_stat,
+					nand_evter_stat);
+			out_be32(&ifc->ifc_nand.pgrdcmpl_evt_stat,
+					pgrdcmpl_evt_stat);
+
+			/* check for errors */
+			if (nand_evter_stat & IFC_NAND_EVTER_STAT_FTOER)
+				printf("%s: Flash Time Out Error\n", __func__);
+			else if (nand_evter_stat & IFC_NAND_EVTER_STAT_WPER)
+				printf("%s: Write Protect Error\n", __func__);
+			else if (nand_evter_stat & IFC_NAND_EVTER_STAT_ECCER)
+				printf("%s: Flash Time Out Error\n", __func__);
+			break;
+		}
+	}
+
+	if (ctrl->use_mdr)
+		ctrl->mdr = in_be32(&ifc->ifc_nand.nand_mdr);
+
+	ctrl->use_mdr = 0;
+	ctrl->status = nand_evter_stat;
+
+	/* returns 0 on success otherwise non-zero) */
+	return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+			    int oob,
+			    struct mtd_info *mtd)
+{
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc *ifc = ctrl->regs;
+
+	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+	if (mtd->writesize > 512) {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+	} else {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		if (oob)
+			out_be32(&ifc->ifc_nand.nand_fcr0,
+				 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+		else
+			out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc *ifc = ctrl->regs;
+
+	/* set the chip select for NAND Transaction */
+	out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
+
+	ctrl->use_mdr = 0;
+
+	/* clear the read buffer */
+	ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ0:
+		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+		set_addr(mtd, 0, page_addr, 0);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ctrl->index += column;
+
+		fsl_ifc_do_read(chip, 0, mtd);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_ifc_do_read(chip, 1, mtd);
+		fsl_ifc_run_command(mtd);
+
+		return;
+
+	/* READID must read all 5 possible bytes while CEB is active */
+	case NAND_CMD_READID:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+		/* 5 bytes for manuf, device and exts */
+		out_be32(&ifc->ifc_nand.nand_fbcr, 4);
+		ctrl->read_bytes = 4;
+		ctrl->use_mdr = 0;
+		ctrl->mdr = 0;
+
+		set_addr(mtd, 0, 0, 0);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+		ctrl->read_bytes = 0;
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		u32 nand_fcr0;
+		ctrl->column = column;
+		ctrl->oob = 0;
+
+		if (mtd->writesize > 512) {
+			nand_fcr0 =
+				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+			out_be32(&ifc->ifc_nand.nand_fir0,
+				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				 (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
+				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+		} else {
+			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+					IFC_NAND_FCR0_CMD1_SHIFT) |
+				    (NAND_CMD_SEQIN <<
+					IFC_NAND_FCR0_CMD2_SHIFT));
+
+			out_be32(&ifc->ifc_nand.nand_fir0,
+				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+				 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+			out_be32(&ifc->ifc_nand.nand_fir1,
+				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+			if (column >= mtd->writesize) {
+				/* OOB area --> READOOB */
+				column -= mtd->writesize;
+				nand_fcr0 |= NAND_CMD_READOOB <<
+						IFC_NAND_FCR0_CMD0_SHIFT;
+				ctrl->oob = 1;
+			} else if (column < 256)
+				/* First 256 bytes --> READ0 */
+				nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+			else
+				/* Second 256 bytes --> READ1 */
+				nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+		}
+
+		out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+		set_addr(mtd, column, page_addr, ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		int full_page;
+		if (ctrl->oob) {
+			out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index);
+			full_page = 0;
+		} else {
+			out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+			full_page = 1;
+		}
+
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	case NAND_CMD_STATUS:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+		out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		ctrl->read_bytes = 1;
+
+		fsl_ifc_run_command(mtd);
+
+		/* Chip sometimes reporting write protect even when it's not */
+		out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+		return;
+
+	case NAND_CMD_RESET:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	default:
+		printf("%s: error, unsupported command 0x%x.\n",
+			__func__, command);
+	}
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		printf("%s of %d bytes", __func__, len);
+		ctrl->status = 0;
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ctrl->index) {
+		printf("%s beyond end of buffer "
+		       "(%d requested, %u available)\n",
+			__func__, len, bufsize - ctrl->index);
+		len = bufsize - ctrl->index;
+	}
+
+	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+	ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+	/* If there are still bytes in the IFC buffer, then use the
+	 * next byte. */
+	if (ctrl->index < ctrl->read_bytes)
+		return in_8(&ctrl->addr[ctrl->index++]);
+
+	printf("%s beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	int avail;
+
+	if (len < 0)
+		return;
+
+	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+	ctrl->index += avail;
+
+	if (len > avail)
+		printf("%s beyond end of buffer "
+		       "(%d requested, %d available)\n",
+		       __func__, len, avail);
+}
+
+/*
+ * verify buffer against the IFC Controller Data Buffer
+ */
+static int fsl_ifc_verify_buf(struct mtd_info *mtd,
+			       const u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	int i;
+
+	if (len < 0) {
+		printf("%s of %d bytes", __func__, len);
+		return -EINVAL;
+	}
+
+	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+		printf("%s beyond end of buffer "
+		       "(%d requested, %u available)\n",
+		       __func__, len, ctrl->read_bytes - ctrl->index);
+
+		ctrl->index = ctrl->read_bytes;
+		return -EINVAL;
+	}
+
+	for (i = 0; i < len; i++)
+		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+			break;
+
+	ctrl->index += len;
+	return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+/*
+ * This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc *ifc = ctrl->regs;
+	u32 nand_fsr;
+
+	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+		return NAND_STATUS_FAIL;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	ctrl->use_mdr = 0;
+	out_be32(&ifc->ifc_nand.nand_fir0,
+		 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+	out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+			IFC_NAND_FCR0_CMD0_SHIFT);
+	out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+	set_addr(mtd, 0, 0, 0);
+	ctrl->read_bytes = 1;
+
+	fsl_ifc_run_command(mtd);
+
+	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+		return NAND_STATUS_FAIL;
+
+	nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+	/* Chip sometimes reporting write protect even when it's not */
+	nand_fsr = nand_fsr | NAND_STATUS_WP;
+	return nand_fsr;
+}
+
+static void fsl_ifc_ctrl_init(void)
+{
+	ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+	if (!ifc_ctrl)
+		return;
+
+	ifc_ctrl->regs = IFC_BASE_ADDR;
+
+	/* clear event registers */
+	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, 0);
+	out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, 0);
+
+	/* Enable error and event for any detected errors */
+	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en,
+			IFC_NAND_EVTER_EN_OPC_EN |
+			IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+			IFC_NAND_EVTER_EN_FTOER_EN |
+			IFC_NAND_EVTER_EN_WPER_EN |
+			IFC_NAND_EVTER_EN_ECCER_EN);
+
+	ifc_ctrl->read_bytes = 0;
+	ifc_ctrl->index = 0;
+	ifc_ctrl->addr = NULL;
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+	struct fsl_ifc_mtd *priv;
+	uint32_t cspr = 0, csor = 0;
+
+	if (!ifc_ctrl) {
+		fsl_ifc_ctrl_init();
+		if (!ifc_ctrl)
+			return -1;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	priv->ctrl = ifc_ctrl;
+	priv->vbase = nand->IO_ADDR_R;
+
+	/*
+	 * Find which chip select it is connected to.
+	 */
+	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+		phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);
+
+		cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr);
+		csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor);
+
+		if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
+		    (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) {
+			ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
+			break;
+		}
+	}
+
+	if (priv->bank >= MAX_BANKS) {
+		printf("%s: address did not match any "
+		       "chip selects\n", __func__);
+		return -ENODEV;
+	}
+
+	ifc_ctrl->chips[priv->bank] = priv;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	nand->read_byte = fsl_ifc_read_byte;
+	nand->write_buf = fsl_ifc_write_buf;
+	nand->read_buf = fsl_ifc_read_buf;
+	nand->verify_buf = fsl_ifc_verify_buf;
+	nand->select_chip = fsl_ifc_select_chip;
+	nand->cmdfunc = fsl_ifc_cmdfunc;
+	nand->waitfunc = fsl_ifc_wait;
+
+	/* set up nand options */
+	nand->bbt_td = &bbt_main_descr;
+	nand->bbt_md = &bbt_mirror_descr;
+
+	/* set up nand options */
+	nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
+			NAND_USE_FLASH_BBT;
+
+	nand->controller = &ifc_ctrl->controller;
+	nand->priv = priv;
+
+	return 0;
+}
diff --git a/nand_spl/nand_boot_fsl_ifc.c b/nand_spl/nand_boot_fsl_ifc.c
new file mode 100644
index 0000000..fc9289e
--- /dev/null
+++ b/nand_spl/nand_boot_fsl_ifc.c
@@ -0,0 +1,225 @@
+/*
+ * NAND boot for Freescale Integrated Flash Controlleer
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc.
+ *
+ * Author: Dipen Dudhat <dipen.dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/fsl_ifc.h>
+#include <linux/mtd/nand.h>
+
+static void nand_wait(void)
+{
+	struct fsl_ifc *ifc = IFC_BASE_ADDR;
+
+	for (;;) {
+		uint32_t status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+
+		if (status & (IFC_NAND_EVTER_STAT_OPC |
+				IFC_NAND_EVTER_STAT_BOOT_DN)) {
+			if (status & IFC_NAND_EVTER_STAT_FTOER) {
+				puts("flash time out error\n");
+				for (;;);
+			} else if (status & IFC_NAND_EVTER_STAT_ECCER) {
+				puts("ecc error\n");
+				for (;;);
+			}
+			out_be32(&ifc->ifc_nand.nand_evter_stat, status);
+			return;
+		}
+	}
+}
+
+static uint32_t get_sram_addr(int page_no, int page_size)
+{
+	int page_addr_in_sram;
+	int buf_num;
+
+	/* Locate page in SRAM */
+	if (page_size == 4096)
+		buf_num = page_no & 0x1;
+	else if (page_size == 2048)
+		buf_num = page_no & 0x3;
+	else
+		buf_num = page_no & 0xf;
+
+	page_addr_in_sram =  buf_num * (page_size * 2);
+
+	return page_addr_in_sram;
+}
+
+static void nand_load(unsigned int offs, int uboot_size, uchar *dst)
+{
+	struct fsl_ifc *ifc = IFC_BASE_ADDR;
+	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+	int page_size;
+	int port_size;
+	int pages_per_blk;
+	int blk_size;
+	int bad_marker;
+
+	int csor, cspr;
+	int pos = 0;
+	int j = 0;
+
+	int sram_addr;
+	int pg_no;
+
+	/* Get NAND Flash configuration */
+	csor = CONFIG_SYS_NAND_CSOR;
+	cspr = CONFIG_SYS_NAND_CSPR;
+
+	page_size = (csor & CSOR_NAND_PGS_4K) ? 4096 :
+			(csor & CSOR_NAND_PGS_2K) ? 2048 : 512;
+
+	bad_marker = (page_size > 512) ? 0 : 5;
+
+	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
+
+	pages_per_blk = 2 ^ (((csor & CSOR_NAND_PB_MASK) >>
+					CSOR_NAND_PB_SHIFT) + 5);
+
+	blk_size = pages_per_blk * page_size;
+
+	/* Open Full SRAM mapping for spare are access */
+	out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+	/* Clear Boot events */
+	nand_wait();
+
+	/* Program FIR/FCR for Large/Small page */
+	if (page_size > 512) {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+	} else {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+	}
+
+	/* Program FBCR = 0 for full page read */
+	out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+	/*
+	 * Read and copy u-boot on SDRAM from NAND device, In parallel
+	 * check for Bad block if found skip it and read continue to
+	 * next Block
+	 */
+	while (pos < uboot_size) {
+		int i = 0;
+		do {
+			pg_no = offs / page_size;
+
+			out_be32(&ifc->ifc_nand.row0, pg_no);
+			out_be32(&ifc->ifc_nand.col0, 0);
+			/* start read */
+			out_be32(&ifc->ifc_nand.nandseq_strt,
+				IFC_NAND_SEQ_STRT_FIR_STRT);
+			/* wait for read to complete */
+			nand_wait();
+
+			sram_addr = get_sram_addr(pg_no, page_size);
+
+			/*
+			 * If either of the first two pages are marked bad,
+			 * continue to the next block.
+			 */
+			if (port_size == 8) {
+				if (i++ < 2 &&
+				    buf[sram_addr + page_size + bad_marker]
+								!= 0xff) {
+				    puts("skipping\n");
+				    offs = ((offs + blk_size) &
+						~(blk_size - 1));
+				    pos &= ~(blk_size - 1);
+				    break;
+				}
+			} else {
+				if (i++ < 2 &&
+				    buf[sram_addr + page_size + bad_marker]
+								!= 0xff &&
+				    buf[sram_addr + page_size + bad_marker + 1]
+								!= 0xff) {
+				    puts("skipping\n");
+				    offs = (offs + blk_size) & ~(blk_size - 1);
+				    pos &= ~(blk_size - 1);
+				    break;
+				}
+			}
+
+			for (j = 0; j < page_size; j++)
+				dst[pos + j] = buf[sram_addr + j];
+
+			pos += page_size;
+			offs += page_size;
+		} while ((offs & (blk_size - 1)) && (pos < uboot_size));
+	}
+}
+
+/*
+ * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-boot image
+ * from NAND into SDRAM and starts from there.
+ */
+void nand_boot(void)
+{
+	__attribute__((noreturn)) void (*uboot)(void);
+
+	/*
+	 * Load U-Boot image from NAND into RAM
+	 */
+	nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+		(uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+	nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+		(uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+	nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+		(uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+	/*
+	 * Jump to U-Boot image
+	 */
+	/*
+	 * Clean d-cache and invalidate i-cache, to
+	 * make sure that no stale data is executed.
+	 */
+	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+	uboot();
+}
-- 
1.5.6.5




More information about the U-Boot mailing list