[U-Boot] [PATCH] powerpc/85xx: Integrated Flash Controller NAND support
Dudhat Dipen-B09055
B09055 at freescale.com
Mon Apr 25 06:06:10 CEST 2011
Hi Wolfgang,
Any comments on this patch...
This patch is acked by kumar gala.
Regards,
Dipen
-----Original Message-----
From: Dudhat Dipen-B09055
Sent: Thursday, April 21, 2011 10:02 AM
To: u-boot at lists.denx.de
Cc: Dudhat Dipen-B09055
Subject: [PATCH] powerpc/85xx: Integrated Flash Controller NAND support
Add nand_spl and 8-bit NAND support on IFC controller.
Signed-off-by: Dipen Dudhat <Dipen.Dudhat at freescale.com>
---
Changes from v1:
- Integrated Scott's comments
arch/powerpc/cpu/mpc85xx/cpu_init_nand.c | 10 +
arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds | 18 +-
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/fsl_ifc_nand.c | 638 ++++++++++++++++++++++++++
nand_spl/nand_boot_fsl_ifc.c | 225 +++++++++
5 files changed, 889 insertions(+), 3 deletions(-) create mode 100644 drivers/mtd/nand/fsl_ifc_nand.c create mode 100644 nand_spl/nand_boot_fsl_ifc.c
diff --git a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
index 796d398..6d01479 100644
--- a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
+++ b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
@@ -21,10 +21,12 @@
*/
#include <common.h>
+#include <asm/fsl_ifc.h>
#include <asm/io.h>
void cpu_init_f(void)
{
+#ifdef CONFIG_FSL_LBC
fsl_lbc_t *lbc = LBC_BASE_ADDR;
/*
@@ -39,6 +41,14 @@ void cpu_init_f(void) #else #error CONFIG_SYS_NAND_BR_PRELIM, CONFIG_SYS_NAND_OR_PRELIM must be defined #endif
+#endif
+#ifdef CONFIG_FSL_IFC
+#if defined(CONFIG_SYS_CSPR0) && defined(CONFIG_SYS_CSOR0)
+ set_ifc_cspr(IFC_CS0, CONFIG_SYS_CSPR0);
+ set_ifc_amask(IFC_CS0, CONFIG_SYS_AMASK0);
+ set_ifc_csor(IFC_CS0, CONFIG_SYS_CSOR0); #endif #endif
#if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L2_ADDR)
ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR; diff --git a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
index 8410bd7..852f9aa 100644
--- a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
+++ b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
@@ -23,6 +23,8 @@
* MA 02111-1307 USA
*/
+#include "config.h" /* CONFIG_BOARDDIR */
+
OUTPUT_ARCH(powerpc)
SECTIONS
{
@@ -52,8 +54,18 @@ SECTIONS
. = ALIGN(8);
__init_begin = .;
__init_end = .;
-
- .resetvec ADDR(.text) + 0xffc : {
+#if defined(CONFIG_FSL_IFC) /* Restrict bootpg at 4K boundry for IFC */
+ .bootpg ADDR(.text) + 0x1000 :
+ {
+ start.o (.bootpg)
+ }
+#define RESET_VECTOR_OFFSET 0x1ffc /* IFC has 8K sram */ #elif
+defined(CONFIG_FSL_ELBC) #define RESET_VECTOR_OFFSET 0xffc /* LBC has
+4k sram */ #else #error unknown NAND controller #endif
+ .resetvec ADDR(.text) + RESET_VECTOR_OFFSET : {
KEEP(*(.resetvec))
} = 0xffff
@@ -64,4 +76,4 @@ SECTIONS
}
__bss_end__ = .;
}
-ASSERT(__init_end <= 0xfff00ffc, "NAND bootstrap too big");
+ASSERT(__init_end <= (0xfff00000 + RESET_VECTOR_OFFSET), "NAND
+bootstrap too big");
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 8b598f6..3353dcd 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -37,6 +37,7 @@ COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o
COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
+COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c new file mode 100644 index 0000000..3c4d0aa
--- /dev/null
+++ b/drivers/mtd/nand/fsl_ifc_nand.c
@@ -0,0 +1,638 @@
+/*
+ * Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+USA */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+#include <asm/fsl_ifc.h>
+
+#define MAX_BANKS 4
+#define ERR_BYTE 0xFF /* Value returned for read bytes
+ when read failed */
+#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC
+ NAND Machine */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ struct fsl_ifc_ctrl *ctrl;
+
+ struct device *dev;
+ int bank; /* Chip select bank number */
+ u8 __iomem *vbase; /* Chip select base virtual address */
+};
+
+/* overview of the fsl ifc controller */ struct fsl_ifc_ctrl {
+ struct nand_hw_control controller;
+ struct fsl_ifc_mtd *chips[MAX_BANKS];
+
+ /* device info */
+ struct fsl_ifc *regs;
+ uint8_t __iomem *addr; /* Address of assigned IFC buffer */
+ unsigned int cs_nand; /* On which chipsel NAND is connected */
+ unsigned int page; /* Last page written to / read from */
+ unsigned int read_bytes; /* Number of bytes read during command */
+ unsigned int column; /* Saved column from SEQIN */
+ unsigned int index; /* Pointer to next byte to 'read' */
+ unsigned int status; /* status read from NEESR after last op */
+ unsigned int mdr; /* IFC Data Register value */
+ unsigned int use_mdr; /* Non zero if the MDR is to be set */
+ unsigned int oob; /* Non zero if operating on OOB data */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8
+mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 15,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 11,
+ .len = 4,
+ .veroffs = 15,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc
+nand
+ * structure addr field to point to the correct IFC buffer in memory
+*/ static void set_addr(struct mtd_info *mtd, int column, int
+page_addr, int oob) {
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ int buf_num;
+
+ ctrl->page = page_addr;
+
+ /* Program ROW0/COL0 */
+ out_be32(&ifc->ifc_nand.row0, page_addr);
+ out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+ if (mtd->writesize == 4096)
+ buf_num = page_addr & 0x1;
+ else if (mtd->writesize == 2048)
+ buf_num = page_addr & 0x3;
+ else
+ buf_num = page_addr & 0xf;
+
+ ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+ ctrl->index = column;
+
+ /* for OOB data point to the second half of the buffer */
+ if (oob)
+ ctrl->index += mtd->writesize;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete */ static int
+fsl_ifc_run_command(struct mtd_info *mtd) {
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ long long end_tick;
+ u32 nand_evter_stat = 0, pgrdcmpl_evt_stat = 0;
+
+ if (ctrl->use_mdr)
+ out_be32(&ifc->ifc_nand.nand_mdr, ctrl->mdr);
+
+ out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+ /* start read/write seq */
+ out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
+
+ /* wait for NAND Machine complete flag or timeout */
+ end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();
+
+ while (end_tick > get_ticks()) {
+ nand_evter_stat = in_be32(&ifc->ifc_nand.nand_evter_stat);
+ pgrdcmpl_evt_stat = in_be32(&ifc->ifc_nand.pgrdcmpl_evt_stat);
+
+ if (nand_evter_stat & IFC_NAND_EVTER_STAT_OPC) {
+ out_be32(&ifc->ifc_nand.nand_evter_stat,
+ nand_evter_stat);
+ out_be32(&ifc->ifc_nand.pgrdcmpl_evt_stat,
+ pgrdcmpl_evt_stat);
+
+ /* check for errors */
+ if (nand_evter_stat & IFC_NAND_EVTER_STAT_FTOER)
+ printf("%s: Flash Time Out Error\n", __func__);
+ else if (nand_evter_stat & IFC_NAND_EVTER_STAT_WPER)
+ printf("%s: Write Protect Error\n", __func__);
+ else if (nand_evter_stat & IFC_NAND_EVTER_STAT_ECCER)
+ printf("%s: Flash Time Out Error\n", __func__);
+ break;
+ }
+ }
+
+ if (ctrl->use_mdr)
+ ctrl->mdr = in_be32(&ifc->ifc_nand.nand_mdr);
+
+ ctrl->use_mdr = 0;
+ ctrl->status = nand_evter_stat;
+
+ /* returns 0 on success otherwise non-zero) */
+ return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; }
+
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+ int oob,
+ struct mtd_info *mtd)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+
+ /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+ if (mtd->writesize > 512) {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+ } else {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ if (oob)
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+ else
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+ }
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */ static void
+fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+
+ /* set the chip select for NAND Transaction */
+ out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
+
+ ctrl->use_mdr = 0;
+
+ /* clear the read buffer */
+ ctrl->read_bytes = 0;
+ if (command != NAND_CMD_PAGEPROG)
+ ctrl->index = 0;
+
+ switch (command) {
+ /* READ0 read the entire buffer to use hardware ECC. */
+ case NAND_CMD_READ0:
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+ set_addr(mtd, 0, page_addr, 0);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+ ctrl->index += column;
+
+ fsl_ifc_do_read(chip, 0, mtd);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* READOOB reads only the OOB because no ECC is performed. */
+ case NAND_CMD_READOOB:
+ out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+ set_addr(mtd, column, page_addr, 1);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+ fsl_ifc_do_read(chip, 1, mtd);
+ fsl_ifc_run_command(mtd);
+
+ return;
+
+ /* READID must read all 5 possible bytes while CEB is active */
+ case NAND_CMD_READID:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+ /* 5 bytes for manuf, device and exts */
+ out_be32(&ifc->ifc_nand.nand_fbcr, 4);
+ ctrl->read_bytes = 4;
+ ctrl->use_mdr = 0;
+ ctrl->mdr = 0;
+
+ set_addr(mtd, 0, 0, 0);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* ERASE1 stores the block and page address */
+ case NAND_CMD_ERASE1:
+ set_addr(mtd, 0, page_addr, 0);
+ return;
+
+ /* ERASE2 uses the block and page address from ERASE1 */
+ case NAND_CMD_ERASE2:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+ ctrl->read_bytes = 0;
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* SEQIN sets up the addr buffer and all registers except the length */
+ case NAND_CMD_SEQIN: {
+ u32 nand_fcr0;
+ ctrl->column = column;
+ ctrl->oob = 0;
+
+ if (mtd->writesize > 512) {
+ nand_fcr0 =
+ (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+ } else {
+ nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+ IFC_NAND_FCR0_CMD1_SHIFT) |
+ (NAND_CMD_SEQIN <<
+ IFC_NAND_FCR0_CMD2_SHIFT));
+
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1,
+ (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+ if (column >= mtd->writesize) {
+ /* OOB area --> READOOB */
+ column -= mtd->writesize;
+ nand_fcr0 |= NAND_CMD_READOOB <<
+ IFC_NAND_FCR0_CMD0_SHIFT;
+ ctrl->oob = 1;
+ } else if (column < 256)
+ /* First 256 bytes --> READ0 */
+ nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+ else
+ /* Second 256 bytes --> READ1 */
+ nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+ }
+
+ out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+ set_addr(mtd, column, page_addr, ctrl->oob);
+ return;
+ }
+
+ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+ case NAND_CMD_PAGEPROG: {
+ int full_page;
+ if (ctrl->oob) {
+ out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index);
+ full_page = 0;
+ } else {
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+ full_page = 1;
+ }
+
+ fsl_ifc_run_command(mtd);
+ return;
+ }
+
+ case NAND_CMD_STATUS:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ /* Chip sometimes reporting write protect even when it's not */
+ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+ return;
+
+ case NAND_CMD_RESET:
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ default:
+ printf("%s: error, unsupported command 0x%x.\n",
+ __func__, command);
+ }
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer */ static void
+fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) {
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+ if (len <= 0) {
+ printf("%s of %d bytes", __func__, len);
+ ctrl->status = 0;
+ return;
+ }
+
+ if ((unsigned int)len > bufsize - ctrl->index) {
+ printf("%s beyond end of buffer "
+ "(%d requested, %u available)\n",
+ __func__, len, bufsize - ctrl->index);
+ len = bufsize - ctrl->index;
+ }
+
+ memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+ ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data
+left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_ifc_read_byte(struct mtd_info *mtd) {
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ /* If there are still bytes in the IFC buffer, then use the
+ * next byte. */
+ if (ctrl->index < ctrl->read_bytes)
+ return in_8(&ctrl->addr[ctrl->index++]);
+
+ printf("%s beyond end of buffer\n", __func__);
+ return ERR_BYTE;
+}
+
+/*
+ * read from the IFC Controller Data Buffer */ static void
+fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) {
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int avail;
+
+ if (len < 0)
+ return;
+
+ avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+ memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+ ctrl->index += avail;
+
+ if (len > avail)
+ printf("%s beyond end of buffer "
+ "(%d requested, %d available)\n",
+ __func__, len, avail);
+}
+
+/*
+ * verify buffer against the IFC Controller Data Buffer */ static int
+fsl_ifc_verify_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int i;
+
+ if (len < 0) {
+ printf("%s of %d bytes", __func__, len);
+ return -EINVAL;
+ }
+
+ if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+ printf("%s beyond end of buffer "
+ "(%d requested, %u available)\n",
+ __func__, len, ctrl->read_bytes - ctrl->index);
+
+ ctrl->index = ctrl->read_bytes;
+ return -EINVAL;
+ }
+
+ for (i = 0; i < len; i++)
+ if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+ break;
+
+ ctrl->index += len;
+ return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+/*
+ * This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) {
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ struct fsl_ifc *ifc = ctrl->regs;
+ u32 nand_fsr;
+
+ if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+ return NAND_STATUS_FAIL;
+
+ /* Use READ_STATUS command, but wait for the device to be ready */
+ ctrl->use_mdr = 0;
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+ IFC_NAND_FCR0_CMD0_SHIFT);
+ out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+ return NAND_STATUS_FAIL;
+
+ nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+ /* Chip sometimes reporting write protect even when it's not */
+ nand_fsr = nand_fsr | NAND_STATUS_WP;
+ return nand_fsr;
+}
+
+static void fsl_ifc_ctrl_init(void)
+{
+ ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+ if (!ifc_ctrl)
+ return;
+
+ ifc_ctrl->regs = IFC_BASE_ADDR;
+
+ /* clear event registers */
+ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, 0);
+ out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, 0);
+
+ /* Enable error and event for any detected errors */
+ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en,
+ IFC_NAND_EVTER_EN_OPC_EN |
+ IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+ IFC_NAND_EVTER_EN_FTOER_EN |
+ IFC_NAND_EVTER_EN_WPER_EN |
+ IFC_NAND_EVTER_EN_ECCER_EN);
+
+ ifc_ctrl->read_bytes = 0;
+ ifc_ctrl->index = 0;
+ ifc_ctrl->addr = NULL;
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) { }
+
+int board_nand_init(struct nand_chip *nand) {
+ struct fsl_ifc_mtd *priv;
+ uint32_t cspr = 0, csor = 0;
+
+ if (!ifc_ctrl) {
+ fsl_ifc_ctrl_init();
+ if (!ifc_ctrl)
+ return -1;
+ }
+
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->ctrl = ifc_ctrl;
+ priv->vbase = nand->IO_ADDR_R;
+
+ /*
+ * Find which chip select it is connected to.
+ */
+ for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+ phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);
+
+ cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr);
+ csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor);
+
+ if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
+ (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) {
+ ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
+ break;
+ }
+ }
+
+ if (priv->bank >= MAX_BANKS) {
+ printf("%s: address did not match any "
+ "chip selects\n", __func__);
+ return -ENODEV;
+ }
+
+ ifc_ctrl->chips[priv->bank] = priv;
+
+ /* fill in nand_chip structure */
+ /* set up function call table */
+ nand->read_byte = fsl_ifc_read_byte;
+ nand->write_buf = fsl_ifc_write_buf;
+ nand->read_buf = fsl_ifc_read_buf;
+ nand->verify_buf = fsl_ifc_verify_buf;
+ nand->select_chip = fsl_ifc_select_chip;
+ nand->cmdfunc = fsl_ifc_cmdfunc;
+ nand->waitfunc = fsl_ifc_wait;
+
+ /* set up nand options */
+ nand->bbt_td = &bbt_main_descr;
+ nand->bbt_md = &bbt_mirror_descr;
+
+ /* set up nand options */
+ nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
+ NAND_USE_FLASH_BBT;
+
+ nand->controller = &ifc_ctrl->controller;
+ nand->priv = priv;
+
+ return 0;
+}
diff --git a/nand_spl/nand_boot_fsl_ifc.c b/nand_spl/nand_boot_fsl_ifc.c new file mode 100644 index 0000000..fc9289e
--- /dev/null
+++ b/nand_spl/nand_boot_fsl_ifc.c
@@ -0,0 +1,225 @@
+/*
+ * NAND boot for Freescale Integrated Flash Controlleer
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc.
+ *
+ * Author: Dipen Dudhat <dipen.dudhat at freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+USA */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/fsl_ifc.h>
+#include <linux/mtd/nand.h>
+
+static void nand_wait(void)
+{
+ struct fsl_ifc *ifc = IFC_BASE_ADDR;
+
+ for (;;) {
+ uint32_t status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+
+ if (status & (IFC_NAND_EVTER_STAT_OPC |
+ IFC_NAND_EVTER_STAT_BOOT_DN)) {
+ if (status & IFC_NAND_EVTER_STAT_FTOER) {
+ puts("flash time out error\n");
+ for (;;);
+ } else if (status & IFC_NAND_EVTER_STAT_ECCER) {
+ puts("ecc error\n");
+ for (;;);
+ }
+ out_be32(&ifc->ifc_nand.nand_evter_stat, status);
+ return;
+ }
+ }
+}
+
+static uint32_t get_sram_addr(int page_no, int page_size) {
+ int page_addr_in_sram;
+ int buf_num;
+
+ /* Locate page in SRAM */
+ if (page_size == 4096)
+ buf_num = page_no & 0x1;
+ else if (page_size == 2048)
+ buf_num = page_no & 0x3;
+ else
+ buf_num = page_no & 0xf;
+
+ page_addr_in_sram = buf_num * (page_size * 2);
+
+ return page_addr_in_sram;
+}
+
+static void nand_load(unsigned int offs, int uboot_size, uchar *dst) {
+ struct fsl_ifc *ifc = IFC_BASE_ADDR;
+ uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+ int page_size;
+ int port_size;
+ int pages_per_blk;
+ int blk_size;
+ int bad_marker;
+
+ int csor, cspr;
+ int pos = 0;
+ int j = 0;
+
+ int sram_addr;
+ int pg_no;
+
+ /* Get NAND Flash configuration */
+ csor = CONFIG_SYS_NAND_CSOR;
+ cspr = CONFIG_SYS_NAND_CSPR;
+
+ page_size = (csor & CSOR_NAND_PGS_4K) ? 4096 :
+ (csor & CSOR_NAND_PGS_2K) ? 2048 : 512;
+
+ bad_marker = (page_size > 512) ? 0 : 5;
+
+ port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
+
+ pages_per_blk = 2 ^ (((csor & CSOR_NAND_PB_MASK) >>
+ CSOR_NAND_PB_SHIFT) + 5);
+
+ blk_size = pages_per_blk * page_size;
+
+ /* Open Full SRAM mapping for spare are access */
+ out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+ /* Clear Boot events */
+ nand_wait();
+
+ /* Program FIR/FCR for Large/Small page */
+ if (page_size > 512) {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+ } else {
+ out_be32(&ifc->ifc_nand.nand_fir0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
+ out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+ out_be32(&ifc->ifc_nand.nand_fcr0,
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+ }
+
+ /* Program FBCR = 0 for full page read */
+ out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+ /*
+ * Read and copy u-boot on SDRAM from NAND device, In parallel
+ * check for Bad block if found skip it and read continue to
+ * next Block
+ */
+ while (pos < uboot_size) {
+ int i = 0;
+ do {
+ pg_no = offs / page_size;
+
+ out_be32(&ifc->ifc_nand.row0, pg_no);
+ out_be32(&ifc->ifc_nand.col0, 0);
+ /* start read */
+ out_be32(&ifc->ifc_nand.nandseq_strt,
+ IFC_NAND_SEQ_STRT_FIR_STRT);
+ /* wait for read to complete */
+ nand_wait();
+
+ sram_addr = get_sram_addr(pg_no, page_size);
+
+ /*
+ * If either of the first two pages are marked bad,
+ * continue to the next block.
+ */
+ if (port_size == 8) {
+ if (i++ < 2 &&
+ buf[sram_addr + page_size + bad_marker]
+ != 0xff) {
+ puts("skipping\n");
+ offs = ((offs + blk_size) &
+ ~(blk_size - 1));
+ pos &= ~(blk_size - 1);
+ break;
+ }
+ } else {
+ if (i++ < 2 &&
+ buf[sram_addr + page_size + bad_marker]
+ != 0xff &&
+ buf[sram_addr + page_size + bad_marker + 1]
+ != 0xff) {
+ puts("skipping\n");
+ offs = (offs + blk_size) & ~(blk_size - 1);
+ pos &= ~(blk_size - 1);
+ break;
+ }
+ }
+
+ for (j = 0; j < page_size; j++)
+ dst[pos + j] = buf[sram_addr + j];
+
+ pos += page_size;
+ offs += page_size;
+ } while ((offs & (blk_size - 1)) && (pos < uboot_size));
+ }
+}
+
+/*
+ * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-boot image
+ * from NAND into SDRAM and starts from there.
+ */
+void nand_boot(void)
+{
+ __attribute__((noreturn)) void (*uboot)(void);
+
+ /*
+ * Load U-Boot image from NAND into RAM
+ */
+ nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+ (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+ nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+ (uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+ nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+ (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); #endif #endif
+ /*
+ * Jump to U-Boot image
+ */
+ /*
+ * Clean d-cache and invalidate i-cache, to
+ * make sure that no stale data is executed.
+ */
+ flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+ uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+ uboot();
+}
--
1.5.6.5
More information about the U-Boot
mailing list