[PATCH v2 6/9] ram: octeon: Add MIPS Octeon3 DDR4 support (part 2/3)

Stefan Roese sr at denx.de
Mon Aug 17 14:12:18 CEST 2020


From: Aaron Williams <awilliams at marvell.com>

This Octeon 3 DDR driver is ported from the 2013 Cavium / Marvell U-Boot
repository. It currently supports DDR4 on Octeon 3. It can be later
extended to support also DDR3 and Octeon 2 platforms.

Part 2 includes the very complex Octeon 3 DDR4 configuration

Signed-off-by: Aaron Williams <awilliams at marvell.com>
Signed-off-by: Stefan Roese <sr at denx.de>
---

(no changes since v1)

 drivers/ram/octeon/octeon3_lmc.c | 11484 +++++++++++++++++++++++++++++
 1 file changed, 11484 insertions(+)
 create mode 100644 drivers/ram/octeon/octeon3_lmc.c

diff --git a/drivers/ram/octeon/octeon3_lmc.c b/drivers/ram/octeon/octeon3_lmc.c
new file mode 100644
index 0000000000..21e331897b
--- /dev/null
+++ b/drivers/ram/octeon/octeon3_lmc.c
@@ -0,0 +1,11484 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020 Marvell International Ltd.
+ *
+ * https://spdx.org/licenses
+ */
+
+#include <command.h>
+#include <dm.h>
+#include <hang.h>
+#include <i2c.h>
+#include <ram.h>
+#include <time.h>
+
+#include <linux/bitops.h>
+#include <linux/io.h>
+
+#include <mach/octeon_ddr.h>
+
+/* Random number generator stuff */
+
+#define CVMX_RNM_CTL_STATUS	0x0001180040000000
+#define CVMX_OCT_DID_RNG	8ULL
+
+static u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
+{
+	return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
+}
+
+static u64 cvmx_rng_get_random64(void)
+{
+	return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0));
+}
+
+static void cvmx_rng_enable(void)
+{
+	u64 val;
+
+	val = csr_rd(CVMX_RNM_CTL_STATUS);
+	val |= BIT(0) | BIT(1);
+	csr_wr(CVMX_RNM_CTL_STATUS, val);
+}
+
+#define CAVIUM_ONLY
+
+// FIXME: set to 1 for development-level messages, 0 for production
+#define RLEVEL_PRINTALL_DEFAULT 1
+#define WLEVEL_PRINTALL_DEFAULT 1
+
+#define ALLOW_BY_RANK_INIT       1
+#define USE_ORIG_TEST_DRAM_BYTE  0
+
+#define RLEXTRAS_PATCH     1	// write to unused RL rank entries
+#define WLEXTRAS_PATCH     1	// write to unused WL rank entries
+#define ADD_48_OHM_SKIP    0
+#define NOSKIP_40_48_OHM   1
+#define NOSKIP_48_STACKED  1
+#define NOSKIP_FOR_MINI    1
+#define NOSKIP_FOR_2S_1R   1
+
+// define how many HW RL samples per rank to take
+// multiple samples will allow looking for the best sample score
+//
+#define RLEVEL_SAMPLES_DEFAULT     3
+
+#define FAILSAFE_CHECK           1
+
+#define PERFECT_BITMASK_COUNTING 1
+#define PRINT_PERFECT_COUNTS     PERFECT_BITMASK_COUNTING && 1
+
+#define DISABLE_SW_WL_PASS_2  1
+#define SW_WL_CHECK_PATCH     1
+#define HW_WL_MAJORITY        1
+// try HW WL base alternate if available when SW WL fails
+#define SWL_TRY_HWL_ALT       HW_WL_MAJORITY && 1
+// define how many HW WL samples to take for majority voting
+// MUST BE odd!!
+// assume there should only be 2 possible values that will show up,
+// so treat ties as a problem!!!
+// NOTE: do not change this without checking the code!!!
+#define WLEVEL_LOOPS_DEFAULT     5
+
+#define SWL_WITH_HW_ALTS_CHOOSE_SW 0	// FIXME: allow override?
+
+#define SW_WLEVEL_HW_DEFAULT 1
+// collect and print LMC utilization using SWL software algorithm
+#define ENABLE_SW_WLEVEL_UTILIZATION 1
+
+#define COUNT_RL_CANDIDATES 1
+
+#define DDR3_DAC_OVERRIDE  1
+
+#define DEFAULT_BEST_RANK_SCORE  9999999
+#define MAX_RANK_SCORE_LIMIT     99	// FIXME?
+
+#define ENABLE_COMPUTED_VREF_ADJUSTMENT 1
+
+#undef ENABLE_SLOT_CTL_ACCESS
+
+#undef DEBUG_PERFORM_DDR3_SEQUENCE
+#define ddr_seq_print(format, ...) do {} while (0)
+
+struct wlevel_bitcnt {
+	int bitcnt[4];
+};
+
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+				     int ecc_ena, int *settings, char *title);
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+					int dac_value, int byte);
+
+// "mode" arg
+#define DBTRAIN_TEST 0
+#define DBTRAIN_DBI  1
+#define DBTRAIN_LFSR 2
+
+static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+				int mode, u64 *xor_data);
+
+#define LMC_DDR3_RESET_ASSERT   0
+#define LMC_DDR3_RESET_DEASSERT 1
+
+static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset)
+{
+	union cvmx_lmcx_reset_ctl reset_ctl;
+
+	/*
+	 * 4. Deassert DDRn_RESET_L pin by writing
+	 *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
+	 *    without modifying any other LMC(0..3)_RESET_CTL fields.
+	 * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+	 * 6. Wait a minimum of 500us. This guarantees the necessary T = 500us
+	 *    delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE*
+	 *    assertion.
+	 */
+	debug("LMC%d %s DDR_RESET_L\n", if_num,
+	      (reset ==
+	       LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting");
+
+	reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+	reset_ctl.cn78xx.ddr3rst = reset;
+	lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64);
+
+	lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+	udelay(500);
+}
+
+static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num)
+{
+	/*
+	 * 5.9.6 LMC RESET Initialization
+	 *
+	 * The purpose of this step is to assert/deassert the RESET# pin at the
+	 * DDR3/DDR4 parts.
+	 *
+	 * This LMC RESET step is done for all enabled LMCs.
+	 *
+	 * It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts
+	 * are in self refresh and are currently preserving their
+	 * contents. (Software can determine this via
+	 * LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of
+	 * this section assumes that the DRAM contents need not be preserved.
+	 *
+	 * The remainder of this section assumes that the CN78XX DDRn_RESET_L
+	 * pin is attached to the RESET# pin of the attached DDR3/DDR4 parts,
+	 * as will be appropriate in many systems.
+	 *
+	 * (In other systems, such as ones that can preserve DDR3/DDR4 part
+	 * contents while CN78XX is powered down, it will not be appropriate to
+	 * directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the
+	 * DDR3/DDR4 parts, and this section may not apply.)
+	 *
+	 * The remainder of this section describes the sequence for LMCn.
+	 *
+	 * Perform the following six substeps for LMC reset initialization:
+	 *
+	 * 1. If not done already, assert DDRn_RESET_L pin by writing
+	 * LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other
+	 * LMC(0..3)_RESET_CTL fields.
+	 */
+
+	if (!ddr_memory_preserved(priv)) {
+		/*
+		 * 2. Read LMC(0..3)_RESET_CTL and wait for the result.
+		 */
+
+		lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+		/*
+		 * 3. Wait until RESET# assertion-time requirement from JEDEC
+		 * DDR3/DDR4 specification is satisfied (200 us during a
+		 * power-on ramp, 100ns when power is already stable).
+		 */
+
+		udelay(200);
+
+		/*
+		 * 4. Deassert DDRn_RESET_L pin by writing
+		 *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
+		 *    without modifying any other LMC(0..3)_RESET_CTL fields.
+		 * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+		 * 6. Wait a minimum of 500us. This guarantees the necessary
+		 *    T = 500us delay between DDRn_RESET_L deassertion and
+		 *    DDRn_DIMM*_CKE* assertion.
+		 */
+		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+
+		/* Toggle Reset Again */
+		/* That is, assert, then de-assert, one more time */
+		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT);
+		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+	}
+}
+
+void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
+		   int sequence)
+{
+	/*
+	 * 3. Without changing any other fields in LMC(0)_CONFIG, write
+	 *    LMC(0)_CONFIG[RANKMASK] then write both
+	 *    LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
+	 *    operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
+	 *    the ranks that will participate in the sequence.
+	 *
+	 *    The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
+	 *    selfrefresh exit, depending on whether the DRAM parts are in
+	 *    self-refresh and whether their contents should be preserved. While
+	 *    LMC performs these sequences, it will not perform any other DDR3
+	 *    transactions. When the sequence is complete, hardware sets the
+	 *    LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
+	 *    initialized.
+	 *
+	 *    If power-up/init is selected immediately following a DRESET
+	 *    assertion, LMC executes the sequence described in the "Reset and
+	 *    Initialization Procedure" section of the JEDEC DDR3
+	 *    specification. This includes activating CKE, writing all four DDR3
+	 *    mode registers on all selected ranks, and issuing the required
+	 *    ZQCL
+	 *    command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
+	 *    with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
+	 *    LMC writes the JEDEC standard SSTE32882 control words selected by
+	 *    LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
+	 *    the first DDR3 mode register write operation.
+	 *    LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
+	 *    corresponding DIMM is not present.
+	 *
+	 *    If self-refresh exit is selected, LMC executes the required SRX
+	 *    command followed by a refresh and ZQ calibration. Section 4.5
+	 *    describes behavior of a REF + ZQCS.  LMC does not write the DDR3
+	 *    mode registers as part of this sequence, and the mode register
+	 *    parameters must match at self-refresh entry and exit times.
+	 *
+	 * 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE]
+	 *    to be set.
+	 *
+	 * 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
+	 *    been initialized.
+	 */
+
+	union cvmx_lmcx_seq_ctl seq_ctl;
+	union cvmx_lmcx_config lmc_config;
+	int timeout;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	lmc_config.s.rankmask = rank_mask;
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+	seq_ctl.u64 = 0;
+
+	seq_ctl.s.init_start = 1;
+	seq_ctl.s.seq_sel = sequence;
+
+	ddr_seq_print
+	    ("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n",
+	     rank_mask, sequence, sequence_str[sequence]);
+
+	if (seq_ctl.s.seq_sel == 3)
+		debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num,
+		      rank_mask);
+
+	lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64);
+	lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+
+	timeout = 100;
+	do {
+		udelay(100);	/* Wait a while */
+		seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+		if (--timeout == 0) {
+			printf("Sequence %d timed out\n", sequence);
+			break;
+		}
+	} while (seq_ctl.s.seq_complete != 1);
+
+	ddr_seq_print("           LMC sequence=%x: Completed.\n", sequence);
+}
+
+#if USE_ORIG_TEST_DRAM_BYTE
+
+#define DO_LIKE_RANDOM_XOR 1
+
+static int test_dram_byte64(struct ddr_priv *priv, int if_num, u64 p,
+			    u64 bitmask, u64 *xor_data)
+{
+	u64 p1, p2, d1, d2;
+	u64 v, v1;
+	u64 p2offset = 0x4000000;
+	u64 datamask;
+	u64 xor;
+	int i, j, k;
+	int errors = 0;
+	int index;
+	int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+#if DO_LIKE_RANDOM_XOR
+	u64 pattern1 = cvmx_rng_get_random64();
+	u64 this_pattern;
+#endif
+	u64 bad_bits[2] = { 0, 0 };
+	int node = 0;
+
+	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+		bitno = 18;
+
+	// When doing in parallel, the caller must provide full 8-byte bitmask.
+	// Byte lanes may be clear in the mask to indicate no testing on that
+	// lane.
+	datamask = bitmask;
+
+	// final address must include LMC and node
+	p |= (if_num << 7);	/* Map address into proper interface */
+	p |= (u64)node << CVMX_NODE_MEM_SHIFT;	// map to node
+	p |= 1ull << 63;
+
+	/* Add offset to both test regions to not clobber boot stuff
+	 * when running from L2.
+	 */
+	p += 0x4000000;
+
+	debug("N%d.LMC%d: %s: phys_addr=0x%lx/0x%lx (0x%lx)\n",
+	      node, if_num, __func__, p, p + p2offset, 1ULL << bitno);
+
+	/*
+	 * The loop ranges and increments walk through a range of addresses
+	 * avoiding bits that alias to different memory interfaces (LMCs)
+	 * on the CN88XX; ie we want to limit activity to a single memory
+	 * channel.
+	 */
+
+	/* Store something into each location first */
+	// NOTE: the ordering of loops is purposeful
+	for (i = 0; i < (1 << 7); i += 8) {
+		for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+			for (j = 0; j < (1 << 12); j += (1 << 9)) {
+				index = i + j + k;
+				p1 = p + index;
+				p2 = p1 + p2offset;
+
+#if DO_LIKE_RANDOM_XOR
+				v = pattern1 * p1;
+				v1 = v;	// write the same thing to both areas
+#else
+				v = 0ULL;
+				v1 = v;
+#endif
+				cvmx_write64_uint64(p1, v);
+				cvmx_write64_uint64(p2, v1);
+
+				/* Write back and invalidate the cache lines
+				 *
+				 * For OCX we cannot limit the number of L2 ways
+				 * so instead we just write back and invalidate
+				 * the L2 cache lines.  This is not possible
+				 * when booting remotely, however so this is
+				 * only enabled for U-Boot right now.
+				 * Potentially the BDK can also take advantage
+				 * of this.
+				 */
+				CVMX_CACHE_WBIL2(p1, 0);
+				CVMX_CACHE_WBIL2(p2, 0);
+			}
+		}
+	}
+	CVMX_DCACHE_INVALIDATE;
+
+#if DO_LIKE_RANDOM_XOR
+	this_pattern = cvmx_rng_get_random64();
+#endif
+
+	// modify the contents of each location in some way
+	// NOTE: the ordering of loops is purposeful
+	for (i = 0; i < (1 << 7); i += 8) {
+		for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+			for (j = 0; j < (1 << 12); j += (1 << 9)) {
+				index = i + j + k;
+				p1 = p + index;
+				p2 = p1 + p2offset;
+#if DO_LIKE_RANDOM_XOR
+				v = cvmx_read64_uint64(p1) ^ this_pattern;
+				v1 = cvmx_read64_uint64(p2) ^ this_pattern;
+#else
+				v = test_pattern[index %
+						 (sizeof(test_pattern) /
+						  sizeof(u64))];
+				v &= datamask;
+				v1 = ~v;
+#endif
+
+				cvmx_write64_uint64(p1, v);
+				cvmx_write64_uint64(p2, v1);
+
+				/*
+				 * Write back and invalidate the cache lines
+				 *
+				 * For OCX we cannot limit the number of L2 ways
+				 * so instead we just write back and invalidate
+				 * the L2 cache lines.  This is not possible
+				 * when booting remotely, however so this is
+				 * only enabled for U-Boot right now.
+				 * Potentially the BDK can also take advantage
+				 * of this.
+				 */
+				CVMX_CACHE_WBIL2(p1, 0);
+				CVMX_CACHE_WBIL2(p2, 0);
+			}
+		}
+	}
+	CVMX_DCACHE_INVALIDATE;
+
+	// test the contents of each location by predicting what should be there
+	// NOTE: the ordering of loops is purposeful: test full cachelines to
+	//       detect an error occurring in any slot thereof
+	for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+		for (j = 0; j < (1 << 12); j += (1 << 9)) {
+			for (i = 0; i < (1 << 7); i += 8) {
+				int bybit = 1;
+				u64 bymsk = 0xffULL;	// start in byte lane 0
+
+				index = i + j + k;
+				p1 = p + index;
+				p2 = p1 + p2offset;
+#if DO_LIKE_RANDOM_XOR
+				// FIXME: this should predict what we find...???
+				v = (p1 * pattern1) ^ this_pattern;
+				d1 = cvmx_read64_uint64(p1);
+				d2 = cvmx_read64_uint64(p2);
+#else
+				v = test_pattern[index %
+						 (sizeof(test_pattern) /
+						  sizeof(u64))];
+				d1 = cvmx_read64_uint64(p1);
+				d2 = ~cvmx_read64_uint64(p2);
+#endif
+
+				// union of error bits only in active byte lanes
+				xor = ((d1 ^ v) | (d2 ^ v)) & datamask;
+
+				if (!xor)
+					continue;
+
+				// accumulate bad bits
+				bad_bits[0] |= xor;
+
+				while (xor != 0) {
+					debug("ERROR: [0x%016llX] [0x%016llX]  expected 0x%016llX xor %016llX\n",
+					      p1, p2, v, xor);
+					// error(s) in this lane
+					if (xor & bymsk) {
+						// set the byte error bit
+						errors |= bybit;
+						// clear byte lane in error bits
+						xor &= ~bymsk;
+						// clear the byte lane in the
+						// mask
+						datamask &= ~bymsk;
+						// nothing left to do
+						if (datamask == 0) {
+							// completely done when
+							// errors found in all
+							// byte lanes in
+							// datamask
+							goto done_now;
+						}
+					}
+					// move mask into next byte lane
+					bymsk <<= 8;
+					// move bit into next byte position
+					bybit <<= 1;
+				}
+			}
+		}
+	}
+
+done_now:
+	if (xor_data) {		// send the bad bits back...
+		xor_data[0] = bad_bits[0];
+		xor_data[1] = bad_bits[1];	// let it be zeroed
+	}
+	return errors;
+}
+
+#else /* USE_ORIG_TEST_DRAM_BYTE */
+
+#define bdk_numa_get_address(n, p)	((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT)
+#define AREA_BASE_OFFSET		BIT_ULL(26)
+
+static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p,
+			    u64 bitmask, u64 *xor_data)
+{
+	u64 p1, p2, d1, d2;
+	u64 v, v1;
+	u64 p2offset = (1ULL << 26);	// offset to area 2
+	u64 datamask;
+	u64 xor;
+	u64 i, j, k;
+	u64 ii;
+	int errors = 0;
+	//u64 index;
+	u64 pattern1 = cvmx_rng_get_random64();
+	u64 pattern2 = 0;
+	u64 bad_bits[2] = { 0, 0 };
+	int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+	union cvmx_l2c_ctl l2c_ctl;
+	int burst;
+	int saved_dissblkdty;
+	int node = 0;
+
+	// Force full cacheline write-backs to boost traffic
+	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+	saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty;
+	l2c_ctl.cn78xx.dissblkdty = 1;
+	l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+		kbitno = 18;
+
+	// Byte lanes may be clear in the mask to indicate no testing on that
+	//lane.
+	datamask = bitmask;
+
+	/*
+	 * Add offset to both test regions to not clobber boot stuff
+	 * when running from L2 for NAND boot.
+	 */
+	p += AREA_BASE_OFFSET;	// make sure base is out of the way of boot
+
+	// final address must include LMC and node
+	p |= (lmc << 7);	/* Map address into proper interface */
+	p = bdk_numa_get_address(node, p);	/* Map to node */
+	p |= 1ull << 63;
+
+#define II_INC BIT_ULL(22)
+#define II_MAX BIT_ULL(22)
+#define K_INC  BIT_ULL(14)
+#define K_MAX  BIT_ULL(kbitno)
+#define J_INC  BIT_ULL(9)
+#define J_MAX  BIT_ULL(12)
+#define I_INC  BIT_ULL(3)
+#define I_MAX  BIT_ULL(7)
+
+	debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n",
+	      node, lmc, __func__, p, p + p2offset, 1ULL << kbitno);
+
+	// loops are ordered so that only a single 64-bit slot is written to
+	// each cacheline at one time, then the cachelines are forced out;
+	// this should maximize read/write traffic
+
+	// FIXME? extend the range of memory tested!!
+	for (ii = 0; ii < II_MAX; ii += II_INC) {
+		for (i = 0; i < I_MAX; i += I_INC) {
+			for (k = 0; k < K_MAX; k += K_INC) {
+				for (j = 0; j < J_MAX; j += J_INC) {
+					p1 = p + ii + k + j;
+					p2 = p1 + p2offset;
+
+					v = pattern1 * (p1 + i);
+					// write the same thing to both areas
+					v1 = v;
+
+					cvmx_write64_uint64(p1 + i, v);
+					cvmx_write64_uint64(p2 + i, v1);
+
+					CVMX_CACHE_WBIL2(p1, 0);
+					CVMX_CACHE_WBIL2(p2, 0);
+				}
+			}
+		}
+	}
+
+	CVMX_DCACHE_INVALIDATE;
+
+	debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc);
+
+	/* Make a series of passes over the memory areas. */
+
+	for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) {
+		u64 this_pattern = cvmx_rng_get_random64();
+
+		pattern2 ^= this_pattern;
+
+		/*
+		 * XOR the data with a random value, applying the change to both
+		 * memory areas.
+		 */
+
+		// FIXME? extend the range of memory tested!!
+		for (ii = 0; ii < II_MAX; ii += II_INC) {
+			// FIXME: rearranged, did not make much difference?
+			for (i = 0; i < I_MAX; i += I_INC) {
+				for (k = 0; k < K_MAX; k += K_INC) {
+					for (j = 0; j < J_MAX; j += J_INC) {
+						p1 = p + ii + k + j;
+						p2 = p1 + p2offset;
+
+						v = cvmx_read64_uint64(p1 +
+								      i) ^
+						    this_pattern;
+						v1 = cvmx_read64_uint64(p2 +
+								       i) ^
+						    this_pattern;
+
+						cvmx_write64_uint64(p1 + i, v);
+						cvmx_write64_uint64(p2 + i, v1);
+
+						CVMX_CACHE_WBIL2(p1, 0);
+						CVMX_CACHE_WBIL2(p2, 0);
+					}
+				}
+			}
+		}
+
+		CVMX_DCACHE_INVALIDATE;
+
+		debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n",
+		      node, lmc);
+
+		/*
+		 * Look for differences in the areas. If there is a mismatch,
+		 * reset both memory locations with the same pattern. Failing
+		 * to do so means that on all subsequent passes the pair of
+		 * locations remain out of sync giving spurious errors.
+		 */
+
+		// FIXME: Change the loop order so that an entire cache line
+		//        is compared at one time. This is so that a read
+		//        error that occurs *anywhere* on the cacheline will
+		//        be caught, rather than comparing only 1 cacheline
+		//        slot at a time, where an error on a different
+		//        slot will be missed that time around
+		// Does the above make sense?
+
+		// FIXME? extend the range of memory tested!!
+		for (ii = 0; ii < II_MAX; ii += II_INC) {
+			for (k = 0; k < K_MAX; k += K_INC) {
+				for (j = 0; j < J_MAX; j += J_INC) {
+					p1 = p + ii + k + j;
+					p2 = p1 + p2offset;
+
+					// process entire cachelines in the
+					//innermost loop
+					for (i = 0; i < I_MAX; i += I_INC) {
+						int bybit = 1;
+						// start in byte lane 0
+						u64 bymsk = 0xffULL;
+
+						// FIXME: this should predict
+						// what we find...???
+						v = ((p1 + i) * pattern1) ^
+							pattern2;
+						d1 = cvmx_read64_uint64(p1 + i);
+						d2 = cvmx_read64_uint64(p2 + i);
+
+						// union of error bits only in
+						// active byte lanes
+						xor = ((d1 ^ v) | (d2 ^ v)) &
+							datamask;
+
+						if (!xor)
+							continue;
+
+						// accumulate bad bits
+						bad_bits[0] |= xor;
+
+						while (xor != 0) {
+							debug("ERROR(%03d): [0x%016llX] [0x%016llX]  expected 0x%016llX d1 %016llX d2 %016llX\n",
+							      burst, p1, p2, v,
+							      d1, d2);
+							// error(s) in this lane
+							if (xor & bymsk) {
+								// set the byte
+								// error bit
+								errors |= bybit;
+								// clear byte
+								// lane in
+								// error bits
+								xor &= ~bymsk;
+								// clear the
+								// byte lane in
+								// the mask
+								datamask &= ~bymsk;
+#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
+								// nothing
+								// left to do
+								if (datamask == 0) {
+									return errors;
+								}
+#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
+							}
+							// move mask into
+							// next byte lane
+							bymsk <<= 8;
+							// move bit into next
+							// byte position
+							bybit <<= 1;
+						}
+					}
+					CVMX_CACHE_WBIL2(p1, 0);
+					CVMX_CACHE_WBIL2(p2, 0);
+				}
+			}
+		}
+
+		debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n",
+		      node, lmc);
+	}
+
+	if (xor_data) {		// send the bad bits back...
+		xor_data[0] = bad_bits[0];
+		xor_data[1] = bad_bits[1];	// let it be zeroed
+	}
+
+	// Restore original setting that could enable partial cacheline writes
+	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+	l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty;
+	l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+	return errors;
+}
+#endif /* USE_ORIG_TEST_DRAM_BYTE */
+
+static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank,
+		     int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
+{
+	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+	lmc_mr_mpr_ctl.u64 = 0;
+	lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
+	lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel;
+	lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank;
+	lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value =
+		(mr_wr_addr == -1) ? 1 : 0;
+	lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1;
+	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+	/* Mode Register Write */
+	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+}
+
+#define INV_A0_17(x)	((x) ^ 0x22bf8)
+
+static void set_mpr_mode(struct ddr_priv *priv, int rank_mask,
+			 int if_num, int dimm_count, int mpr, int bg1)
+{
+	int rankx;
+
+	debug("All Ranks: Set mpr mode = %x %c-side\n",
+	      mpr, (bg1 == 0) ? 'A' : 'B');
+
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+		if (bg1 == 0) {
+			/* MR3 A-side */
+			ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1);
+		} else {
+			/* MR3 B-side */
+			ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3,
+				 bg1);
+		}
+	}
+}
+
+static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num,
+			     int rank, int page, int location)
+{
+	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+	lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num));
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0;
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page;	/* Page */
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+	lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+	lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0;	/* Read=0, Write=1 */
+	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+	/* MPR register access sequence */
+	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+	debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
+	      lmc_mr_mpr_ctl.u64);
+	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+	debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+	debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable)
+{
+	union cvmx_lmcx_control lmc_control;
+	int save_rdimm_mode;
+
+	lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	save_rdimm_mode = lmc_control.s.rdimm_ena;
+	lmc_control.s.rdimm_ena = enable;
+	debug("Setting RDIMM_ENA = %x\n", enable);
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
+
+	return save_rdimm_mode;
+}
+
+static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank,
+			  int page, int location, u64 *mpr_data)
+{
+	do_ddr4_mpr_read(priv, if_num, rank, page, location);
+
+	mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+}
+
+/* Display MPR values for Page */
+static void display_mpr_page(struct ddr_priv *priv, int rank_mask,
+			     int if_num, int page)
+{
+	int rankx, location;
+	u64 mpr_data[3];
+
+	for (rankx = 0; rankx < 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ",
+		      if_num, rankx, page);
+		for (location = 0; location < 4; location++) {
+			ddr4_mpr_read(priv, if_num, rankx, page, location,
+				      mpr_data);
+			debug("0x%02llx ", mpr_data[0] & 0xFF);
+		}
+		debug("\n");
+
+	}			/* for (rankx = 0; rankx < 4; rankx++) */
+}
+
+static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank,
+			   int page, int location, u8 mpr_data)
+{
+	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+	lmc_mr_mpr_ctl.u64 = 0;
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data;
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page;	/* Page */
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+	lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+	lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1;	/* Read=0, Write=1 */
+	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+	/* MPR register access sequence */
+	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+	debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
+	      lmc_mr_mpr_ctl.u64);
+	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+	debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+	debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
+	      lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static void set_vref(struct ddr_priv *priv, int if_num, int rank,
+		     int range, int value)
+{
+	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+	union cvmx_lmcx_modereg_params3 lmc_modereg_params3;
+	int mr_wr_addr = 0;
+
+	lmc_mr_mpr_ctl.u64 = 0;
+	lmc_modereg_params3.u64 = lmc_rd(priv,
+					 CVMX_LMCX_MODEREG_PARAMS3(if_num));
+
+	/* A12:A10 tCCD_L */
+	mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10;
+	mr_wr_addr |= 1 << 7;	/* A7 1 = Enable(Training Mode) */
+	mr_wr_addr |= range << 6;	/* A6 vrefDQ Training Range */
+	mr_wr_addr |= value << 0;	/* A5:A0 vrefDQ Training Value */
+
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6;	/* Write MR6 */
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+	/* 0x8 = Mode Register Write */
+	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+	/*
+	 * It is vendor specific whether vref_value is captured with A7=1.
+	 * A subsequent MRS might be necessary.
+	 */
+	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+	mr_wr_addr &= ~(1 << 7);	/* A7 0 = Disable(Training Mode) */
+	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+}
+
+static void set_dram_output_inversion(struct ddr_priv *priv, int if_num,
+				      int dimm_count, int rank_mask,
+				      int inversion)
+{
+	union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl;
+	union cvmx_lmcx_dimmx_params lmc_dimmx_params;
+	union cvmx_lmcx_dimm_ctl lmc_dimm_ctl;
+	int dimm_no;
+
+	/* Don't touch extenced register control words */
+	lmc_ddr4_dimm_ctl.u64 = 0;
+	lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64);
+
+	debug("All DIMMs: Register Control Word          RC0 : %x\n",
+	      (inversion & 1));
+
+	for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
+		lmc_dimmx_params.u64 =
+		    lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num));
+		lmc_dimmx_params.s.rc0 =
+		    (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
+
+		lmc_wr(priv,
+		       CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num),
+		       lmc_dimmx_params.u64);
+	}
+
+	/* LMC0_DIMM_CTL */
+	lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+	lmc_dimm_ctl.s.dimm0_wmask = 0x1;
+	lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
+
+	debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+	      lmc_dimm_ctl.u64);
+	lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64);
+
+	oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);	/* Init RCW */
+}
+
+static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask,
+				    int if_num, int dimm_count, int pattern,
+				    int location_mask)
+{
+	int rankx;
+	int location;
+
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+		for (location = 0; location < 4; ++location) {
+			if (!(location_mask & (1 << location)))
+				continue;
+
+			ddr4_mpr_write(priv, if_num, rankx,
+				       /* page */ 0, /* location */ location,
+				       pattern);
+		}
+	}
+}
+
+static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask,
+				     int if_num, int dimm_count)
+{
+	int save_ref_zqcs_int;
+	union cvmx_lmcx_config lmc_config;
+
+	/*
+	 * Okay, here is the latest sequence.  This should work for all
+	 * chips and passes (78,88,73,etc).  This sequence should be run
+	 * immediately after DRAM INIT.  The basic idea is to write the
+	 * same pattern into each of the 4 MPR locations in the DRAM, so
+	 * that the same value is returned when doing MPR reads regardless
+	 * of the inversion state.  My advice is to put this into a
+	 * function, change_rdimm_mpr_pattern or something like that, so
+	 * that it can be called multiple times, as I think David wants a
+	 * clock-like pattern for OFFSET training, but does not want a
+	 * clock pattern for Bit-Deskew.  You should then be able to call
+	 * this at any point in the init sequence (after DRAM init) to
+	 * change the pattern to a new value.
+	 * Mike
+	 *
+	 * A correction: PHY doesn't need any pattern during offset
+	 * training, but needs clock like pattern for internal vref and
+	 * bit-dskew training.  So for that reason, these steps below have
+	 * to be conducted before those trainings to pre-condition
+	 * the pattern.  David
+	 *
+	 * Note: Step 3, 4, 8 and 9 have to be done through RDIMM
+	 * sequence. If you issue MRW sequence to do RCW write (in o78 pass
+	 * 1 at least), LMC will still do two commands because
+	 * CONTROL[RDIMM_ENA] is still set high. We don't want it to have
+	 * any unintentional mode register write so it's best to do what
+	 * Mike is doing here.
+	 * Andrew
+	 */
+
+	/* 1) Disable refresh (REF_ZQCS_INT = 0) */
+
+	debug("1) Disable refresh (REF_ZQCS_INT = 0)\n");
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+	lmc_config.cn78xx.ref_zqcs_int = 0;
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+	/*
+	 * 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
+	 * with MODEREG_PARAMS0[MPRLOC]=0,
+	 * MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
+	 * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+	 */
+
+	debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
+
+	/* A-side */
+	set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0);
+	/* B-side */
+	set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1);
+
+	/*
+	 * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
+	 * the value you would like directly into
+	 * MR_MPR_CTL[MR_WR_ADDR]
+	 */
+
+	/*
+	 * 3) Disable RCD Parity (if previously enabled) - parity does not
+	 * work if inversion disabled
+	 */
+
+	debug("3) Disable RCD Parity\n");
+
+	/*
+	 * 4) Disable Inversion in the RCD.
+	 * a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
+	 * may be easier to use the MRW sequence (seq_sel=8).  Just set
+	 * MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
+	 * MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg
+	 */
+
+	debug("4) Disable Inversion in the RCD.\n");
+
+	set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1);
+
+	/*
+	 * 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
+	 * non-inverted.
+	 */
+
+	debug("5) Disable CONTROL[RDIMM_ENA]\n");
+
+	set_rdimm_mode(priv, if_num, 0);
+
+	/*
+	 * 6) Write all 4 MPR registers with the desired pattern (have to
+	 * do this for all enabled ranks)
+	 * a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
+	 * MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern
+	 */
+
+	debug("6) Write all 4 MPR page 0 Training Patterns\n");
+
+	write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8);
+
+	/* 7) Re-enable RDIMM_ENA */
+
+	debug("7) Re-enable RDIMM_ENA\n");
+
+	set_rdimm_mode(priv, if_num, 1);
+
+	/* 8) Re-enable RDIMM inversion */
+
+	debug("8) Re-enable RDIMM inversion\n");
+
+	set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0);
+
+	/* 9) Re-enable RDIMM parity (if desired) */
+
+	debug("9) Re-enable RDIMM parity (if desired)\n");
+
+	/*
+	 * 10)Take B-side devices out of MPR mode (Run MRW sequence
+	 * (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
+	 * MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
+	 * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+	 */
+
+	debug("10)Take B-side devices out of MPR mode\n");
+
+	set_mpr_mode(priv, rank_mask, if_num, dimm_count,
+		     /* mpr */ 0, /* bg1 */ 1);
+
+	/*
+	 * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
+	 * set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR]
+	 */
+
+	/* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
+
+	debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+}
+
+static int validate_hwl_seq(int *wl, int *seq)
+{
+	// sequence index, step through the sequence array
+	int seqx;
+	int bitnum;
+
+	seqx = 0;
+
+	while (seq[seqx + 1] >= 0) {	// stop on next seq entry == -1
+		// but now, check current versus next
+		bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]];
+		// magic validity number (see matrix above)
+		if (!((1 << bitnum) & 0xBDE7))
+			return 1;
+		seqx++;
+	}
+
+	return 0;
+}
+
+static int validate_hw_wl_settings(int if_num,
+				   union cvmx_lmcx_wlevel_rankx
+				   *lmc_wlevel_rank, int is_rdimm, int ecc_ena)
+{
+	int wl[9], byte, errors;
+
+	// arrange the sequences so
+	// index 0 has byte 0, etc, ECC in middle
+	int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 };
+	// index 0 is ECC, then go down
+	int rseq1[] = { 8, 3, 2, 1, 0, -1 };
+	// index 0 has byte 4, then go up
+	int rseq2[] = { 4, 5, 6, 7, -1 };
+	// index 0 has byte 0, etc, no ECC
+	int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 };
+	// index 0 is byte 3, then go down, no ECC
+	int rseq1no[] = { 3, 2, 1, 0, -1 };
+
+	// in the CSR, bytes 0-7 are always data, byte 8 is ECC
+	for (byte = 0; byte < (8 + ecc_ena); byte++) {
+		// preprocess :-)
+		wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >>
+			    1) & 3;
+	}
+
+	errors = 0;
+	if (is_rdimm) {		// RDIMM order
+		errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
+		errors += validate_hwl_seq(wl, rseq2);
+	} else {		// UDIMM order
+		errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno);
+	}
+
+	return errors;
+}
+
+static unsigned int extr_wr(u64 u, int x)
+{
+	return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) |
+			      ((u >> (51 + x - 2)) & 0x4ULL));
+}
+
+static void insrt_wr(u64 *up, int x, int v)
+{
+	u64 u = *up;
+
+	u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x)));
+	*up = (u | ((v & 0x3ULL) << (x * 12 + 5)) |
+	       ((v & 0x4ULL) << (51 + x - 2)));
+}
+
+/* Read out Deskew Settings for DDR */
+
+struct deskew_bytes {
+	u16 bits[8];
+};
+
+struct deskew_data {
+	struct deskew_bytes bytes[9];
+};
+
+struct dac_data {
+	int bytes[9];
+};
+
+// T88 pass 1, skip 4=DAC
+static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
+// T88 Pass 2, skip 4=DAC and 5=DBI
+static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 };
+
+static void get_deskew_settings(struct ddr_priv *priv, int if_num,
+				struct deskew_data *dskdat)
+{
+	union cvmx_lmcx_phy_ctl phy_ctl;
+	union cvmx_lmcx_config lmc_config;
+	int bit_index;
+	int byte_lane, byte_limit;
+	// NOTE: these are for pass 2.x
+	int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X);
+	const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+	memset(dskdat, 0, sizeof(*dskdat));
+
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+	phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;	// set byte lane
+
+		for (bit_index = 0; bit_index < 8; ++bit_index) {
+			// set bit number and start read sequence
+			phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index];
+			phy_ctl.s.dsk_dbg_rd_start = 1;
+			lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+			// poll for read sequence to complete
+			do {
+				phy_ctl.u64 =
+					lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+			} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+			// record the data
+			dskdat->bytes[byte_lane].bits[bit_index] =
+				phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
+		}
+	}
+}
+
+static void display_deskew_settings(struct ddr_priv *priv, int if_num,
+				    struct deskew_data *dskdat,
+				    int print_enable)
+{
+	int byte_lane;
+	int bit_num;
+	u16 flags, deskew;
+	union cvmx_lmcx_config lmc_config;
+	int byte_limit;
+	const char *fc = " ?-=+*#&";
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+	if (print_enable) {
+		debug("N0.LMC%d: Deskew Data:              Bit =>      :",
+		      if_num);
+		for (bit_num = 7; bit_num >= 0; --bit_num)
+			debug(" %3d  ", bit_num);
+		debug("\n");
+	}
+
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+		if (print_enable)
+			debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
+			      if_num, byte_lane,
+			      (print_enable >= 3) ? "FINAL" : "     ");
+
+		for (bit_num = 7; bit_num >= 0; --bit_num) {
+			flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
+			deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
+
+			if (print_enable)
+				debug(" %3d %c", deskew, fc[flags ^ 1]);
+
+		}		/* for (bit_num = 7; bit_num >= 0; --bit_num) */
+
+		if (print_enable)
+			debug("\n");
+	}
+}
+
+#if ALLOW_BY_RANK_INIT
+static void override_deskew_settings(struct ddr_priv *priv, int if_num,
+				     struct deskew_data *dskdat)
+{
+	union cvmx_lmcx_phy_ctl phy_ctl;
+	union cvmx_lmcx_config lmc_config;
+
+	int bit, byte_lane, byte_limit;
+	u64 csr_data;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+	phy_ctl.s.phy_reset = 0;
+	phy_ctl.s.dsk_dbg_num_bits_sel = 1;
+	phy_ctl.s.dsk_dbg_offset = 0;
+	phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+	phy_ctl.s.dsk_dbg_wr_mode = 1;
+	phy_ctl.s.dsk_dbg_load_dis = 0;
+	phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+	phy_ctl.s.phy_dsk_reset = 0;
+
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+	lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+		csr_data = 0;
+		// FIXME: can we ignore DBI?
+		for (bit = 0; bit < 8; ++bit) {
+			// fetch input and adjust
+			u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) &
+				0x7F;
+
+			/*
+			 * lmc_general_purpose0.data[6:0]    // DQ0
+			 * lmc_general_purpose0.data[13:7]   // DQ1
+			 * lmc_general_purpose0.data[20:14]  // DQ2
+			 * lmc_general_purpose0.data[27:21]  // DQ3
+			 * lmc_general_purpose0.data[34:28]  // DQ4
+			 * lmc_general_purpose0.data[41:35]  // DQ5
+			 * lmc_general_purpose0.data[48:42]  // DQ6
+			 * lmc_general_purpose0.data[55:49]  // DQ7
+			 * lmc_general_purpose0.data[62:56]  // DBI
+			 */
+			csr_data |= (bits << (7 * bit));
+
+		} /* for (bit = 0; bit < 8; ++bit) */
+
+		// update GP0 with the bit data for this byte lane
+		lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data);
+		lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num));
+
+		// start the deskew load sequence
+		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+		phy_ctl.s.dsk_dbg_rd_start = 1;
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+		// poll for read sequence to complete
+		do {
+			udelay(100);
+			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+		} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+	}
+
+	// tell phy to use the new settings
+	phy_ctl.s.dsk_dbg_overwrt_ena = 1;
+	phy_ctl.s.dsk_dbg_rd_start = 0;
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+	phy_ctl.s.dsk_dbg_wr_mode = 0;
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void process_by_rank_dac(struct ddr_priv *priv, int if_num,
+				int rank_mask, struct dac_data *dacdat)
+{
+	union cvmx_lmcx_config lmc_config;
+	int rankx, byte_lane;
+	int byte_limit;
+	int rank_count;
+	struct dac_data dacsum;
+	int lane_probs;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+	memset((void *)&dacsum, 0, sizeof(dacsum));
+	rank_count = 0;
+	lane_probs = 0;
+
+	for (rankx = 0; rankx < 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+		rank_count++;
+
+		display_dac_dbi_settings(if_num, /*dac */ 1,
+					 lmc_config.s.ecc_ena,
+					 &dacdat[rankx].bytes[0],
+					 "By-Ranks VREF");
+		// sum
+		for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+			if (rank_count == 2) {
+				int ranks_diff =
+				    abs((dacsum.bytes[byte_lane] -
+					 dacdat[rankx].bytes[byte_lane]));
+
+				// FIXME: is 19 a good number?
+				if (ranks_diff > 19)
+					lane_probs |= (1 << byte_lane);
+			}
+			dacsum.bytes[byte_lane] +=
+			    dacdat[rankx].bytes[byte_lane];
+		}
+	}
+
+	// average
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++)
+		dacsum.bytes[byte_lane] /= rank_count;	// FIXME: nint?
+
+	display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena,
+				 &dacsum.bytes[0], "All-Rank VREF");
+
+	if (lane_probs) {
+		debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n",
+		      if_num, lane_probs);
+	}
+
+	// finally, write the averaged DAC values
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+		load_dac_override(priv, if_num, dacsum.bytes[byte_lane],
+				  byte_lane);
+	}
+}
+
+static void process_by_rank_dsk(struct ddr_priv *priv, int if_num,
+				int rank_mask, struct deskew_data *dskdat)
+{
+	union cvmx_lmcx_config lmc_config;
+	int rankx, lane, bit;
+	int byte_limit;
+	struct deskew_data dsksum, dskcnt;
+	u16 deskew;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+	memset((void *)&dsksum, 0, sizeof(dsksum));
+	memset((void *)&dskcnt, 0, sizeof(dskcnt));
+
+	for (rankx = 0; rankx < 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		// sum ranks
+		for (lane = 0; lane < byte_limit; lane++) {
+			for (bit = 0; bit < 8; ++bit) {
+				deskew = dskdat[rankx].bytes[lane].bits[bit];
+				// if flags indicate sat hi or lo, skip it
+				if (deskew & 6)
+					continue;
+
+				// clear flags
+				dsksum.bytes[lane].bits[bit] +=
+					deskew & ~7;
+				// count entries
+				dskcnt.bytes[lane].bits[bit] += 1;
+			}
+		}
+	}
+
+	// average ranks
+	for (lane = 0; lane < byte_limit; lane++) {
+		for (bit = 0; bit < 8; ++bit) {
+			int div = dskcnt.bytes[lane].bits[bit];
+
+			if (div > 0) {
+				dsksum.bytes[lane].bits[bit] /= div;
+				// clear flags
+				dsksum.bytes[lane].bits[bit] &= ~7;
+				// set LOCK
+				dsksum.bytes[lane].bits[bit] |= 1;
+			} else {
+				// FIXME? use reset value?
+				dsksum.bytes[lane].bits[bit] =
+					(64 << 3) | 1;
+			}
+		}
+	}
+
+	// TME for FINAL version
+	display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3);
+
+	// finally, write the averaged DESKEW values
+	override_deskew_settings(priv, if_num, &dsksum);
+}
+#endif /* ALLOW_BY_RANK_INIT */
+
+struct deskew_counts {
+	int saturated;		// number saturated
+	int unlocked;		// number unlocked
+	int nibrng_errs;	// nibble range errors
+	int nibunl_errs;	// nibble unlocked errors
+	int bitval_errs;	// bit value errors
+};
+
+#define MIN_BITVAL  17
+#define MAX_BITVAL 110
+
+static void validate_deskew_training(struct ddr_priv *priv, int rank_mask,
+				     int if_num, struct deskew_counts *counts,
+				     int print_flags)
+{
+	int byte_lane, bit_index, nib_num;
+	int nibrng_errs, nibunl_errs, bitval_errs;
+	union cvmx_lmcx_config lmc_config;
+	s16 nib_min[2], nib_max[2], nib_unl[2];
+	int byte_limit;
+	int print_enable = print_flags & 1;
+	struct deskew_data dskdat;
+	s16 flags, deskew;
+	const char *fc = " ?-=+*#&";
+	int bit_last;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+	memset(counts, 0, sizeof(struct deskew_counts));
+
+	get_deskew_settings(priv, if_num, &dskdat);
+
+	if (print_enable) {
+		debug("N0.LMC%d: Deskew Settings:          Bit =>      :",
+		      if_num);
+		for (bit_index = 7; bit_index >= 0; --bit_index)
+			debug(" %3d  ", bit_index);
+		debug("\n");
+	}
+
+	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+		if (print_enable)
+			debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
+			      if_num, byte_lane,
+			      (print_flags & 2) ? "FINAL" : "     ");
+
+		nib_min[0] = 127;
+		nib_min[1] = 127;
+		nib_max[0] = 0;
+		nib_max[1] = 0;
+		nib_unl[0] = 0;
+		nib_unl[1] = 0;
+
+		if (lmc_config.s.mode32b == 1 && byte_lane == 4) {
+			bit_last = 3;
+			if (print_enable)
+				debug("                        ");
+		} else {
+			bit_last = 7;
+		}
+
+		for (bit_index = bit_last; bit_index >= 0; --bit_index) {
+			nib_num = (bit_index > 3) ? 1 : 0;
+
+			flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
+			deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
+
+			counts->saturated += !!(flags & 6);
+
+			// Do range calc even when locked; it could happen
+			// that a bit is still unlocked after final retry,
+			// and we want to have an external retry if a RANGE
+			// error is present at exit...
+			nib_min[nib_num] = min(nib_min[nib_num], deskew);
+			nib_max[nib_num] = max(nib_max[nib_num], deskew);
+
+			if (!(flags & 1)) {	// only when not locked
+				counts->unlocked += 1;
+				nib_unl[nib_num] += 1;
+			}
+
+			if (print_enable)
+				debug(" %3d %c", deskew, fc[flags ^ 1]);
+		}
+
+		/*
+		 * Now look for nibble errors
+		 *
+		 * For bit 55, it looks like a bit deskew problem. When the
+		 * upper nibble of byte 6 needs to go to saturation, bit 7
+		 * of byte 6 locks prematurely at 64. For DIMMs with raw
+		 * card A and B, can we reset the deskew training when we
+		 * encounter this case? The reset criteria should be looking
+		 * at one nibble at a time for raw card A and B; if the
+		 * bit-deskew setting within a nibble is different by > 33,
+		 * we'll issue a reset to the bit deskew training.
+		 *
+		 * LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
+		 */
+		// upper nibble range, then lower nibble range
+		nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
+		nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
+
+		// check for nibble all unlocked
+		nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
+
+		// check for bit value errors, ie < 17 or > 110
+		// FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
+		bitval_errs = ((nib_max[1] > MAX_BITVAL) ||
+			       (nib_max[0] > MAX_BITVAL)) ? 1 : 0;
+		bitval_errs |= ((nib_min[1] < MIN_BITVAL) ||
+				(nib_min[0] < MIN_BITVAL)) ? 1 : 0;
+
+		if ((nibrng_errs != 0 || nibunl_errs != 0 ||
+		     bitval_errs != 0) && print_enable) {
+			debug(" %c%c%c",
+			      (nibrng_errs) ? 'R' : ' ',
+			      (nibunl_errs) ? 'U' : ' ',
+			      (bitval_errs) ? 'V' : ' ');
+		}
+
+		if (print_enable)
+			debug("\n");
+
+		counts->nibrng_errs |= (nibrng_errs << byte_lane);
+		counts->nibunl_errs |= (nibunl_errs << byte_lane);
+		counts->bitval_errs |= (bitval_errs << byte_lane);
+	}
+}
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+					int dac_value, int byte)
+{
+	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+	// single bytelanes incr by 1; A is for ALL
+	int bytex = (byte == 0x0A) ? byte : byte + 1;
+
+	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+	SET_DDR_DLL_CTL3(byte_sel, bytex);
+	SET_DDR_DLL_CTL3(offset, dac_value >> 1);
+
+	ddr_dll_ctl3.cn73xx.bit_select = 0x9;	/* No-op */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	ddr_dll_ctl3.cn73xx.bit_select = 0xC;	/* vref bypass setting load */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	ddr_dll_ctl3.cn73xx.bit_select = 0xD;	/* vref bypass on. */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	ddr_dll_ctl3.cn73xx.bit_select = 0x9;	/* No-op */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));	// flush writes
+
+	return (unsigned short)GET_DDR_DLL_CTL3(offset);
+}
+
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+// returns 9 entries (bytelanes 0 through 8) in settings[]
+// returns 0 if OK, -1 if a problem
+static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num,
+				 int dac_or_dbi, int *settings)
+{
+	union cvmx_lmcx_phy_ctl phy_ctl;
+	int byte_lane, bit_num;
+	int deskew;
+	int dac_value;
+	int new_deskew_layout = 0;
+
+	new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) ||
+		octeon_is_cpuid(OCTEON_CNF75XX);
+	new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) &&
+			      !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X));
+
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+	phy_ctl.s.dsk_dbg_clk_scaler = 3;
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+	bit_num = (dac_or_dbi) ? 4 : 5;
+	// DBI not available
+	if (bit_num == 5 && !new_deskew_layout)
+		return -1;
+
+	// FIXME: always assume ECC is available
+	for (byte_lane = 8; byte_lane >= 0; --byte_lane) {
+		//set byte lane and bit to read
+		phy_ctl.s.dsk_dbg_bit_sel = bit_num;
+		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+		//start read sequence
+		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+		phy_ctl.s.dsk_dbg_rd_start = 1;
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+		//poll for read sequence to complete
+		do {
+			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+		} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+		// keep the flag bits where they are for DBI
+		deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */
+		dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
+
+		settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
+	}
+
+	return 0;
+}
+
+// print out the DBI settings array
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+				     int ecc_ena, int *settings, char *title)
+{
+	int byte;
+	int flags;
+	int deskew;
+	const char *fc = " ?-=+*#&";
+
+	debug("N0.LMC%d: %s %s Settings %d:0 :",
+	      lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena);
+	// FIXME: what about 32-bit mode?
+	for (byte = (7 + ecc_ena); byte >= 0; --byte) {
+		if (dac_or_dbi) {	// DAC
+			flags = 1;	// say its locked to get blank
+			deskew = settings[byte] & 0xff;
+		} else {	// DBI
+			flags = settings[byte] & 7;
+			deskew = (settings[byte] >> 3) & 0x7f;
+		}
+		debug(" %3d %c", deskew, fc[flags ^ 1]);
+	}
+	debug("\n");
+}
+
+// Find a HWL majority
+static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc,
+			    int *xc, int *cc)
+{
+	int ix, ic;
+
+	*mx = -1;
+	*mc = 0;
+	*xc = 0;
+	*cc = 0;
+
+	for (ix = 0; ix < 4; ix++) {
+		ic = bc->bitcnt[ix];
+
+		// make a bitmask of the ones with a count
+		if (ic > 0) {
+			*mc |= (1 << ix);
+			*cc += 1;	// count how many had non-zero counts
+		}
+
+		// find the majority
+		if (ic > *xc) {	// new max?
+			*xc = ic;	// yes
+			*mx = ix;	// set its index
+		}
+	}
+
+	return (*mx << 1);
+}
+
+// Evaluate the DAC settings array
+static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings)
+{
+	int byte, lane, dac, comp;
+	int last = (if_64b) ? 7 : 3;
+
+	// FIXME: change the check...???
+	// this looks only for sets of DAC values whose max/min differ by a lot
+	// let any EVEN go so long as it is within range...
+	for (byte = (last + ecc_ena); byte >= 0; --byte) {
+		dac = settings[byte] & 0xff;
+
+		for (lane = (last + ecc_ena); lane >= 0; --lane) {
+			comp = settings[lane] & 0xff;
+			if (abs((dac - comp)) > 25)
+				return 1;
+		}
+	}
+
+	return 0;
+}
+
+static void perform_offset_training(struct ddr_priv *priv, int rank_mask,
+				    int if_num)
+{
+	union cvmx_lmcx_phy_ctl lmc_phy_ctl;
+	u64 orig_phy_ctl;
+	const char *s;
+
+	/*
+	 * 4.8.6 LMC Offset Training
+	 *
+	 * LMC requires input-receiver offset training.
+	 *
+	 * 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
+	 */
+	lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+	orig_phy_ctl = lmc_phy_ctl.u64;
+	lmc_phy_ctl.s.dac_on = 1;
+
+	// allow full CSR override
+	s = lookup_env_ull(priv, "ddr_phy_ctl");
+	if (s)
+		lmc_phy_ctl.u64 = strtoull(s, NULL, 0);
+
+	// do not print or write if CSR does not change...
+	if (lmc_phy_ctl.u64 != orig_phy_ctl) {
+		debug("PHY_CTL                                       : 0x%016llx\n",
+		      lmc_phy_ctl.u64);
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64);
+	}
+
+	/*
+	 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
+	 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+	 *
+	 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+	 */
+	/* Start Offset training sequence */
+	oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B);
+}
+
+static void perform_internal_vref_training(struct ddr_priv *priv,
+					   int rank_mask, int if_num)
+{
+	union cvmx_lmcx_ext_config ext_config;
+	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+
+	// First, make sure all byte-lanes are out of VREF bypass mode
+	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+	ddr_dll_ctl3.cn78xx.byte_sel = 0x0A;	/* all byte-lanes */
+	ddr_dll_ctl3.cn78xx.bit_select = 0x09;	/* No-op */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	ddr_dll_ctl3.cn78xx.bit_select = 0x0E;	/* vref bypass off. */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	ddr_dll_ctl3.cn78xx.bit_select = 0x09;	/* No-op */
+	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+	/*
+	 * 4.8.7 LMC Internal vref Training
+	 *
+	 * LMC requires input-reference-voltage training.
+	 *
+	 * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
+	 */
+	ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+	ext_config.s.vrefint_seq_deskew = 0;
+
+	ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+		      ext_config.s.vrefint_seq_deskew);
+
+	lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+	/*
+	 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
+	 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+	 *
+	 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+	 */
+	/* Start LMC Internal vref Training */
+	oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+}
+
+#define dbg_avg(format, ...)	// debug(format, ##__VA_ARGS__)
+
+static int process_samples_average(s16 *bytes, int num_samples,
+				   int lmc, int lane_no)
+{
+	int i, sadj, sum = 0, ret, asum, trunc;
+	s16 smin = 32767, smax = -32768;
+	int nmin, nmax;
+	//int rng;
+
+	dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
+
+	for (i = 0; i < num_samples; i++) {
+		sum += bytes[i];
+		if (bytes[i] < smin)
+			smin = bytes[i];
+		if (bytes[i] > smax)
+			smax = bytes[i];
+		dbg_avg(" %3d", bytes[i]);
+	}
+
+	nmin = 0;
+	nmax = 0;
+	for (i = 0; i < num_samples; i++) {
+		if (bytes[i] == smin)
+			nmin += 1;
+		if (bytes[i] == smax)
+			nmax += 1;
+	}
+	dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)",
+		smin, nmin, smax, nmax, rng, num_samples);
+
+	asum = sum - smin - smax;
+
+	sadj = divide_nint(asum * 10, (num_samples - 2));
+
+	trunc = asum / (num_samples - 2);
+
+	dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc);
+
+	sadj = divide_nint(sadj, 10);
+	if (trunc & 1)
+		ret = trunc;
+	else if (sadj & 1)
+		ret = sadj;
+	else
+		ret = trunc + 1;
+
+	dbg_avg(" -> %3d\n", ret);
+
+	return ret;
+}
+
+#define DEFAULT_SAT_RETRY_LIMIT    11	// 1 + 10 retries
+
+#define default_lock_retry_limit   20	// 20 retries
+#define deskew_validation_delay    10000	// 10 millisecs
+
+static int perform_deskew_training(struct ddr_priv *priv, int rank_mask,
+				   int if_num, int spd_rawcard_aorb)
+{
+	int unsaturated, locked;
+	int sat_retries, sat_retries_limit;
+	int lock_retries, lock_retries_total, lock_retries_limit;
+	int print_first;
+	int print_them_all;
+	struct deskew_counts dsk_counts;
+	union cvmx_lmcx_phy_ctl phy_ctl;
+	char *s;
+	int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+		octeon_is_cpuid(OCTEON_CNF75XX);
+	int disable_bitval_retries = 1;	// default to disabled
+
+	debug("N0.LMC%d: Performing Deskew Training.\n", if_num);
+
+	sat_retries = 0;
+	sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT;
+
+	lock_retries_total = 0;
+	unsaturated = 0;
+	print_first = 1;	// print the first one
+	// set to true for printing all normal deskew attempts
+	print_them_all = 0;
+
+	// provide override for bitval_errs causing internal VREF retries
+	s = env_get("ddr_disable_bitval_retries");
+	if (s)
+		disable_bitval_retries = !!simple_strtoul(s, NULL, 0);
+
+	lock_retries_limit = default_lock_retry_limit;
+	if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) ||
+	    (octeon_is_cpuid(OCTEON_CN73XX)) ||
+	    (octeon_is_cpuid(OCTEON_CNF75XX)))
+		lock_retries_limit *= 2;	// give new chips twice as many
+
+	do {			/* while (sat_retries < sat_retry_limit) */
+		/*
+		 * 4.8.8 LMC Deskew Training
+		 *
+		 * LMC requires input-read-data deskew training.
+		 *
+		 * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
+		 */
+
+		union cvmx_lmcx_ext_config ext_config;
+
+		ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+		ext_config.s.vrefint_seq_deskew = 1;
+
+		ddr_seq_print
+		    ("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+		     ext_config.s.vrefint_seq_deskew);
+
+		lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+		/*
+		 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
+		 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+		 *
+		 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+		 */
+
+		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+		phy_ctl.s.phy_dsk_reset = 1;	/* RESET Deskew sequence */
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+		/* LMC Deskew Training */
+		oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+		lock_retries = 0;
+
+perform_deskew_training:
+
+		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+		phy_ctl.s.phy_dsk_reset = 0;	/* Normal Deskew sequence */
+		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+		/* LMC Deskew Training */
+		oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+		// Moved this from validate_deskew_training
+		/* Allow deskew results to stabilize before evaluating them. */
+		udelay(deskew_validation_delay);
+
+		// Now go look at lock and saturation status...
+		validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+					 print_first);
+		// after printing the first and not doing them all, no more
+		if (print_first && !print_them_all)
+			print_first = 0;
+
+		unsaturated = (dsk_counts.saturated == 0);
+		locked = (dsk_counts.unlocked == 0);
+
+		// only do locking retries if unsaturated or rawcard A or B,
+		// otherwise full SAT retry
+		if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) {
+			if (!locked) {	// and not locked
+				lock_retries++;
+				lock_retries_total++;
+				if (lock_retries <= lock_retries_limit) {
+					goto perform_deskew_training;
+				} else {
+					debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n",
+					      if_num, lock_retries_limit);
+				}
+			} else {
+				// only print if we did try
+				if (lock_retries_total > 0)
+					debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n",
+					      if_num, lock_retries);
+			}
+		}		/* if (unsaturated || spd_rawcard_aorb) */
+
+		++sat_retries;
+
+		/*
+		 * At this point, check for a DDR4 RDIMM that will not
+		 * benefit from SAT retries; if so, exit
+		 */
+		if (spd_rawcard_aorb && !has_no_sat) {
+			debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
+			      if_num);
+			break;	// no sat or lock retries
+		}
+
+	} while (!unsaturated && (sat_retries < sat_retries_limit));
+
+	debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n",
+	      if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ?
+	      "Timed Out" : "Completed", sat_retries - 1, lock_retries_total);
+
+	// FIXME? add saturation to reasons for fault return - give it a
+	// chance via Internal VREF
+	// FIXME? add OPTIONAL bit value to reasons for fault return -
+	// give it a chance via Internal VREF
+	if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 ||
+	    (dsk_counts.bitval_errs != 0 && !disable_bitval_retries) ||
+	    !unsaturated) {
+		debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n",
+		      if_num);
+		// FIXME: do we want this output always for errors?
+		validate_deskew_training(priv, rank_mask, if_num,
+					 &dsk_counts, 1);
+		return -1;	// we did retry locally, they did not help
+	}
+
+	// NOTE: we (currently) always print one last training validation
+	// before starting Read Leveling...
+
+	return 0;
+}
+
+#define SCALING_FACTOR (1000)
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config
+static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl,
+				    int rank_count, int dram_connection)
+{
+	u64 reff_s;
+	u64 rser_s = (dram_connection) ? 0 : 15;
+	u64 vdd = 1200;
+	u64 vref;
+	// 99 == HiZ
+	u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+			1 * 1024 * 1024 : rtt_wr);
+	u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) &&
+					       (rtt_wr != 0))) ?
+			  1 * 1024 * 1024 : rtt_park);
+	u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+	int vref_value;
+	u64 rangepc = 6000;	// range1 base
+	u64 vrefpc;
+	int vref_range = 0;
+
+	reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s));
+
+	vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) /
+		(rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR;
+
+	vref = (vref * vdd) / 2 / SCALING_FACTOR;
+
+	vrefpc = (vref * 100 * 100) / vdd;
+
+	if (vrefpc < rangepc) {	// < range1 base, use range2
+		vref_range = 1 << 6;	// set bit A6 for range2
+		rangepc = 4500;	// range2 base is 45%
+	}
+
+	vref_value = divide_nint(vrefpc - rangepc, 65);
+	if (vref_value < 0)
+		vref_value = vref_range;	// set to base of range
+	else
+		vref_value |= vref_range;
+
+	debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n",
+	      rtt_wr, rtt_park, dqx_ctl, rank_count);
+	debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n",
+	      rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range,
+	      vref_range ? 2 : 1);
+
+	return vref_value;
+}
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs
+static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00,
+				    int rtt_park_01,
+				    int dqx_ctl, int rtt_nom,
+				    int dram_connection)
+{
+	u64 rser = (dram_connection) ? 0 : 15;
+	u64 vdd = 1200;
+	u64 vl, vlp, vcm;
+	u64 rd0, rd1, rpullup;
+	// 99 == HiZ
+	u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+			1 * 1024 * 1024 : rtt_wr);
+	u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00);
+	u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01);
+	u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+	u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom);
+	int vref_value;
+	u64 rangepc = 6000;	// range1 base
+	u64 vrefpc;
+	int vref_range = 0;
+
+	// rd0 = (RTT_NOM (parallel) RTT_WR) +  =
+	// ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER
+	rd0 = divide_nint((rtt_nom_s * rtt_wr_s),
+			  (rtt_nom_s + rtt_wr_s)) + rser;
+
+	// rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER =
+	// ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER
+	rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s),
+			  (rtt_park_00_s + rtt_park_01_s)) + rser;
+
+	// rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1)
+	rpullup = divide_nint((rd0 * rd1), (rd0 + rd1));
+
+	// vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2
+	vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup));
+
+	// vlp = ((RSER / rd0) * (1.2 - vl)) + vl
+	vlp = divide_nint((rser * (vdd - vl)), rd0) + vl;
+
+	// vcm = (vlp + 1.2) / 2
+	vcm = divide_nint((vlp + vdd), 2);
+
+	// vrefpc = (vcm / 1.2) * 100
+	vrefpc = divide_nint((vcm * 100 * 100), vdd);
+
+	if (vrefpc < rangepc) {	// < range1 base, use range2
+		vref_range = 1 << 6;	// set bit A6 for range2
+		rangepc = 4500;	// range2 base is 45%
+	}
+
+	vref_value = divide_nint(vrefpc - rangepc, 65);
+	if (vref_value < 0)
+		vref_value = vref_range;	// set to base of range
+	else
+		vref_value |= vref_range;
+
+	debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n",
+	      rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value,
+	      vref_value);
+
+	return vref_value;
+}
+
+// NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
+static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx,
+			    int dimm_count, int rank_count,
+			    struct impedence_values *imp_values,
+			    int is_stacked_die, int dram_connection)
+{
+	int computed_final_vref_value = 0;
+	int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT;
+	const char *s;
+	int rtt_wr, dqx_ctl, rtt_nom, index;
+	union cvmx_lmcx_modereg_params1 lmc_modereg_params1;
+	union cvmx_lmcx_modereg_params2 lmc_modereg_params2;
+	union cvmx_lmcx_comp_ctl2 comp_ctl2;
+	int rtt_park;
+	int rtt_park_00;
+	int rtt_park_01;
+
+	debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n",
+	      if_num, rankx, __func__, dram_connection);
+
+	// allow some overrides...
+	s = env_get("ddr_adjust_computed_vref");
+	if (s) {
+		enable_adjust = !!simple_strtoul(s, NULL, 0);
+		if (!enable_adjust) {
+			debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n",
+			      if_num, rankx);
+		}
+	}
+
+	s = env_get("ddr_set_computed_vref");
+	if (s) {
+		int new_vref = simple_strtoul(s, NULL, 0);
+
+		debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n",
+		      if_num, rankx, new_vref, new_vref);
+		return new_vref;
+	}
+
+	/*
+	 * Calculate an alternative to the measured vref value
+	 * but only for configurations we know how to...
+	 */
+	// We have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
+	// and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot
+	// configs, and can use the 2-rank 2-slot code for 1-rank DIMMs
+	// in 2-slot configs.
+
+	lmc_modereg_params1.u64 =
+	    lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+	lmc_modereg_params2.u64 =
+	    lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num));
+	comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+	dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
+
+	// WR always comes from the current rank
+	index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03;
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+		index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04;
+	rtt_wr = imp_values->rtt_wr_ohms[index];
+
+	// separate calculations for 1 vs 2 DIMMs per LMC
+	if (dimm_count == 1) {
+		// PARK comes from this rank if 1-rank, otherwise other rank
+		index =
+		    (lmc_modereg_params2.u64 >>
+		     ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
+		rtt_park = imp_values->rtt_nom_ohms[index];
+		computed_final_vref_value =
+		    compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl,
+					     rank_count, dram_connection);
+	} else {
+		// get both PARK values from the other DIMM
+		index =
+		    (lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) &
+		    0x07;
+		rtt_park_00 = imp_values->rtt_nom_ohms[index];
+		index =
+		    (lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) &
+		    0x07;
+		rtt_park_01 = imp_values->rtt_nom_ohms[index];
+		// NOM comes from this rank if 1-rank, otherwise other rank
+		index =
+		    (lmc_modereg_params1.u64 >>
+		     ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
+		rtt_nom = imp_values->rtt_nom_ohms[index];
+		computed_final_vref_value =
+		    compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01,
+					     dqx_ctl, rtt_nom, dram_connection);
+	}
+
+	if (enable_adjust) {
+		union cvmx_lmcx_config lmc_config;
+		union cvmx_lmcx_control lmc_control;
+
+		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+		lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+		/*
+		 *  New computed vref = existing computed vref – X
+		 *
+		 * The value of X is depending on different conditions.
+		 * Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked
+		 * die 2Rx4, so I conclude the results into two conditions:
+		 *
+		 * 1. Stacked Die: 2Rx4
+		 * 1-slot: offset = 7. i, e New computed vref = existing
+		 * computed vref – 7
+		 * 2-slot: offset = 6
+		 *
+		 * 2. Regular: 2Rx4
+		 * 1-slot: offset = 3
+		 * 2-slot:  offset = 2
+		 */
+		// we know we never get called unless DDR4, so test just
+		// the other conditions
+		if (lmc_control.s.rdimm_ena == 1 &&
+		    rank_count == 2 && lmc_config.s.mode_x4dev) {
+			// it must first be RDIMM and 2-rank and x4
+			int adj;
+
+			// now do according to stacked die or not...
+			if (is_stacked_die)
+				adj = (dimm_count == 1) ? -7 : -6;
+			else
+				adj = (dimm_count == 1) ? -3 : -2;
+
+			// we must have adjusted it, so print it out if
+			// verbosity is right
+			debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
+			      if_num, rankx, computed_final_vref_value,
+			      computed_final_vref_value,
+			      computed_final_vref_value + adj,
+			      computed_final_vref_value + adj);
+			computed_final_vref_value += adj;
+		}
+	}
+
+	return computed_final_vref_value;
+}
+
+static void unpack_rlevel_settings(int if_bytemask, int ecc_ena,
+				   struct rlevel_byte_data *rlevel_byte,
+				   union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank)
+{
+	if ((if_bytemask & 0xff) == 0xff) {
+		if (ecc_ena) {
+			rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7;
+			rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6;
+			rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5;
+			rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4;
+			/* ECC */
+			rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8;
+		} else {
+			rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;
+			rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;
+			rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;
+			rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;
+		}
+	} else {
+		rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8;	/* unused */
+		rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;	/* unused */
+		rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;	/* unused */
+		rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;	/* unused */
+		rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;	/* ECC */
+	}
+
+	rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3;
+	rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2;
+	rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1;
+	rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0;
+}
+
+static void pack_rlevel_settings(int if_bytemask, int ecc_ena,
+				 struct rlevel_byte_data *rlevel_byte,
+				 union cvmx_lmcx_rlevel_rankx
+				 *final_rlevel_rank)
+{
+	union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank;
+
+	if ((if_bytemask & 0xff) == 0xff) {
+		if (ecc_ena) {
+			lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay;
+			lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay;
+			lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay;
+			lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay;
+			/* ECC */
+			lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay;
+		} else {
+			lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+			lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+			lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+			lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+		}
+	} else {
+		lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay;
+		lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+		lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+		lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+		lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+	}
+
+	lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay;
+	lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay;
+	lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay;
+	lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay;
+
+	*final_rlevel_rank = lmc_rlevel_rank;
+}
+
+/////////////////// These are the RLEVEL settings display routines
+
+// flags
+#define WITH_NOTHING 0
+#define WITH_SCORE   1
+#define WITH_AVERAGE 2
+#define WITH_FINAL   4
+#define WITH_COMPUTE 8
+
+static void do_display_rl(int if_num,
+			  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+			  int rank, int flags, int score)
+{
+	char score_buf[16];
+	char *msg_buf;
+	char hex_buf[20];
+
+	if (flags & WITH_SCORE) {
+		snprintf(score_buf, sizeof(score_buf), "(%d)", score);
+	} else {
+		score_buf[0] = ' ';
+		score_buf[1] = 0;
+	}
+
+	if (flags & WITH_AVERAGE) {
+		msg_buf = "  DELAY AVERAGES  ";
+	} else if (flags & WITH_FINAL) {
+		msg_buf = "  FINAL SETTINGS  ";
+	} else if (flags & WITH_COMPUTE) {
+		msg_buf = "  COMPUTED DELAYS ";
+	} else {
+		snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+			 (unsigned long long)lmc_rlevel_rank.u64);
+		msg_buf = hex_buf;
+	}
+
+	debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
+	      if_num, rank, lmc_rlevel_rank.s.status, msg_buf,
+	      lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7,
+	      lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5,
+	      lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3,
+	      lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1,
+	      lmc_rlevel_rank.s.byte0, score_buf);
+}
+
+static void display_rl(int if_num,
+		       union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank)
+{
+	do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0);
+}
+
+static void display_rl_with_score(int if_num,
+				  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+				  int rank, int score)
+{
+	do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score);
+}
+
+static void display_rl_with_final(int if_num,
+				  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+				  int rank)
+{
+	do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0);
+}
+
+static void display_rl_with_computed(int if_num,
+				     union cvmx_lmcx_rlevel_rankx
+				     lmc_rlevel_rank, int rank, int score)
+{
+	do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score);
+}
+
+// flag values
+#define WITH_RODT_BLANK      0
+#define WITH_RODT_SKIPPING   1
+#define WITH_RODT_BESTROW    2
+#define WITH_RODT_BESTSCORE  3
+// control
+#define SKIP_SKIPPING 1
+
+static const char *with_rodt_canned_msgs[4] = {
+	"          ", "SKIPPING  ", "BEST ROW  ", "BEST SCORE"
+};
+
+static void display_rl_with_rodt(int if_num,
+				 union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+				 int rank, int score,
+				 int nom_ohms, int rodt_ohms, int flag)
+{
+	const char *msg_buf;
+	char set_buf[20];
+
+#if SKIP_SKIPPING
+	if (flag == WITH_RODT_SKIPPING)
+		return;
+#endif
+
+	msg_buf = with_rodt_canned_msgs[flag];
+	if (nom_ohms < 0) {
+		snprintf(set_buf, sizeof(set_buf), "    RODT %3d    ",
+			 rodt_ohms);
+	} else {
+		snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms,
+			 rodt_ohms);
+	}
+
+	debug("N0.LMC%d.R%d: Rlevel %s   %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
+	      if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8,
+	      lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6,
+	      lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4,
+	      lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2,
+	      lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score);
+}
+
+static void do_display_wl(int if_num,
+			  union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+			  int rank, int flags)
+{
+	char *msg_buf;
+	char hex_buf[20];
+
+	if (flags & WITH_FINAL) {
+		msg_buf = "  FINAL SETTINGS  ";
+	} else {
+		snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+			 (unsigned long long)lmc_wlevel_rank.u64);
+		msg_buf = hex_buf;
+	}
+
+	debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+	      if_num, rank, lmc_wlevel_rank.s.status, msg_buf,
+	      lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7,
+	      lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5,
+	      lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3,
+	      lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1,
+	      lmc_wlevel_rank.s.byte0);
+}
+
+static void display_wl(int if_num,
+		       union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank)
+{
+	do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING);
+}
+
+static void display_wl_with_final(int if_num,
+				  union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+				  int rank)
+{
+	do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL);
+}
+
+// pretty-print bitmask adjuster
+static u64 ppbm(u64 bm)
+{
+	if (bm != 0ul) {
+		while ((bm & 0x0fful) == 0ul)
+			bm >>= 4;
+	}
+
+	return bm;
+}
+
+// xlate PACKED index to UNPACKED index to use with rlevel_byte
+#define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4))
+// xlate UNPACKED index to PACKED index to use with rlevel_bitmask
+#define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i))
+
+// flag values
+#define WITH_WL_BITMASKS      0
+#define WITH_RL_BITMASKS      1
+#define WITH_RL_MASK_SCORES   2
+#define WITH_RL_SEQ_SCORES    3
+
+static void do_display_bm(int if_num, int rank, void *bm,
+			  int flags, int ecc)
+{
+	if (flags == WITH_WL_BITMASKS) {
+		// wlevel_bitmask array in PACKED index order, so just
+		// print them
+		int *bitmasks = (int *)bm;
+
+		debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks                 : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
+		      if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6],
+		      bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2],
+		      bitmasks[1], bitmasks[0]
+			);
+	} else if (flags == WITH_RL_BITMASKS) {
+		// rlevel_bitmask array in PACKED index order, so just
+		// print them
+		struct rlevel_bitmask *rlevel_bitmask =
+			(struct rlevel_bitmask *)bm;
+
+		debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks        8:0      : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
+		      if_num, rank, ppbm(rlevel_bitmask[8].bm),
+		      ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm),
+		      ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm),
+		      ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm),
+		      ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm)
+			);
+	} else if (flags == WITH_RL_MASK_SCORES) {
+		// rlevel_bitmask array in PACKED index order, so just
+		// print them
+		struct rlevel_bitmask *rlevel_bitmask =
+			(struct rlevel_bitmask *)bm;
+
+		debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+		      if_num, rank, rlevel_bitmask[8].errs,
+		      rlevel_bitmask[7].errs, rlevel_bitmask[6].errs,
+		      rlevel_bitmask[5].errs, rlevel_bitmask[4].errs,
+		      rlevel_bitmask[3].errs, rlevel_bitmask[2].errs,
+		      rlevel_bitmask[1].errs, rlevel_bitmask[0].errs);
+	} else if (flags == WITH_RL_SEQ_SCORES) {
+		// rlevel_byte array in UNPACKED index order, so xlate
+		// and print them
+		struct rlevel_byte_data *rlevel_byte =
+			(struct rlevel_byte_data *)bm;
+
+		debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+		      if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs,
+		      rlevel_byte[XPU(7, ecc)].sqerrs,
+		      rlevel_byte[XPU(6, ecc)].sqerrs,
+		      rlevel_byte[XPU(5, ecc)].sqerrs,
+		      rlevel_byte[XPU(4, ecc)].sqerrs,
+		      rlevel_byte[XPU(3, ecc)].sqerrs,
+		      rlevel_byte[XPU(2, ecc)].sqerrs,
+		      rlevel_byte[XPU(1, ecc)].sqerrs,
+		      rlevel_byte[XPU(0, ecc)].sqerrs);
+	}
+}
+
+static void display_wl_bm(int if_num, int rank, int *bitmasks)
+{
+	do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
+}
+
+static void display_rl_bm(int if_num, int rank,
+			  struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+	do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS,
+		      ecc_ena);
+}
+
+static void display_rl_bm_scores(int if_num, int rank,
+				 struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+	do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES,
+		      ecc_ena);
+}
+
+static void display_rl_seq_scores(int if_num, int rank,
+				  struct rlevel_byte_data *bytes, int ecc_ena)
+{
+	do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
+}
+
+#define RODT_OHMS_COUNT        8
+#define RTT_NOM_OHMS_COUNT     8
+#define RTT_NOM_TABLE_COUNT    8
+#define RTT_WR_OHMS_COUNT      8
+#define DIC_OHMS_COUNT         3
+#define DRIVE_STRENGTH_COUNT  15
+
+static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = {
+	0, 40, 60, 80, 120, 240, 34, 48 };
+static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+	0, 60, 120, 40, 240, 48, 80, 34 };
+static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+	0, 4, 2, 6, 1, 5, 3, 7 };
+// setting HiZ ohms to 99 for computed vref
+static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = {
+	0, 120, 240, 99, 80 };
+static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 };
+static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = {
+	0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 };
+static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = {
+	0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+struct impedence_values ddr4_impedence_val = {
+	.rodt_ohms = ddr4_rodt_ohms,
+	.rtt_nom_ohms = ddr4_rtt_nom_ohms,
+	.rtt_nom_table = ddr4_rtt_nom_table,
+	.rtt_wr_ohms = ddr4_rtt_wr_ohms,
+	.dic_ohms = ddr4_dic_ohms,
+	.drive_strength = ddr4_drive_strength,
+	.dqx_strength = ddr4_dqx_strength,
+};
+
+static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = {
+	0, 20, 30, 40, 60, 120, 0, 0 };
+static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+	0, 60, 120, 40, 20, 30, 0, 0 };
+static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+	0, 2, 1, 3, 5, 4, 0, 0 };
+static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 };
+static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 };
+static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = {
+	0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+static struct impedence_values ddr3_impedence_val = {
+	.rodt_ohms = ddr3_rodt_ohms,
+	.rtt_nom_ohms = ddr3_rtt_nom_ohms,
+	.rtt_nom_table = ddr3_rtt_nom_table,
+	.rtt_wr_ohms = ddr3_rtt_wr_ohms,
+	.dic_ohms = ddr3_dic_ohms,
+	.drive_strength = ddr3_drive_strength,
+	.dqx_strength = ddr3_drive_strength,
+};
+
+static u64 hertz_to_psecs(u64 hertz)
+{
+	/* Clock in psecs */
+	return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz);
+}
+
+#define DIVIDEND_SCALE 1000	/* Scale to avoid rounding error. */
+
+static u64 psecs_to_mts(u64 psecs)
+{
+	return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE),
+				       psecs), DIVIDEND_SCALE);
+}
+
+#define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m))))
+
+static unsigned long pretty_psecs_to_mts(u64 psecs)
+{
+	u64 ret = 0;		// default to error
+
+	if (WITHIN(psecs, 2500, 1))
+		ret = 800;
+	else if (WITHIN(psecs, 1875, 1))
+		ret = 1066;
+	else if (WITHIN(psecs, 1500, 1))
+		ret = 1333;
+	else if (WITHIN(psecs, 1250, 1))
+		ret = 1600;
+	else if (WITHIN(psecs, 1071, 1))
+		ret = 1866;
+	else if (WITHIN(psecs, 937, 1))
+		ret = 2133;
+	else if (WITHIN(psecs, 833, 1))
+		ret = 2400;
+	else if (WITHIN(psecs, 750, 1))
+		ret = 2666;
+	return ret;
+}
+
+static u64 mts_to_hertz(u64 mts)
+{
+	return ((mts * 1000 * 1000) / 2);
+}
+
+static int compute_rc3x(int64_t tclk_psecs)
+{
+	long speed;
+	long tclk_psecs_min, tclk_psecs_max;
+	long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
+	int rc3x;
+
+#define ENCODING_BASE 1240
+
+	data_rate_mhz = psecs_to_mts(tclk_psecs);
+
+	/*
+	 * 2400 MT/s is a special case. Using integer arithmetic it rounds
+	 * from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
+	 * proper setting from the table.
+	 */
+	if (tclk_psecs == 833)
+		data_rate_mhz = 2400;
+
+	for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
+		int error = 0;
+
+		/* Clock in psecs */
+		tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00));
+		/* Clock in psecs */
+		tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18));
+
+		data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
+		data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
+
+		/* Force alingment to multiple to avound rounding errors. */
+		data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
+		data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
+
+		error += (speed + 00 != data_rate_mhz_min);
+		error += (speed + 20 != data_rate_mhz_max);
+
+		rc3x = (speed - ENCODING_BASE) / 20;
+
+		if (data_rate_mhz <= (speed + 20))
+			break;
+	}
+
+	return rc3x;
+}
+
+/*
+ * static global variables needed, so that functions (loops) can be
+ * restructured from the main huge function. Its not elegant, but the
+ * only way to break the original functions like init_octeon3_ddr3_interface()
+ * into separate logical smaller functions with less indentation levels.
+ */
+static int if_num __section(".data");
+static u32 if_mask __section(".data");
+static int ddr_hertz __section(".data");
+
+static struct ddr_conf *ddr_conf __section(".data");
+static const struct dimm_odt_config *odt_1rank_config __section(".data");
+static const struct dimm_odt_config *odt_2rank_config __section(".data");
+static const struct dimm_odt_config *odt_4rank_config __section(".data");
+static struct dimm_config *dimm_config_table __section(".data");
+static const struct dimm_odt_config *odt_config __section(".data");
+static const struct ddr3_custom_config *c_cfg __section(".data");
+
+static int odt_idx __section(".data");
+
+static ulong tclk_psecs __section(".data");
+static ulong eclk_psecs __section(".data");
+
+static int row_bits __section(".data");
+static int col_bits __section(".data");
+static int num_banks __section(".data");
+static int num_ranks __section(".data");
+static int dram_width __section(".data");
+static int dimm_count __section(".data");
+/* Accumulate and report all the errors before giving up */
+static int fatal_error __section(".data");
+/* Flag that indicates safe DDR settings should be used */
+static int safe_ddr_flag __section(".data");
+/* Octeon II Default: 64bit interface width */
+static int if_64b __section(".data");
+static int if_bytemask __section(".data");
+static u32 mem_size_mbytes __section(".data");
+static unsigned int didx __section(".data");
+static int bank_bits __section(".data");
+static int bunk_enable __section(".data");
+static int rank_mask __section(".data");
+static int column_bits_start __section(".data");
+static int row_lsb __section(".data");
+static int pbank_lsb __section(".data");
+static int use_ecc __section(".data");
+static int mtb_psec __section(".data");
+static short ftb_dividend __section(".data");
+static short ftb_divisor __section(".data");
+static int taamin __section(".data");
+static int tckmin __section(".data");
+static int cl __section(".data");
+static int min_cas_latency __section(".data");
+static int max_cas_latency __section(".data");
+static int override_cas_latency __section(".data");
+static int ddr_rtt_nom_auto __section(".data");
+static int ddr_rodt_ctl_auto __section(".data");
+
+static int spd_addr __section(".data");
+static int spd_org __section(".data");
+static int spd_banks __section(".data");
+static int spd_rdimm __section(".data");
+static int spd_dimm_type __section(".data");
+static int spd_ecc __section(".data");
+static u32 spd_cas_latency __section(".data");
+static int spd_mtb_dividend __section(".data");
+static int spd_mtb_divisor __section(".data");
+static int spd_tck_min __section(".data");
+static int spd_taa_min __section(".data");
+static int spd_twr __section(".data");
+static int spd_trcd __section(".data");
+static int spd_trrd __section(".data");
+static int spd_trp __section(".data");
+static int spd_tras __section(".data");
+static int spd_trc __section(".data");
+static int spd_trfc __section(".data");
+static int spd_twtr __section(".data");
+static int spd_trtp __section(".data");
+static int spd_tfaw __section(".data");
+static int spd_addr_mirror __section(".data");
+static int spd_package __section(".data");
+static int spd_rawcard __section(".data");
+static int spd_rawcard_aorb __section(".data");
+static int spd_rdimm_registers __section(".data");
+static int spd_thermal_sensor __section(".data");
+
+static int is_stacked_die __section(".data");
+static int is_3ds_dimm __section(".data");
+// 3DS: logical ranks per package rank
+static int lranks_per_prank __section(".data");
+// 3DS: logical ranks bits
+static int lranks_bits __section(".data");
+// in Mbits; only used for 3DS
+static int die_capacity __section(".data");
+
+static enum ddr_type ddr_type __section(".data");
+
+static int twr __section(".data");
+static int trcd __section(".data");
+static int trrd __section(".data");
+static int trp __section(".data");
+static int tras __section(".data");
+static int trc __section(".data");
+static int trfc __section(".data");
+static int twtr __section(".data");
+static int trtp __section(".data");
+static int tfaw __section(".data");
+
+static int ddr4_tckavgmin __section(".data");
+static int ddr4_tckavgmax __section(".data");
+static int ddr4_trdcmin __section(".data");
+static int ddr4_trpmin __section(".data");
+static int ddr4_trasmin __section(".data");
+static int ddr4_trcmin __section(".data");
+static int ddr4_trfc1min __section(".data");
+static int ddr4_trfc2min __section(".data");
+static int ddr4_trfc4min __section(".data");
+static int ddr4_tfawmin __section(".data");
+static int ddr4_trrd_smin __section(".data");
+static int ddr4_trrd_lmin __section(".data");
+static int ddr4_tccd_lmin __section(".data");
+
+static int wl_mask_err __section(".data");
+static int wl_loops __section(".data");
+static int default_rtt_nom[4] __section(".data");
+static int dyn_rtt_nom_mask __section(".data");
+static struct impedence_values *imp_val __section(".data");
+static char default_rodt_ctl __section(".data");
+// default to disabled (ie, try LMC restart, not chip reset)
+static int ddr_disable_chip_reset __section(".data");
+static const char *dimm_type_name __section(".data");
+static int match_wl_rtt_nom __section(".data");
+
+#if SWL_TRY_HWL_ALT
+struct hwl_alt_by_rank {
+	u16 hwl_alt_mask;	// mask of bytelanes with alternate
+	u16 hwl_alt_delay[9];	// bytelane alternate avail if mask=1
+};
+
+static struct hwl_alt_by_rank hwl_alts[4] __section(".data");
+#endif /* SWL_TRY_HWL_ALT */
+
+#define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3	// was: 5
+static int internal_retries __section(".data");
+
+static int deskew_training_errors __section(".data");
+static struct deskew_counts deskew_training_results __section(".data");
+static int disable_deskew_training __section(".data");
+static int restart_if_dsk_incomplete __section(".data");
+static int dac_eval_retries __section(".data");
+static int dac_settings[9] __section(".data");
+static int num_samples __section(".data");
+static int sample __section(".data");
+static int lane __section(".data");
+static int last_lane __section(".data");
+static int total_dac_eval_retries __section(".data");
+static int dac_eval_exhausted __section(".data");
+
+#define DEFAULT_DAC_SAMPLES 7	// originally was 5
+#define DAC_RETRIES_LIMIT   2
+
+struct bytelane_sample {
+	s16 bytes[DEFAULT_DAC_SAMPLES];
+};
+
+static struct bytelane_sample lanes[9] __section(".data");
+
+static char disable_sequential_delay_check __section(".data");
+static int wl_print __section(".data");
+
+#if ALLOW_BY_RANK_INIT
+static int enable_by_rank_init __section(".data");
+static int saved_rank_mask __section(".data");
+static int by_rank __section(".data");
+static struct deskew_data rank_dsk[4] __section(".data");
+static struct dac_data rank_dac[4] __section(".data");
+#endif /* ALLOW_BY_RANK_INIT */
+
+// todo: perhaps remove node at some time completely?
+static int node __section(".data");
+static int base_cl __section(".data");
+
+/* Parameters from DDR3 Specifications */
+#define DDR3_TREFI         7800000	/* 7.8 us */
+#define DDR3_ZQCS          80000ull	/* 80 ns */
+#define DDR3_ZQCS_INTERNAL 1280000000ull	/* 128ms/100 */
+#define DDR3_TCKE          5000	/* 5 ns */
+#define DDR3_TMRD          4	/* 4 nCK */
+#define DDR3_TDLLK         512	/* 512 nCK */
+#define DDR3_TMPRR         1	/* 1 nCK */
+#define DDR3_TWLMRD        40	/* 40 nCK */
+#define DDR3_TWLDQSEN      25	/* 25 nCK */
+
+/* Parameters from DDR4 Specifications */
+#define DDR4_TMRD          8	/* 8 nCK */
+#define DDR4_TDLLK         768	/* 768 nCK */
+
+static void lmc_config(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_config cfg;
+	char *s;
+
+	cfg.u64 = 0;
+
+	cfg.cn78xx.ecc_ena = use_ecc;
+	cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb);
+	cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb);
+
+	cfg.cn78xx.idlepower = 0;	/* Disabled */
+
+	s = lookup_env(priv, "ddr_idlepower");
+	if (s)
+		cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0);
+
+	cfg.cn78xx.forcewrite = 0;	/* Disabled */
+	/* Include memory reference address in the ECC */
+	cfg.cn78xx.ecc_adr = 1;
+
+	s = lookup_env(priv, "ddr_ecc_adr");
+	if (s)
+		cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0);
+
+	cfg.cn78xx.reset = 0;
+
+	/*
+	 * Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
+	 * RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
+	 * ref_zqcs_int(18:7) to
+	 * RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
+	 * value should always be greater than 32, to account for
+	 * resistor calibration delays.
+	 */
+
+	cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f);
+	cfg.cn78xx.ref_zqcs_int |=
+		((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) /
+			      (512 * 128))) & 0xfff) << 7);
+
+	cfg.cn78xx.early_dqx = 1;	/* Default to enabled */
+
+	s = lookup_env(priv, "ddr_early_dqx");
+	if (!s)
+		s = lookup_env(priv, "ddr%d_early_dqx", if_num);
+
+	if (s)
+		cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0);
+
+	cfg.cn78xx.sref_with_dll = 0;
+
+	cfg.cn78xx.rank_ena = bunk_enable;
+	cfg.cn78xx.rankmask = rank_mask;	/* Set later */
+	cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) &
+		rank_mask;
+	/* Set once and don't change it. */
+	cfg.cn78xx.init_status = rank_mask;
+	cfg.cn78xx.early_unload_d0_r0 = 0;
+	cfg.cn78xx.early_unload_d0_r1 = 0;
+	cfg.cn78xx.early_unload_d1_r0 = 0;
+	cfg.cn78xx.early_unload_d1_r1 = 0;
+	cfg.cn78xx.scrz = 0;
+	if (octeon_is_cpuid(OCTEON_CN70XX))
+		cfg.cn78xx.mode32b = 1;	/* Read-only. Always 1. */
+	cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0;
+	cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) &&
+				 (dram_width == 16)) ? 0 : 1;
+
+	s = lookup_env_ull(priv, "ddr_config");
+	if (s)
+		cfg.u64 = simple_strtoull(s, NULL, 0);
+	debug("LMC_CONFIG                                    : 0x%016llx\n",
+	      cfg.u64);
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+}
+
+static void lmc_control(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_control ctrl;
+	char *s;
+
+	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	ctrl.s.rdimm_ena = spd_rdimm;
+	ctrl.s.bwcnt = 0;	/* Clear counter later */
+	if (spd_rdimm)
+		ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm);
+	else
+		ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm);
+	ctrl.s.pocas = 0;
+	ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2);
+	ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0;
+	ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0;
+	ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0;
+	ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0;
+	ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0;
+	/* discards writes to addresses that don't exist in the DRAM */
+	ctrl.s.nxm_write_en = 0;
+	ctrl.s.max_write_batch = 8;
+	ctrl.s.xor_bank = 1;
+	ctrl.s.auto_dclkdis = 1;
+	ctrl.s.int_zqcs_dis = 0;
+	ctrl.s.ext_zqcs_dis = 0;
+	ctrl.s.bprch = 1;
+	ctrl.s.wodt_bprch = 1;
+	ctrl.s.rodt_bprch = 1;
+
+	s = lookup_env(priv, "ddr_xor_bank");
+	if (s)
+		ctrl.s.xor_bank = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_2t");
+	if (s)
+		ctrl.s.ddr2t = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_fprch2");
+	if (s)
+		ctrl.s.fprch2 = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_bprch");
+	if (s)
+		ctrl.s.bprch = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_wodt_bprch");
+	if (s)
+		ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rodt_bprch");
+	if (s)
+		ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_int_zqcs_dis");
+	if (s)
+		ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_ext_zqcs_dis");
+	if (s)
+		ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env_ull(priv, "ddr_control");
+	if (s)
+		ctrl.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("LMC_CONTROL                                   : 0x%016llx\n",
+	      ctrl.u64);
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+static void lmc_timing_params0(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_timing_params0 tp0;
+	unsigned int trp_value;
+	char *s;
+
+	tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num));
+
+	trp_value = divide_roundup(trp, tclk_psecs) - 1;
+	debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
+	      trp_value +
+	      (unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull),
+					    tclk_psecs)) - 4);
+	s = lookup_env_ull(priv, "ddr_use_old_trp");
+	if (s) {
+		if (!!simple_strtoull(s, NULL, 0)) {
+			trp_value +=
+			    divide_roundup(max(4ull * tclk_psecs, 7500ull),
+					   tclk_psecs) - 4;
+			debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n",
+			      trp_value);
+		}
+	}
+
+	tp0.cn78xx.txpr =
+	    divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull),
+			   16 * tclk_psecs);
+	tp0.cn78xx.trp = trp_value & 0x1f;
+	tp0.cn78xx.tcksre =
+	    divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1;
+
+	if (ddr_type == DDR4_DRAM) {
+		int tzqinit = 4;	// Default to 4, for all DDR4 speed bins
+
+		s = lookup_env(priv, "ddr_tzqinit");
+		if (s)
+			tzqinit = simple_strtoul(s, NULL, 0);
+
+		tp0.cn78xx.tzqinit = tzqinit;
+		/* Always 8. */
+		tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs,
+						  (16 * tclk_psecs));
+		tp0.cn78xx.tcke =
+		    divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE),
+				   tclk_psecs) - 1;
+		tp0.cn78xx.tmrd =
+		    divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1;
+		tp0.cn78xx.tmod = 25;	/* 25 is the max allowed */
+		tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256);
+	} else {
+		tp0.cn78xx.tzqinit =
+		    divide_roundup(max(512ull * tclk_psecs, 640000ull),
+				   (256 * tclk_psecs));
+		tp0.cn78xx.tzqcs =
+		    divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS),
+				   (16 * tclk_psecs));
+		tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1;
+		tp0.cn78xx.tmrd =
+		    divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1;
+		tp0.cn78xx.tmod =
+		    divide_roundup(max(12ull * tclk_psecs, 15000ull),
+				   tclk_psecs) - 1;
+		tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256);
+	}
+
+	s = lookup_env_ull(priv, "ddr_timing_params0");
+	if (s)
+		tp0.u64 = simple_strtoull(s, NULL, 0);
+	debug("TIMING_PARAMS0                                : 0x%016llx\n",
+	      tp0.u64);
+	lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64);
+}
+
+static void lmc_timing_params1(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_timing_params1 tp1;
+	unsigned int txp, temp_trcd, trfc_dlr;
+	char *s;
+
+	tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+
+	/* .cn70xx. */
+	tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1;
+
+	tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1;
+
+	temp_trcd = divide_roundup(trcd, tclk_psecs);
+	if (temp_trcd > 15) {
+		debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n",
+		      temp_trcd);
+	}
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) {
+		/*
+		 * Let .trcd=0 serve as a flag that the field has
+		 * overflowed. Must use Additive Latency mode as a
+		 * workaround.
+		 */
+		temp_trcd = 0;
+	}
+	tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf;
+	tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1;
+
+	tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1;
+	tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs);
+
+	if (ddr_type == DDR4_DRAM) {
+		/* Workaround bug 24006. Use Trrd_l. */
+		tp1.cn78xx.trrd =
+		    divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+	} else {
+		tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2;
+	}
+
+	/*
+	 * tXP = max( 3nCK, 7.5 ns)     DDR3-800   tCLK = 2500 psec
+	 * tXP = max( 3nCK, 7.5 ns)     DDR3-1066  tCLK = 1875 psec
+	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1333  tCLK = 1500 psec
+	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1600  tCLK = 1250 psec
+	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1866  tCLK = 1071 psec
+	 * tXP = max( 3nCK, 6.0 ns)     DDR3-2133  tCLK =  937 psec
+	 */
+	txp = (tclk_psecs < 1875) ? 6000 : 7500;
+	txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp),
+			     tclk_psecs) - 1;
+	if (txp > 7) {
+		debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n",
+		      txp);
+	}
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7)
+		txp = 7;	// max it out
+	tp1.cn78xx.txp = (txp >> 0) & 7;
+	tp1.cn78xx.txp_ext = (txp >> 3) & 1;
+
+	tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs,
+					   4 * tclk_psecs);
+	tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs,
+					     4 * tclk_psecs);
+	tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs);
+	tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull),
+					   tclk_psecs) - 1;
+
+	if (ddr_type == DDR4_DRAM && is_3ds_dimm) {
+		/*
+		 * 4 Gb: tRFC_DLR = 90 ns
+		 * 8 Gb: tRFC_DLR = 120 ns
+		 * 16 Gb: tRFC_DLR = 190 ns FIXME?
+		 */
+		if (die_capacity == 0x1000)	// 4 Gbit
+			trfc_dlr = 90;
+		else if (die_capacity == 0x2000)	// 8 Gbit
+			trfc_dlr = 120;
+		else if (die_capacity == 0x4000)	// 16 Gbit
+			trfc_dlr = 190;
+		else
+			trfc_dlr = 0;
+
+		if (trfc_dlr == 0) {
+			debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
+			      node, if_num, die_capacity);
+		} else {
+			tp1.cn78xx.trfc_dlr =
+			    divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs);
+			debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
+			      node, if_num, tp1.cn78xx.trfc_dlr);
+		}
+	}
+
+	s = lookup_env_ull(priv, "ddr_timing_params1");
+	if (s)
+		tp1.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("TIMING_PARAMS1                                : 0x%016llx\n",
+	      tp1.u64);
+	lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+}
+
+static void lmc_timing_params2(struct ddr_priv *priv)
+{
+	if (ddr_type == DDR4_DRAM) {
+		union cvmx_lmcx_timing_params1 tp1;
+		union cvmx_lmcx_timing_params2 tp2;
+		int temp_trrd_l;
+
+		tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+		tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num));
+		debug("TIMING_PARAMS2                                : 0x%016llx\n",
+		      tp2.u64);
+
+		temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+		if (temp_trrd_l > 7)
+			debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n",
+			      temp_trrd_l);
+		if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7)
+			temp_trrd_l = 7;	// max it out
+		tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7;
+		tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1;
+
+		// correct for 1600-2400
+		tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull),
+					   tclk_psecs) - 1;
+		tp2.s.t_rw_op_max = 7;
+		tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull),
+					    tclk_psecs) - 1;
+
+		debug("TIMING_PARAMS2                                : 0x%016llx\n",
+		      tp2.u64);
+		lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64);
+
+		/*
+		 * Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
+		 * for Write-to-Read operations to the same Bank Group
+		 */
+		if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) {
+			tp1.cn78xx.twtr = tp2.s.twtr_l - 4;
+			debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n",
+			      tp1.cn78xx.twtr, tp2.s.twtr_l);
+			debug("TIMING_PARAMS1                                : 0x%016llx\n",
+			      tp1.u64);
+			lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+		}
+	}
+}
+
+static void lmc_modereg_params0(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_modereg_params0 mp0;
+	int param;
+	char *s;
+
+	mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+
+	if (ddr_type == DDR4_DRAM) {
+		mp0.s.cwl = 0;	/* 1600 (1250ps) */
+		if (tclk_psecs < 1250)
+			mp0.s.cwl = 1;	/* 1866 (1072ps) */
+		if (tclk_psecs < 1072)
+			mp0.s.cwl = 2;	/* 2133 (938ps) */
+		if (tclk_psecs < 938)
+			mp0.s.cwl = 3;	/* 2400 (833ps) */
+		if (tclk_psecs < 833)
+			mp0.s.cwl = 4;	/* 2666 (750ps) */
+		if (tclk_psecs < 750)
+			mp0.s.cwl = 5;	/* 3200 (625ps) */
+	} else {
+		/*
+		 ** CSR   CWL         CAS write Latency
+		 ** ===   ===   =================================
+		 **  0      5   (           tCK(avg) >=   2.5 ns)
+		 **  1      6   (2.5 ns   > tCK(avg) >= 1.875 ns)
+		 **  2      7   (1.875 ns > tCK(avg) >= 1.5   ns)
+		 **  3      8   (1.5 ns   > tCK(avg) >= 1.25  ns)
+		 **  4      9   (1.25 ns  > tCK(avg) >= 1.07  ns)
+		 **  5     10   (1.07 ns  > tCK(avg) >= 0.935 ns)
+		 **  6     11   (0.935 ns > tCK(avg) >= 0.833 ns)
+		 **  7     12   (0.833 ns > tCK(avg) >= 0.75  ns)
+		 */
+
+		mp0.s.cwl = 0;
+		if (tclk_psecs < 2500)
+			mp0.s.cwl = 1;
+		if (tclk_psecs < 1875)
+			mp0.s.cwl = 2;
+		if (tclk_psecs < 1500)
+			mp0.s.cwl = 3;
+		if (tclk_psecs < 1250)
+			mp0.s.cwl = 4;
+		if (tclk_psecs < 1070)
+			mp0.s.cwl = 5;
+		if (tclk_psecs < 935)
+			mp0.s.cwl = 6;
+		if (tclk_psecs < 833)
+			mp0.s.cwl = 7;
+	}
+
+	s = lookup_env(priv, "ddr_cwl");
+	if (s)
+		mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5;
+
+	if (ddr_type == DDR4_DRAM) {
+		debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+		      mp0.s.cwl + 9
+		      + ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl);
+	} else {
+		debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+		      mp0.s.cwl + 5, mp0.s.cwl);
+	}
+
+	mp0.s.mprloc = 0;
+	mp0.s.mpr = 0;
+	mp0.s.dll = (ddr_type == DDR4_DRAM);	/* 0 for DDR3 and 1 for DDR4 */
+	mp0.s.al = 0;
+	mp0.s.wlev = 0;		/* Read Only */
+	if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM)
+		mp0.s.tdqs = 0;
+	else
+		mp0.s.tdqs = 1;
+	mp0.s.qoff = 0;
+
+	s = lookup_env(priv, "ddr_cl");
+	if (s) {
+		cl = simple_strtoul(s, NULL, 0);
+		debug("CAS Latency                                   : %6d\n",
+		      cl);
+	}
+
+	if (ddr_type == DDR4_DRAM) {
+		mp0.s.cl = 0x0;
+		if (cl > 9)
+			mp0.s.cl = 0x1;
+		if (cl > 10)
+			mp0.s.cl = 0x2;
+		if (cl > 11)
+			mp0.s.cl = 0x3;
+		if (cl > 12)
+			mp0.s.cl = 0x4;
+		if (cl > 13)
+			mp0.s.cl = 0x5;
+		if (cl > 14)
+			mp0.s.cl = 0x6;
+		if (cl > 15)
+			mp0.s.cl = 0x7;
+		if (cl > 16)
+			mp0.s.cl = 0x8;
+		if (cl > 18)
+			mp0.s.cl = 0x9;
+		if (cl > 20)
+			mp0.s.cl = 0xA;
+		if (cl > 24)
+			mp0.s.cl = 0xB;
+	} else {
+		mp0.s.cl = 0x2;
+		if (cl > 5)
+			mp0.s.cl = 0x4;
+		if (cl > 6)
+			mp0.s.cl = 0x6;
+		if (cl > 7)
+			mp0.s.cl = 0x8;
+		if (cl > 8)
+			mp0.s.cl = 0xA;
+		if (cl > 9)
+			mp0.s.cl = 0xC;
+		if (cl > 10)
+			mp0.s.cl = 0xE;
+		if (cl > 11)
+			mp0.s.cl = 0x1;
+		if (cl > 12)
+			mp0.s.cl = 0x3;
+		if (cl > 13)
+			mp0.s.cl = 0x5;
+		if (cl > 14)
+			mp0.s.cl = 0x7;
+		if (cl > 15)
+			mp0.s.cl = 0x9;
+	}
+
+	mp0.s.rbt = 0;		/* Read Only. */
+	mp0.s.tm = 0;
+	mp0.s.dllr = 0;
+
+	param = divide_roundup(twr, tclk_psecs);
+
+	if (ddr_type == DDR4_DRAM) {	/* DDR4 */
+		mp0.s.wrp = 1;
+		if (param > 12)
+			mp0.s.wrp = 2;
+		if (param > 14)
+			mp0.s.wrp = 3;
+		if (param > 16)
+			mp0.s.wrp = 4;
+		if (param > 18)
+			mp0.s.wrp = 5;
+		if (param > 20)
+			mp0.s.wrp = 6;
+		if (param > 24)	/* RESERVED in DDR4 spec */
+			mp0.s.wrp = 7;
+	} else {		/* DDR3 */
+		mp0.s.wrp = 1;
+		if (param > 5)
+			mp0.s.wrp = 2;
+		if (param > 6)
+			mp0.s.wrp = 3;
+		if (param > 7)
+			mp0.s.wrp = 4;
+		if (param > 8)
+			mp0.s.wrp = 5;
+		if (param > 10)
+			mp0.s.wrp = 6;
+		if (param > 12)
+			mp0.s.wrp = 7;
+	}
+
+	mp0.s.ppd = 0;
+
+	s = lookup_env(priv, "ddr_wrp");
+	if (s)
+		mp0.s.wrp = simple_strtoul(s, NULL, 0);
+
+	debug("%-45s : %d, [0x%x]\n",
+	      "Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp);
+
+	s = lookup_env_ull(priv, "ddr_modereg_params0");
+	if (s)
+		mp0.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("MODEREG_PARAMS0                               : 0x%016llx\n",
+	      mp0.u64);
+	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+}
+
+static void lmc_modereg_params1(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_modereg_params1 mp1;
+	char *s;
+	int i;
+
+	mp1.u64 = odt_config[odt_idx].modereg_params1.u64;
+
+#ifdef CAVIUM_ONLY
+	/*
+	 * Special request: mismatched DIMM support. Slot 0: 2-Rank,
+	 * Slot 1: 1-Rank
+	 */
+	if (rank_mask == 0x7) {	/* 2-Rank, 1-Rank */
+		mp1.s.rtt_nom_00 = 0;
+		mp1.s.rtt_nom_01 = 3;	/* rttnom_40ohm */
+		mp1.s.rtt_nom_10 = 3;	/* rttnom_40ohm */
+		mp1.s.rtt_nom_11 = 0;
+		dyn_rtt_nom_mask = 0x6;
+	}
+#endif /* CAVIUM_ONLY */
+
+	s = lookup_env(priv, "ddr_rtt_nom_mask");
+	if (s)
+		dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0);
+
+	/*
+	 * Save the original rtt_nom settings before sweeping through
+	 * settings.
+	 */
+	default_rtt_nom[0] = mp1.s.rtt_nom_00;
+	default_rtt_nom[1] = mp1.s.rtt_nom_01;
+	default_rtt_nom[2] = mp1.s.rtt_nom_10;
+	default_rtt_nom[3] = mp1.s.rtt_nom_11;
+
+	ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto;
+
+	for (i = 0; i < 4; ++i) {
+		u64 value;
+
+		s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2),
+			       !!(i & 1));
+		if (!s)
+			s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num,
+				       !!(i & 2), !!(i & 1));
+		if (s) {
+			value = simple_strtoul(s, NULL, 0);
+			mp1.u64 &= ~((u64)0x7 << (i * 12 + 9));
+			mp1.u64 |= ((value & 0x7) << (i * 12 + 9));
+			default_rtt_nom[i] = value;
+			ddr_rtt_nom_auto = 0;
+		}
+	}
+
+	s = lookup_env(priv, "ddr_rtt_nom");
+	if (!s)
+		s = lookup_env(priv, "ddr%d_rtt_nom", if_num);
+	if (s) {
+		u64 value;
+
+		value = simple_strtoul(s, NULL, 0);
+
+		if (dyn_rtt_nom_mask & 1) {
+			default_rtt_nom[0] = value;
+			mp1.s.rtt_nom_00 = value;
+		}
+		if (dyn_rtt_nom_mask & 2) {
+			default_rtt_nom[1] = value;
+			mp1.s.rtt_nom_01 = value;
+		}
+		if (dyn_rtt_nom_mask & 4) {
+			default_rtt_nom[2] = value;
+			mp1.s.rtt_nom_10 = value;
+		}
+		if (dyn_rtt_nom_mask & 8) {
+			default_rtt_nom[3] = value;
+			mp1.s.rtt_nom_11 = value;
+		}
+
+		ddr_rtt_nom_auto = 0;
+	}
+
+	for (i = 0; i < 4; ++i) {
+		u64 value;
+
+		s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1));
+		if (!s)
+			s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num,
+				       !!(i & 2), !!(i & 1));
+		if (s) {
+			value = simple_strtoul(s, NULL, 0);
+			insrt_wr(&mp1.u64, i, value);
+		}
+	}
+
+	// Make sure 78XX pass 1 has valid RTT_WR settings, because
+	// configuration files may be set-up for later chips, and
+	// 78XX pass 1 supports no RTT_WR extension bits
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+		for (i = 0; i < 4; ++i) {
+			// if 80 or undefined
+			if (extr_wr(mp1.u64, i) > 3) {
+				// FIXME? always insert 120
+				insrt_wr(&mp1.u64, i, 1);
+				debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n",
+				      !!(i & 2), i & 1);
+			}
+		}
+	}
+
+	s = lookup_env(priv, "ddr_dic");
+	if (s) {
+		u64 value = simple_strtoul(s, NULL, 0);
+
+		for (i = 0; i < 4; ++i) {
+			mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+			mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+		}
+	}
+
+	for (i = 0; i < 4; ++i) {
+		u64 value;
+
+		s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1));
+		if (s) {
+			value = simple_strtoul(s, NULL, 0);
+			mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+			mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+		}
+	}
+
+	s = lookup_env_ull(priv, "ddr_modereg_params1");
+	if (s)
+		mp1.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+	      mp1.s.rtt_nom_11,
+	      mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00);
+
+	debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+	      extr_wr(mp1.u64, 3),
+	      extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0));
+
+	debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+	      imp_val->dic_ohms[mp1.s.dic_11],
+	      imp_val->dic_ohms[mp1.s.dic_10],
+	      imp_val->dic_ohms[mp1.s.dic_01],
+	      imp_val->dic_ohms[mp1.s.dic_00],
+	      mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00);
+
+	debug("MODEREG_PARAMS1                               : 0x%016llx\n",
+	      mp1.u64);
+	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64);
+}
+
+static void lmc_modereg_params2(struct ddr_priv *priv)
+{
+	char *s;
+	int i;
+
+	if (ddr_type == DDR4_DRAM) {
+		union cvmx_lmcx_modereg_params2 mp2;
+
+		mp2.u64 = odt_config[odt_idx].modereg_params2.u64;
+
+		s = lookup_env(priv, "ddr_rtt_park");
+		if (s) {
+			u64 value = simple_strtoul(s, NULL, 0);
+
+			for (i = 0; i < 4; ++i) {
+				mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+				mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+			}
+		}
+
+		for (i = 0; i < 4; ++i) {
+			u64 value;
+
+			s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2),
+				       !!(i & 1));
+			if (s) {
+				value = simple_strtoul(s, NULL, 0);
+				mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+				mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+			}
+		}
+
+		s = lookup_env_ull(priv, "ddr_modereg_params2");
+		if (s)
+			mp2.u64 = simple_strtoull(s, NULL, 0);
+
+		debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+		      mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01,
+		      mp2.s.rtt_park_00);
+
+		debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
+		      mp2.s.vref_range_11,
+		      mp2.s.vref_range_10,
+		      mp2.s.vref_range_01, mp2.s.vref_range_00);
+
+		debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
+		      mp2.s.vref_value_11,
+		      mp2.s.vref_value_10,
+		      mp2.s.vref_value_01, mp2.s.vref_value_00);
+
+		debug("MODEREG_PARAMS2                               : 0x%016llx\n",
+		      mp2.u64);
+		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64);
+	}
+}
+
+static void lmc_modereg_params3(struct ddr_priv *priv)
+{
+	char *s;
+
+	if (ddr_type == DDR4_DRAM) {
+		union cvmx_lmcx_modereg_params3 mp3;
+
+		mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num));
+		/* Disable as workaround to Errata 20547 */
+		mp3.s.rd_dbi = 0;
+		mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs),
+				   5ull) - 4;
+
+		s = lookup_env(priv, "ddr_rd_preamble");
+		if (s)
+			mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0);
+
+		if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+			int delay = 0;
+
+			if (lranks_per_prank == 4 && ddr_hertz >= 1000000000)
+				delay = 1;
+
+			mp3.s.xrank_add_tccd_l = delay;
+			mp3.s.xrank_add_tccd_s = delay;
+		}
+
+		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64);
+		debug("MODEREG_PARAMS3                               : 0x%016llx\n",
+		      mp3.u64);
+	}
+}
+
+static void lmc_nxm(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_nxm lmc_nxm;
+	int num_bits = row_lsb + row_bits + lranks_bits - 26;
+	char *s;
+
+	lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num));
+
+	/* .cn78xx. */
+	if (rank_mask & 0x1)
+		lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits;
+	if (rank_mask & 0x2)
+		lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits;
+	if (rank_mask & 0x4)
+		lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits;
+	if (rank_mask & 0x8)
+		lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits;
+
+	/* Set the mask for non-existent ranks. */
+	lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff;
+
+	s = lookup_env_ull(priv, "ddr_nxm");
+	if (s)
+		lmc_nxm.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("LMC_NXM                                       : 0x%016llx\n",
+	      lmc_nxm.u64);
+	lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64);
+}
+
+static void lmc_wodt_mask(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_wodt_mask wodt_mask;
+	char *s;
+
+	wodt_mask.u64 = odt_config[odt_idx].odt_mask;
+
+	s = lookup_env_ull(priv, "ddr_wodt_mask");
+	if (s)
+		wodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("WODT_MASK                                     : 0x%016llx\n",
+	      wodt_mask.u64);
+	lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64);
+}
+
+static void lmc_rodt_mask(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_rodt_mask rodt_mask;
+	int rankx;
+	char *s;
+
+	rodt_mask.u64 = odt_config[odt_idx].rodt_ctl;
+
+	s = lookup_env_ull(priv, "ddr_rodt_mask");
+	if (s)
+		rodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+	debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64);
+	lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64);
+
+	dyn_rtt_nom_mask = 0;
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+		dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff);
+	}
+	if (num_ranks == 4) {
+		/*
+		 * Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
+		 * ODT1 is wired to the third rank (rank 2).  The mask,
+		 * dyn_rtt_nom_mask, is used to indicate for which ranks
+		 * to sweep RTT_NOM during read-leveling. Shift the bit
+		 * from the ODT1 position over to the "ODT2" position so
+		 * that the read-leveling analysis comes out right.
+		 */
+		int odt1_bit = dyn_rtt_nom_mask & 2;
+
+		dyn_rtt_nom_mask &= ~2;
+		dyn_rtt_nom_mask |= odt1_bit << 1;
+	}
+	debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
+}
+
+static void lmc_comp_ctl2(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_comp_ctl2 cc2;
+	char *s;
+
+	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+	cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena;
+	/* Default 4=34.3 ohm */
+	cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl;
+	/* Default 4=34.3 ohm */
+	cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl;
+	/* Default 4=34.3 ohm */
+	cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl;
+
+	ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto;
+	s = lookup_env(priv, "ddr_rodt_ctl_auto");
+	if (s)
+		ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0);
+
+	default_rodt_ctl = odt_config[odt_idx].qs_dic;
+	s = lookup_env(priv, "ddr_rodt_ctl");
+	if (!s)
+		s = lookup_env(priv, "ddr%d_rodt_ctl", if_num);
+	if (s) {
+		default_rodt_ctl = simple_strtoul(s, NULL, 0);
+		ddr_rodt_ctl_auto = 0;
+	}
+
+	cc2.cn70xx.rodt_ctl = default_rodt_ctl;
+
+	// if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms,
+	// and DCLK speed is 1 GHz or more...
+	if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm &&
+	    ddr_hertz >= 1000000000) {
+		// lowest for DDR4 is 26 ohms
+		cc2.s.ck_ctl = ddr4_driver_26_ohm;
+		debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n",
+		      node, if_num, cc2.s.ck_ctl,
+		      imp_val->drive_strength[cc2.s.ck_ctl]);
+	}
+
+	// if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms,
+	// if DCLK speed is 1 GHz or more...
+	if (ddr_type == DDR4_DRAM && dimm_count == 2 &&
+	    (spd_dimm_type == 2 || spd_dimm_type == 6) &&
+	    ddr_hertz >= 1000000000) {
+		// lowest for DDR4 is 26 ohms
+		cc2.cn78xx.control_ctl = ddr4_driver_26_ohm;
+		// lowest for DDR4 is 26 ohms
+		cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm;
+		debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n",
+		      node, if_num, ddr4_driver_26_ohm,
+		      imp_val->drive_strength[ddr4_driver_26_ohm]);
+	}
+
+	s = lookup_env(priv, "ddr_ck_ctl");
+	if (s)
+		cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_cmd_ctl");
+	if (s)
+		cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_control_ctl");
+	if (s)
+		cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_dqx_ctl");
+	if (s)
+		cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0);
+
+	debug("%-45s : %d, %d ohms\n", "DQX_CTL           ", cc2.cn78xx.dqx_ctl,
+	      imp_val->drive_strength[cc2.cn78xx.dqx_ctl]);
+	debug("%-45s : %d, %d ohms\n", "CK_CTL            ", cc2.cn78xx.ck_ctl,
+	      imp_val->drive_strength[cc2.cn78xx.ck_ctl]);
+	debug("%-45s : %d, %d ohms\n", "CMD_CTL           ", cc2.cn78xx.cmd_ctl,
+	      imp_val->drive_strength[cc2.cn78xx.cmd_ctl]);
+	debug("%-45s : %d, %d ohms\n", "CONTROL_CTL       ",
+	      cc2.cn78xx.control_ctl,
+	      imp_val->drive_strength[cc2.cn78xx.control_ctl]);
+	debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+	      cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+	debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64);
+	lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+}
+
+static void lmc_phy_ctl(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_phy_ctl phy_ctl;
+
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+	phy_ctl.s.ts_stagger = 0;
+	// FIXME: are there others TBD?
+	phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+		// C0 is TEN, C1 is A17
+		phy_ctl.s.c0_sel = 2;
+		phy_ctl.s.c1_sel = 2;
+		debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
+		      node, if_num, phy_ctl.s.c1_sel);
+	}
+
+	debug("PHY_CTL                                       : 0x%016llx\n",
+	      phy_ctl.u64);
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void lmc_ext_config(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_ext_config ext_cfg;
+	char *s;
+
+	ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+	ext_cfg.s.vrefint_seq_deskew = 0;
+	ext_cfg.s.read_ena_bprch = 1;
+	ext_cfg.s.read_ena_fprch = 1;
+	ext_cfg.s.drive_ena_fprch = 1;
+	ext_cfg.s.drive_ena_bprch = 1;
+	// make sure this is OFF for all current chips
+	ext_cfg.s.invert_data = 0;
+
+	s = lookup_env(priv, "ddr_read_fprch");
+	if (s)
+		ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_read_bprch");
+	if (s)
+		ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_drive_fprch");
+	if (s)
+		ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_drive_bprch");
+	if (s)
+		ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0);
+
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+		ext_cfg.s.dimm0_cid = lranks_bits;
+		ext_cfg.s.dimm1_cid = lranks_bits;
+		debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
+		      node, if_num, ext_cfg.s.dimm0_cid);
+	}
+
+	lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+	debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64);
+}
+
+static void lmc_ext_config2(struct ddr_priv *priv)
+{
+	char *s;
+
+	// NOTE: all chips have this register, but not necessarily the
+	// fields we modify...
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+	    !octeon_is_cpuid(OCTEON_CN73XX)) {
+		union cvmx_lmcx_ext_config2 ext_cfg2;
+		int value = 1;	// default to 1
+
+		ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num));
+
+		s = lookup_env(priv, "ddr_ext2_delay_unload");
+		if (s)
+			value = !!simple_strtoul(s, NULL, 0);
+
+		ext_cfg2.s.delay_unload_r0 = value;
+		ext_cfg2.s.delay_unload_r1 = value;
+		ext_cfg2.s.delay_unload_r2 = value;
+		ext_cfg2.s.delay_unload_r3 = value;
+
+		lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64);
+		debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64);
+	}
+}
+
+static void lmc_dimm01_params_loop(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_dimmx_params dimm_p;
+	int dimmx = didx;
+	char *s;
+	int rc;
+	int i;
+
+	dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num));
+
+	if (ddr_type == DDR4_DRAM) {
+		union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0;
+		union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1;
+		union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl;
+
+		dimm_p.s.rc0 = 0;
+		dimm_p.s.rc1 = 0;
+		dimm_p.s.rc2 = 0;
+
+		rc = read_spd(&dimm_config_table[didx], 0,
+			      DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
+		dimm_p.s.rc3 = (rc >> 4) & 0xf;
+		dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2;
+		dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0;
+
+		rc = read_spd(&dimm_config_table[didx], 0,
+			      DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
+		dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2;
+		dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0;
+
+		dimm_p.s.rc6 = 0;
+		dimm_p.s.rc7 = 0;
+		dimm_p.s.rc8 = 0;
+		dimm_p.s.rc9 = 0;
+
+		/*
+		 * rc10               DDR4 RDIMM Operating Speed
+		 * ===  ===================================================
+		 *  0               tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
+		 *  1   1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
+		 *  2   1071 psec > tclk_psecs >=  938 psec DDR4-2133 ( 938 ps)
+		 *  3    938 psec > tclk_psecs >=  833 psec DDR4-2400 ( 833 ps)
+		 *  4    833 psec > tclk_psecs >=  750 psec DDR4-2666 ( 750 ps)
+		 *  5    750 psec > tclk_psecs >=  625 psec DDR4-3200 ( 625 ps)
+		 */
+		dimm_p.s.rc10 = 0;
+		if (tclk_psecs < 1250)
+			dimm_p.s.rc10 = 1;
+		if (tclk_psecs < 1071)
+			dimm_p.s.rc10 = 2;
+		if (tclk_psecs < 938)
+			dimm_p.s.rc10 = 3;
+		if (tclk_psecs < 833)
+			dimm_p.s.rc10 = 4;
+		if (tclk_psecs < 750)
+			dimm_p.s.rc10 = 5;
+
+		dimm_p.s.rc11 = 0;
+		dimm_p.s.rc12 = 0;
+		/* 0=LRDIMM, 1=RDIMM */
+		dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4;
+		dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ?
+			(spd_addr_mirror << 3) : 0;
+		dimm_p.s.rc14 = 0;
+		dimm_p.s.rc15 = 0;	/* 1 nCK latency adder */
+
+		ddr4_p0.u64 = 0;
+
+		ddr4_p0.s.rc8x = 0;
+		ddr4_p0.s.rc7x = 0;
+		ddr4_p0.s.rc6x = 0;
+		ddr4_p0.s.rc5x = 0;
+		ddr4_p0.s.rc4x = 0;
+
+		ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs);
+
+		ddr4_p0.s.rc2x = 0;
+		ddr4_p0.s.rc1x = 0;
+
+		ddr4_p1.u64 = 0;
+
+		ddr4_p1.s.rcbx = 0;
+		ddr4_p1.s.rcax = 0;
+		ddr4_p1.s.rc9x = 0;
+
+		ddr4_ctl.u64 = 0;
+		ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004;
+		ddr4_ctl.cn70xx.ddr4_dimm1_wmask =
+		    (dimm_count > 1) ? 0x004 : 0x0000;
+
+		/*
+		 * Handle any overrides from envvars here...
+		 */
+		s = lookup_env(priv, "ddr_ddr4_params0");
+		if (s)
+			ddr4_p0.u64 = simple_strtoul(s, NULL, 0);
+
+		s = lookup_env(priv, "ddr_ddr4_params1");
+		if (s)
+			ddr4_p1.u64 = simple_strtoul(s, NULL, 0);
+
+		s = lookup_env(priv, "ddr_ddr4_dimm_ctl");
+		if (s)
+			ddr4_ctl.u64 = simple_strtoul(s, NULL, 0);
+
+		for (i = 0; i < 11; ++i) {
+			u64 value;
+
+			s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1);
+			if (s) {
+				value = simple_strtoul(s, NULL, 0);
+				if (i < 8) {
+					ddr4_p0.u64 &= ~((u64)0xff << (i * 8));
+					ddr4_p0.u64 |= (value << (i * 8));
+				} else {
+					ddr4_p1.u64 &=
+					    ~((u64)0xff << ((i - 8) * 8));
+					ddr4_p1.u64 |= (value << ((i - 8) * 8));
+				}
+			}
+		}
+
+		/*
+		 * write the final CSR values
+		 */
+		lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num),
+		       ddr4_p0.u64);
+
+		lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64);
+
+		lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num),
+		       ddr4_p1.u64);
+
+		debug("DIMM%d Register Control Words        RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
+		      dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax,
+		      ddr4_p1.s.rc9x, ddr4_p0.s.rc8x,
+		      ddr4_p0.s.rc7x, ddr4_p0.s.rc6x,
+		      ddr4_p0.s.rc5x, ddr4_p0.s.rc4x,
+		      ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x);
+
+	} else {
+		rc = read_spd(&dimm_config_table[didx], 0, 69);
+		dimm_p.s.rc0 = (rc >> 0) & 0xf;
+		dimm_p.s.rc1 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 70);
+		dimm_p.s.rc2 = (rc >> 0) & 0xf;
+		dimm_p.s.rc3 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 71);
+		dimm_p.s.rc4 = (rc >> 0) & 0xf;
+		dimm_p.s.rc5 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 72);
+		dimm_p.s.rc6 = (rc >> 0) & 0xf;
+		dimm_p.s.rc7 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 73);
+		dimm_p.s.rc8 = (rc >> 0) & 0xf;
+		dimm_p.s.rc9 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 74);
+		dimm_p.s.rc10 = (rc >> 0) & 0xf;
+		dimm_p.s.rc11 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 75);
+		dimm_p.s.rc12 = (rc >> 0) & 0xf;
+		dimm_p.s.rc13 = (rc >> 4) & 0xf;
+
+		rc = read_spd(&dimm_config_table[didx], 0, 76);
+		dimm_p.s.rc14 = (rc >> 0) & 0xf;
+		dimm_p.s.rc15 = (rc >> 4) & 0xf;
+
+		s = ddr_getenv_debug(priv, "ddr_clk_drive");
+		if (s) {
+			if (strcmp(s, "light") == 0)
+				dimm_p.s.rc5 = 0x0;	/* Light Drive */
+			if (strcmp(s, "moderate") == 0)
+				dimm_p.s.rc5 = 0x5;	/* Moderate Drive */
+			if (strcmp(s, "strong") == 0)
+				dimm_p.s.rc5 = 0xA;	/* Strong Drive */
+			printf("Parameter found in environment. ddr_clk_drive = %s\n",
+			       s);
+		}
+
+		s = ddr_getenv_debug(priv, "ddr_cmd_drive");
+		if (s) {
+			if (strcmp(s, "light") == 0)
+				dimm_p.s.rc3 = 0x0;	/* Light Drive */
+			if (strcmp(s, "moderate") == 0)
+				dimm_p.s.rc3 = 0x5;	/* Moderate Drive */
+			if (strcmp(s, "strong") == 0)
+				dimm_p.s.rc3 = 0xA;	/* Strong Drive */
+			printf("Parameter found in environment. ddr_cmd_drive = %s\n",
+			       s);
+		}
+
+		s = ddr_getenv_debug(priv, "ddr_ctl_drive");
+		if (s) {
+			if (strcmp(s, "light") == 0)
+				dimm_p.s.rc4 = 0x0;	/* Light Drive */
+			if (strcmp(s, "moderate") == 0)
+				dimm_p.s.rc4 = 0x5;	/* Moderate Drive */
+			printf("Parameter found in environment. ddr_ctl_drive = %s\n",
+			       s);
+		}
+
+		/*
+		 * rc10               DDR3 RDIMM Operating Speed
+		 * ==   =====================================================
+		 *  0               tclk_psecs >= 2500 psec DDR3/DDR3L-800 def
+		 *  1   2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
+		 *  2   1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
+		 *  3   1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
+		 *  4   1250 psec > tclk_psecs >= 1071 psec DDR3-1866
+		 */
+		dimm_p.s.rc10 = 0;
+		if (tclk_psecs < 2500)
+			dimm_p.s.rc10 = 1;
+		if (tclk_psecs < 1875)
+			dimm_p.s.rc10 = 2;
+		if (tclk_psecs < 1500)
+			dimm_p.s.rc10 = 3;
+		if (tclk_psecs < 1250)
+			dimm_p.s.rc10 = 4;
+	}
+
+	s = lookup_env(priv, "ddr_dimmx_params", i);
+	if (s)
+		dimm_p.u64 = simple_strtoul(s, NULL, 0);
+
+	for (i = 0; i < 16; ++i) {
+		u64 value;
+
+		s = lookup_env(priv, "ddr_rc%d", i);
+		if (s) {
+			value = simple_strtoul(s, NULL, 0);
+			dimm_p.u64 &= ~((u64)0xf << (i * 4));
+			dimm_p.u64 |= (value << (i * 4));
+		}
+	}
+
+	lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64);
+
+	debug("DIMM%d Register Control Words         RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
+	      dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13,
+	      dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10,
+	      dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7,
+	      dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4,
+	      dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0);
+
+	// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers,
+	// and treat it specially
+	if (ddr_type == DDR3_DRAM && num_ranks == 4 &&
+	    spd_rdimm_registers == 2 && dimmx == 0) {
+		debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n");
+		lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64);
+	}
+}
+
+static void lmc_dimm01_params(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_dimm_ctl dimm_ctl;
+	char *s;
+
+	if (spd_rdimm) {
+		for (didx = 0; didx < (unsigned int)dimm_count; ++didx)
+			lmc_dimm01_params_loop(priv);
+
+		if (ddr_type == DDR4_DRAM) {
+			/* LMC0_DIMM_CTL */
+			dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+			dimm_ctl.s.dimm0_wmask = 0xdf3f;
+			dimm_ctl.s.dimm1_wmask =
+			    (dimm_count > 1) ? 0xdf3f : 0x0000;
+			dimm_ctl.s.tcws = 0x4e0;
+			dimm_ctl.s.parity = c_cfg->parity;
+
+			s = lookup_env(priv, "ddr_dimm0_wmask");
+			if (s) {
+				dimm_ctl.s.dimm0_wmask =
+				    simple_strtoul(s, NULL, 0);
+			}
+
+			s = lookup_env(priv, "ddr_dimm1_wmask");
+			if (s) {
+				dimm_ctl.s.dimm1_wmask =
+				    simple_strtoul(s, NULL, 0);
+			}
+
+			s = lookup_env(priv, "ddr_dimm_ctl_parity");
+			if (s)
+				dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+			s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+			if (s)
+				dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+			      dimm_ctl.u64);
+			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+			/* Init RCW */
+			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+
+			/* Write RC0D last */
+			dimm_ctl.s.dimm0_wmask = 0x2000;
+			dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ?
+				0x2000 : 0x0000;
+			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+			      dimm_ctl.u64);
+			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+			/*
+			 * Don't write any extended registers the second time
+			 */
+			lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0);
+
+			/* Init RCW */
+			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+		} else {
+			/* LMC0_DIMM_CTL */
+			dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+			dimm_ctl.s.dimm0_wmask = 0xffff;
+			// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2
+			// registers, and treat it specially
+			if (num_ranks == 4 && spd_rdimm_registers == 2) {
+				debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n");
+				dimm_ctl.s.dimm1_wmask = 0xffff;
+			} else {
+				dimm_ctl.s.dimm1_wmask =
+				    (dimm_count > 1) ? 0xffff : 0x0000;
+			}
+			dimm_ctl.s.tcws = 0x4e0;
+			dimm_ctl.s.parity = c_cfg->parity;
+
+			s = lookup_env(priv, "ddr_dimm0_wmask");
+			if (s) {
+				dimm_ctl.s.dimm0_wmask =
+				    simple_strtoul(s, NULL, 0);
+			}
+
+			s = lookup_env(priv, "ddr_dimm1_wmask");
+			if (s) {
+				dimm_ctl.s.dimm1_wmask =
+				    simple_strtoul(s, NULL, 0);
+			}
+
+			s = lookup_env(priv, "ddr_dimm_ctl_parity");
+			if (s)
+				dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+			s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+			if (s)
+				dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+			      dimm_ctl.u64);
+			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+			/* Init RCW */
+			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+		}
+
+	} else {
+		/* Disable register control writes for unbuffered */
+		union cvmx_lmcx_dimm_ctl dimm_ctl;
+
+		dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+		dimm_ctl.s.dimm0_wmask = 0;
+		dimm_ctl.s.dimm1_wmask = 0;
+		lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+	}
+}
+
+static int lmc_rank_init(struct ddr_priv *priv)
+{
+	char *s;
+
+#if ALLOW_BY_RANK_INIT
+	if (enable_by_rank_init) {
+		by_rank = 3;
+		saved_rank_mask = rank_mask;
+	}
+
+start_by_rank_init:
+
+	if (enable_by_rank_init) {
+		rank_mask = (1 << by_rank);
+		if (!(rank_mask & saved_rank_mask))
+			goto end_by_rank_init;
+		if (by_rank == 0)
+			rank_mask = saved_rank_mask;
+
+		debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n",
+		      by_rank, rank_mask);
+	}
+
+#endif /* ALLOW_BY_RANK_INIT */
+
+	/*
+	 * Comments (steps 3 through 5) continue in oct3_ddr3_seq()
+	 */
+	union cvmx_lmcx_modereg_params0 mp0;
+
+	if (ddr_memory_preserved(priv)) {
+		/*
+		 * Contents are being preserved. Take DRAM out of self-refresh
+		 * first. Then init steps can procede normally
+		 */
+		/* self-refresh exit */
+		oct3_ddr3_seq(priv, rank_mask, if_num, 3);
+	}
+
+	mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+	mp0.s.dllr = 1;		/* Set during first init sequence */
+	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+	ddr_init_seq(priv, rank_mask, if_num);
+
+	mp0.s.dllr = 0;		/* Clear for normal operation */
+	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+	if (spd_rdimm && ddr_type == DDR4_DRAM &&
+	    octeon_is_cpuid(OCTEON_CN7XXX)) {
+		debug("Running init sequence 1\n");
+		change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count);
+	}
+
+	memset(lanes, 0, sizeof(lanes));
+	for (lane = 0; lane < last_lane; lane++) {
+		// init all lanes to reset value
+		dac_settings[lane] = 127;
+	}
+
+	// FIXME: disable internal VREF if deskew is disabled?
+	if (disable_deskew_training) {
+		debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n",
+		      node, if_num);
+		num_samples = 0;
+	} else if (ddr_type == DDR4_DRAM &&
+		   !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+		num_samples = DEFAULT_DAC_SAMPLES;
+	} else {
+		// if DDR3 or no ability to write DAC values
+		num_samples = 1;
+	}
+
+perform_internal_vref_training:
+
+	total_dac_eval_retries = 0;
+	dac_eval_exhausted = 0;
+
+	for (sample = 0; sample < num_samples; sample++) {
+		dac_eval_retries = 0;
+
+		// make offset and internal vref training repeatable
+		do {
+			/*
+			 * 6.9.8 LMC Offset Training
+			 * LMC requires input-receiver offset training.
+			 */
+			perform_offset_training(priv, rank_mask, if_num);
+
+			/*
+			 * 6.9.9 LMC Internal vref Training
+			 * LMC requires input-reference-voltage training.
+			 */
+			perform_internal_vref_training(priv, rank_mask, if_num);
+
+			// read and maybe display the DAC values for a sample
+			read_dac_dbi_settings(priv, if_num, /*DAC*/ 1,
+					      dac_settings);
+			if (num_samples == 1 || ddr_verbose(priv)) {
+				display_dac_dbi_settings(if_num, /*DAC*/ 1,
+							 use_ecc, dac_settings,
+							 "Internal VREF");
+			}
+
+			// for DDR4, evaluate the DAC settings and retry
+			// if any issues
+			if (ddr_type == DDR4_DRAM) {
+				if (evaluate_dac_settings
+				    (if_64b, use_ecc, dac_settings)) {
+					dac_eval_retries += 1;
+					if (dac_eval_retries >
+					    DAC_RETRIES_LIMIT) {
+						debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
+						      node, if_num);
+						dac_eval_exhausted += 1;
+					} else {
+						debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
+						      node, if_num);
+						total_dac_eval_retries += 1;
+						// try another sample
+						continue;
+					}
+				}
+
+				// taking multiple samples, otherwise do nothing
+				if (num_samples > 1) {
+					// good sample or exhausted retries,
+					// record it
+					for (lane = 0; lane < last_lane;
+					     lane++) {
+						lanes[lane].bytes[sample] =
+						    dac_settings[lane];
+					}
+				}
+			}
+			// done if DDR3, or good sample, or exhausted retries
+			break;
+		} while (1);
+	}
+
+	if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) {
+		debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n",
+		      node, if_num, total_dac_eval_retries, dac_eval_exhausted);
+	}
+
+	if (num_samples > 1) {
+		debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
+		      node, if_num);
+
+		for (lane = 0; lane < last_lane; lane++) {
+			dac_settings[lane] =
+			    process_samples_average(&lanes[lane].bytes[0],
+						    num_samples, if_num, lane);
+		}
+		display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+					 dac_settings, "Averaged VREF");
+
+		// finally, write the final DAC values
+		for (lane = 0; lane < last_lane; lane++) {
+			load_dac_override(priv, if_num, dac_settings[lane],
+					  lane);
+		}
+	}
+
+	// allow override of any byte-lane internal VREF
+	int overrode_vref_dac = 0;
+
+	for (lane = 0; lane < last_lane; lane++) {
+		s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane);
+		if (s) {
+			dac_settings[lane] = simple_strtoul(s, NULL, 0);
+			overrode_vref_dac = 1;
+			// finally, write the new DAC value
+			load_dac_override(priv, if_num, dac_settings[lane],
+					  lane);
+		}
+	}
+	if (overrode_vref_dac) {
+		display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+					 dac_settings, "Override VREF");
+	}
+
+#if DDR3_DAC_OVERRIDE
+	// as a second step, after internal VREF training, before starting
+	// deskew training:
+	// for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting
+	// to 127
+	if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+	    !disable_deskew_training) {
+		load_dac_override(priv, if_num, 127, /* all */ 0x0A);
+		debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n",
+		      node, if_num);
+	}
+#endif
+
+	/*
+	 * 4.8.8 LMC Deskew Training
+	 *
+	 * LMC requires input-read-data deskew training.
+	 */
+	if (!disable_deskew_training) {
+		deskew_training_errors =
+		    perform_deskew_training(priv, rank_mask, if_num,
+					    spd_rawcard_aorb);
+
+		// All the Deskew lock and saturation retries (may) have
+		// been done, but we ended up with nibble errors; so,
+		// as a last ditch effort, try the Internal vref
+		// Training again...
+		if (deskew_training_errors) {
+			if (internal_retries <
+			    DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
+				internal_retries++;
+				debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n",
+				      node, if_num, internal_retries);
+				goto perform_internal_vref_training;
+			} else {
+				if (restart_if_dsk_incomplete) {
+					debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n",
+					      node, if_num, internal_retries);
+					return -EAGAIN;
+				}
+				debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
+				      node, if_num, internal_retries);
+			}
+		}		/* if (deskew_training_errors) */
+
+		// FIXME: treat this as the final DSK print from now on,
+		// and print if VBL_NORM or above also, save the results
+		// of the original training in case we want them later
+		validate_deskew_training(priv, rank_mask, if_num,
+					 &deskew_training_results, 1);
+	} else {		/* if (! disable_deskew_training) */
+		debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n",
+		      node, if_num);
+		validate_deskew_training(priv, rank_mask, if_num,
+					 &deskew_training_results, 1);
+	}			/* if (! disable_deskew_training) */
+
+#if ALLOW_BY_RANK_INIT
+
+	if (enable_by_rank_init) {
+		read_dac_dbi_settings(priv, if_num, /*dac */ 1,
+				      &rank_dac[by_rank].bytes[0]);
+		get_deskew_settings(priv, if_num, &rank_dsk[by_rank]);
+		debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+	}
+
+end_by_rank_init:
+
+	if (enable_by_rank_init) {
+		//debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+
+		by_rank--;
+		if (by_rank >= 0)
+			goto start_by_rank_init;
+
+		rank_mask = saved_rank_mask;
+		ddr_init_seq(priv, rank_mask, if_num);
+
+		process_by_rank_dac(priv, if_num, rank_mask, rank_dac);
+		process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk);
+
+		// FIXME: set this to prevent later checking!!!
+		disable_deskew_training = 1;
+
+		debug("\n>>>>> BY_RANK: FINISHED!!\n\n");
+	}
+#endif /* ALLOW_BY_RANK_INIT */
+
+	return 0;
+}
+
+static void lmc_config_2(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_config lmc_config;
+	int save_ref_zqcs_int;
+	u64 temp_delay_usecs;
+
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+	/*
+	 * Temporarily select the minimum ZQCS interval and wait
+	 * long enough for a few ZQCS calibrations to occur.  This
+	 * should ensure that the calibration circuitry is
+	 * stabilized before read/write leveling occurs.
+	 */
+	if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+		save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+		/* set smallest interval */
+		lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7);
+	} else {
+		save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int;
+		/* set smallest interval */
+		lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7);
+	}
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+	lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+	/*
+	 * Compute an appropriate delay based on the current ZQCS
+	 * interval. The delay should be long enough for the
+	 * current ZQCS delay counter to expire plus ten of the
+	 * minimum intarvals to ensure that some calibrations
+	 * occur.
+	 */
+	temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs *
+			    100 * 512 * 128) / (10000 * 10000) + 10 *
+		((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000);
+
+	debug("Waiting %lld usecs for ZQCS calibrations to start\n",
+	      temp_delay_usecs);
+	udelay(temp_delay_usecs);
+
+	if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+		/* Restore computed interval */
+		lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+	} else {
+		/* Restore computed interval */
+		lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int;
+	}
+
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+	lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+}
+
+static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data");
+static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data");
+static union cvmx_lmcx_modereg_params1 mp1 __section(".data");
+
+static int wl_mask[9] __section(".data");
+static int byte_idx __section(".data");
+static int ecc_ena __section(".data");
+static int wl_roundup __section(".data");
+static int save_mode32b __section(".data");
+static int disable_hwl_validity __section(".data");
+static int default_wl_rtt_nom __section(".data");
+static int wl_pbm_pump __section(".data");
+
+static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+	int wloop = 0;
+	// retries per sample for HW-related issues with bitmasks or values
+	int wloop_retries = 0;
+	int wloop_retries_total = 0;
+	int wloop_retries_exhausted = 0;
+#define WLOOP_RETRIES_DEFAULT 5
+	int wl_val_err;
+	int wl_mask_err_rank = 0;
+	int wl_val_err_rank = 0;
+#if HW_WL_MAJORITY
+	// array to collect counts of byte-lane values
+	// assume low-order 3 bits and even, so really only 2-bit values
+	struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9];
+	int extra_bumps, extra_mask;
+#endif
+	int rank_nom = 0;
+
+	if (!(rank_mask & (1 << rankx)))
+		return;
+
+	if (match_wl_rtt_nom) {
+		if (rankx == 0)
+			rank_nom = mp1.s.rtt_nom_00;
+		if (rankx == 1)
+			rank_nom = mp1.s.rtt_nom_01;
+		if (rankx == 2)
+			rank_nom = mp1.s.rtt_nom_10;
+		if (rankx == 3)
+			rank_nom = mp1.s.rtt_nom_11;
+
+		debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n",
+		      node, if_num, rankx, rank_nom,
+		      imp_val->rtt_nom_ohms[rank_nom]);
+	}
+
+#if HW_WL_MAJORITY
+	memset(wl_bytes, 0, sizeof(wl_bytes));
+	memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra));
+#endif
+
+	// restructure the looping so we can keep trying until we get the
+	// samples we want
+	while (wloop < wl_loops) {
+		wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+
+		wl_ctl.cn78xx.rtt_nom =
+		    (default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7;
+
+		if (match_wl_rtt_nom) {
+			wl_ctl.cn78xx.rtt_nom =
+			    (rank_nom > 0) ? (rank_nom - 1) : 7;
+		}
+
+		/* Clear write-level delays */
+		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0);
+
+		wl_mask_err = 0;	/* Reset error counters */
+		wl_val_err = 0;
+
+		for (byte_idx = 0; byte_idx < 9; ++byte_idx)
+			wl_mask[byte_idx] = 0;	/* Reset bitmasks */
+
+		// do all the byte-lanes at the same time
+		wl_ctl.cn78xx.lanemask = 0x1ff;
+
+		lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+
+		/*
+		 * Read and write values back in order to update the
+		 * status field. This insures that we read the updated
+		 * values after write-leveling has completed.
+		 */
+		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+		       lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)));
+
+		/* write-leveling */
+		oct3_ddr3_seq(priv, 1 << rankx, if_num, 6);
+
+		do {
+			wl_rank.u64 = lmc_rd(priv,
+					     CVMX_LMCX_WLEVEL_RANKX(rankx,
+								    if_num));
+		} while (wl_rank.cn78xx.status != 3);
+
+		wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+								  if_num));
+
+		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+			wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv,
+								 if_num,
+								 byte_idx);
+			if (wl_mask[byte_idx] == 0)
+				++wl_mask_err;
+		}
+
+		// check validity only if no bitmask errors
+		if (wl_mask_err == 0) {
+			if ((spd_dimm_type == 1 || spd_dimm_type == 2) &&
+			    dram_width != 16 && if_64b &&
+			    !disable_hwl_validity) {
+				// bypass if [mini|SO]-[RU]DIMM or x16 or
+				// 32-bit
+				wl_val_err =
+				    validate_hw_wl_settings(if_num,
+							    &wl_rank,
+							    spd_rdimm, ecc_ena);
+				wl_val_err_rank += (wl_val_err != 0);
+			}
+		} else {
+			wl_mask_err_rank++;
+		}
+
+		// before we print, if we had bitmask or validity errors,
+		// do a retry...
+		if (wl_mask_err != 0 || wl_val_err != 0) {
+			if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
+				wloop_retries++;
+				wloop_retries_total++;
+				// this printout is per-retry: only when VBL
+				// is high enough (DEV?)
+				// FIXME: do we want to show the bad bitmaps
+				// or delays here also?
+				debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
+				      node, if_num, rankx,
+				      (wl_mask_err) ? "Bitmask" : "Validity");
+				// this takes us back to the top without
+				// counting a sample
+				return;
+			}
+
+			// retries exhausted, do not print at normal VBL
+			debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
+			      node, if_num, rankx,
+			      (wl_mask_err) ? "Bitmask" : "Validity");
+			wloop_retries_exhausted++;
+		}
+		// no errors or exhausted retries, use this sample
+		wloop_retries = 0;	//reset for next sample
+
+		// when only 1 sample or forced, print the bitmasks then
+		// current HW WL
+		if (wl_loops == 1 || wl_print) {
+			if (wl_print > 1)
+				display_wl_bm(if_num, rankx, wl_mask);
+			display_wl(if_num, wl_rank, rankx);
+		}
+
+		if (wl_roundup) {	/* Round up odd bitmask delays */
+			for (byte_idx = 0; byte_idx < (8 + ecc_ena);
+			     ++byte_idx) {
+				if (!(if_bytemask & (1 << byte_idx)))
+					return;
+				upd_wl_rank(&wl_rank, byte_idx,
+					    roundup_ddr3_wlevel_bitmask
+					    (wl_mask[byte_idx]));
+			}
+			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+			       wl_rank.u64);
+			display_wl(if_num, wl_rank, rankx);
+		}
+
+#if HW_WL_MAJORITY
+		// OK, we have a decent sample, no bitmask or validity errors
+		extra_bumps = 0;
+		extra_mask = 0;
+		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+			int ix;
+
+			if (!(if_bytemask & (1 << byte_idx)))
+				return;
+
+			// increment count of byte-lane value
+			// only 4 values
+			ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3;
+			wl_bytes[byte_idx].bitcnt[ix]++;
+			wl_bytes_extra[byte_idx].bitcnt[ix]++;
+			// if perfect...
+			if (__builtin_popcount(wl_mask[byte_idx]) == 4) {
+				wl_bytes_extra[byte_idx].bitcnt[ix] +=
+				    wl_pbm_pump;
+				extra_bumps++;
+				extra_mask |= 1 << byte_idx;
+			}
+		}
+
+		if (extra_bumps) {
+			if (wl_print > 1) {
+				debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n",
+				      node, if_num, rankx, extra_bumps,
+				      extra_mask);
+			}
+		}
+#endif
+
+		// if we get here, we have taken a decent sample
+		wloop++;
+
+	}			/* while (wloop < wl_loops) */
+
+#if HW_WL_MAJORITY
+	// if we did sample more than once, try to pick a majority vote
+	if (wl_loops > 1) {
+		// look for the majority in each byte-lane
+		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+			int mx, mc, xc, cc;
+			int ix, alts;
+			int maj, xmaj, xmx, xmc, xxc, xcc;
+
+			if (!(if_bytemask & (1 << byte_idx)))
+				return;
+			maj = find_wl_majority(&wl_bytes[byte_idx], &mx,
+					       &mc, &xc, &cc);
+			xmaj = find_wl_majority(&wl_bytes_extra[byte_idx],
+						&xmx, &xmc, &xxc, &xcc);
+			if (maj != xmaj) {
+				if (wl_print) {
+					debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n",
+					      node, if_num, rankx,
+					      byte_idx, maj, xc, xmaj, xxc);
+				}
+				mx = xmx;
+				mc = xmc;
+				xc = xxc;
+				cc = xcc;
+			}
+
+#if SWL_TRY_HWL_ALT
+			// see if there was an alternate
+			// take out the majority choice
+			alts = (mc & ~(1 << mx));
+			if (alts != 0) {
+				for (ix = 0; ix < 4; ix++) {
+					// FIXME: could be done multiple times?
+					// bad if so
+					if (alts & (1 << ix)) {
+						// set the mask
+						hwl_alts[rankx].hwl_alt_mask |=
+							(1 << byte_idx);
+						// record the value
+						hwl_alts[rankx].hwl_alt_delay[byte_idx] =
+							ix << 1;
+						if (wl_print > 1) {
+							debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
+							      node,
+							      if_num,
+							      rankx,
+							      byte_idx,
+							      mx << 1,
+							      xc,
+							      ix << 1,
+							      wl_bytes
+							      [byte_idx].bitcnt
+							      [ix]);
+						}
+					}
+				}
+			}
+#endif /* SWL_TRY_HWL_ALT */
+
+			if (cc > 2) {	// unlikely, but...
+				// assume: counts for 3 indices are all 1
+				// possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
+				// and the desired?:   2  ,   4  ,     6, 0
+				// we choose the middle, assuming one of the
+				// outliers is bad
+				// NOTE: this is an ugly hack at the moment;
+				// there must be a better way
+				switch (mc) {
+				case 0x7:
+					mx = 1;
+					break;	// was 0/2/4, choose 2
+				case 0xb:
+					mx = 0;
+					break;	// was 0/2/6, choose 0
+				case 0xd:
+					mx = 3;
+					break;	// was 0/4/6, choose 6
+				case 0xe:
+					mx = 2;
+					break;	// was 2/4/6, choose 4
+				default:
+				case 0xf:
+					mx = 1;
+					break;	// was 0/2/4/6, choose 2?
+				}
+				printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
+				       node, if_num, rankx, byte_idx, mc,
+				       mx << 1);
+			}
+			upd_wl_rank(&wl_rank, byte_idx, mx << 1);
+		}
+
+		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+		       wl_rank.u64);
+		display_wl_with_final(if_num, wl_rank, rankx);
+
+		// FIXME: does this help make the output a little easier
+		// to focus?
+		if (wl_print > 0)
+			debug("-----------\n");
+
+	}			/* if (wl_loops > 1) */
+#endif /* HW_WL_MAJORITY */
+
+	// maybe print an error summary for the rank
+	if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) {
+		debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
+		      node, if_num, rankx, wl_mask_err_rank,
+		      wl_val_err_rank, wloop_retries_total,
+		      wloop_retries_exhausted);
+	}
+}
+
+static void lmc_write_leveling(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_config cfg;
+	int rankx;
+	char *s;
+
+	/*
+	 * 4.8.9 LMC Write Leveling
+	 *
+	 * LMC supports an automatic write leveling like that described in the
+	 * JEDEC DDR3 specifications separately per byte-lane.
+	 *
+	 * All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations
+	 * must be completed prior to starting this LMC write-leveling sequence.
+	 *
+	 * There are many possible procedures that will write-level all the
+	 * attached DDR3 DRAM parts. One possibility is for software to simply
+	 * write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
+	 * describes one possible sequence that uses LMC's autowrite-leveling
+	 * capabilities.
+	 *
+	 * 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
+	 *    delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
+	 *    point.
+	 *
+	 * Do the remaining steps 2-7 separately for each rank i with attached
+	 * DRAM.
+	 *
+	 * 2. Write LMC(0)_WLEVEL_RANKi = 0.
+	 *
+	 * 3. For x8 parts:
+	 *
+	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
+	 *    DRAM.
+	 *
+	 *    For x16 parts:
+	 *
+	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
+	 *    attached DRAM.
+	 *
+	 * 4. Without changing any other fields in LMC(0)_CONFIG,
+	 *
+	 *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
+	 *
+	 *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+	 *
+	 *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
+	 *
+	 *    LMC will initiate write-leveling at this point. Assuming
+	 *    LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
+	 *    the selected DRAM rank via a DDR3 MR1 write, then sequences
+	 *    through
+	 *    and accumulates write-leveling results for eight different delay
+	 *    settings twice, starting at a delay of zero in this case since
+	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
+	 *    setting, covering a total distance of one CK, then disables the
+	 *    write-leveling via another DDR3 MR1 write.
+	 *
+	 *    After the sequence through 16 delay settings is complete:
+	 *
+	 *    o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
+	 *
+	 *    o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
+	 *      by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
+	 *      leveling result of 1 that followed result of 0 during the
+	 *      sequence, except that the LMC always writes
+	 *      LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
+	 *
+	 *    o Software can read the eight write-leveling results from the
+	 *      first pass through the delay settings by reading
+	 *      LMC(0)_WLEVEL_DBG[BITMASK] (after writing
+	 *      LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
+	 *      results from the second pass through the eight delay
+	 *      settings. They should often be identical to the
+	 *      LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
+	 *
+	 * 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
+	 *
+	 *    LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
+	 *    lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
+	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
+	 *    software wrote in substep 2 above, which is 0.
+	 *
+	 * 6. For x16 parts:
+	 *
+	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
+	 *    attached DRAM.
+	 *
+	 *    Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
+	 *    setting. Skip to substep 7 if this has already been done.
+	 *
+	 *    For x8 parts:
+	 *
+	 *    Skip this substep. Go to substep 7.
+	 *
+	 * 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
+	 *    lanes on all ranks with attached DRAM.
+	 *
+	 *    At this point, all byte lanes on rank i with attached DRAM should
+	 *    have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
+	 *    the result for each byte lane.
+	 *
+	 *    But note that the DDR3 write-leveling sequence will only determine
+	 *    the delay modulo the CK cycle time, and cannot determine how many
+	 *    additional CK cycles of delay are present. Software must calculate
+	 *    the number of CK cycles, or equivalently, the
+	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
+	 *
+	 *    This BYTE*<4:3> calculation is system/board specific.
+	 *
+	 * Many techniques can be used to calculate write-leveling BYTE*<4:3>
+	 * values, including:
+	 *
+	 *    o Known values for some byte lanes.
+	 *
+	 *    o Relative values for some byte lanes relative to others.
+	 *
+	 *    For example, suppose lane X is likely to require a larger
+	 *    write-leveling delay than lane Y. A BYTEX<2:0> value that is much
+	 *    smaller than the BYTEY<2:0> value may then indicate that the
+	 *    required lane X delay wrapped into the next CK, so BYTEX<4:3>
+	 *    should be set to BYTEY<4:3>+1.
+	 *
+	 *    When ECC DRAM is not present (i.e. when DRAM is not attached to
+	 *    the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the
+	 *    DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write
+	 *    LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0],
+	 *    using the final calculated BYTE0 value.
+	 *    Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
+	 *    using the final calculated BYTE0 value.
+	 *
+	 * 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
+	 *
+	 *    Let rank i be a rank with attached DRAM.
+	 *
+	 *    For all ranks j that do not have attached DRAM, set
+	 *    LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
+	 */
+
+	rankx = 0;
+	wl_roundup = 0;
+	disable_hwl_validity = 0;
+
+	// wl_pbm_pump: weight for write-leveling PBMs...
+	// 0 causes original behavior
+	// 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms
+	// 4 would allow a minority of 1 pbm to outscore a majority of 4
+	// non-pbms
+	wl_pbm_pump = 4;	// FIXME: is 4 too much?
+
+	if (wl_loops) {
+		debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node,
+		      if_num);
+	} else {
+		/* Force software write-leveling to run */
+		wl_mask_err = 1;
+		debug("N%d.LMC%d: Forcing software Write-Leveling\n", node,
+		      if_num);
+	}
+
+	default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ?
+		rttnom_20ohm : ddr4_rttnom_40ohm;
+
+	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	ecc_ena = cfg.s.ecc_ena;
+	save_mode32b = cfg.cn78xx.mode32b;
+	cfg.cn78xx.mode32b = (!if_64b);
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+	s = lookup_env(priv, "ddr_wlevel_roundup");
+	if (s)
+		wl_roundup = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_wlevel_printall");
+	if (s)
+		wl_print = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_wlevel_pbm_bump");
+	if (s)
+		wl_pbm_pump = strtoul(s, NULL, 0);
+
+	// default to disable when RL sequential delay check is disabled
+	disable_hwl_validity = disable_sequential_delay_check;
+	s = lookup_env(priv, "ddr_disable_hwl_validity");
+	if (s)
+		disable_hwl_validity = !!strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_wl_rtt_nom");
+	if (s)
+		default_wl_rtt_nom = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_match_wl_rtt_nom");
+	if (s)
+		match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0);
+
+	if (match_wl_rtt_nom)
+		mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+	// For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK
+	// For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
+	if (ddr_type == DDR4_DRAM) {
+		int default_or_dis = 1;
+		int default_bitmask = 0xff;
+
+		// when x4, use only the lower nibble
+		if (dram_width == 4) {
+			default_bitmask = 0x0f;
+			if (wl_print) {
+				debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n",
+				      node, if_num, default_bitmask);
+			}
+		}
+
+		wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+		wl_ctl.s.or_dis = default_or_dis;
+		wl_ctl.s.bitmask = default_bitmask;
+
+		// allow overrides
+		s = lookup_env(priv, "ddr_wlevel_ctl_or_dis");
+		if (s)
+			wl_ctl.s.or_dis = !!strtoul(s, NULL, 0);
+
+		s = lookup_env(priv, "ddr_wlevel_ctl_bitmask");
+		if (s)
+			wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0);
+
+		// print only if not defaults
+		if (wl_ctl.s.or_dis != default_or_dis ||
+		    wl_ctl.s.bitmask != default_bitmask) {
+			debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
+			      node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask);
+		}
+
+		// always write
+		lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+	}
+
+	// Start the hardware write-leveling loop per rank
+	for (rankx = 0; rankx < dimm_count * 4; rankx++)
+		lmc_write_leveling_loop(priv, rankx);
+
+	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	cfg.cn78xx.mode32b = save_mode32b;
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+	// At the end of HW Write Leveling, check on some DESKEW things...
+	if (!disable_deskew_training) {
+		struct deskew_counts dsk_counts;
+		int retry_count = 0;
+
+		debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n",
+		      node, if_num);
+
+		do {
+			validate_deskew_training(priv, rank_mask, if_num,
+						 &dsk_counts, 1);
+
+			// only RAWCARD A or B will not benefit from
+			// retraining if there's only saturation
+			// or any rawcard if there is a nibble error
+			if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) ||
+			    (dsk_counts.nibrng_errs != 0 ||
+			     dsk_counts.nibunl_errs != 0)) {
+				retry_count++;
+				debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
+				      node, if_num, retry_count);
+				perform_deskew_training(priv, rank_mask, if_num,
+							spd_rawcard_aorb);
+			} else {
+				break;
+			}
+		} while (retry_count < 5);
+	}
+}
+
+static void lmc_workaround(struct ddr_priv *priv)
+{
+	/* Workaround Trcd overflow by using Additive latency. */
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+		union cvmx_lmcx_modereg_params0 mp0;
+		union cvmx_lmcx_timing_params1 tp1;
+		union cvmx_lmcx_control ctrl;
+		int rankx;
+
+		tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+		mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+		ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+		if (tp1.cn78xx.trcd == 0) {
+			debug("Workaround Trcd overflow by using Additive latency.\n");
+			/* Hard code this to 12 and enable additive latency */
+			tp1.cn78xx.trcd = 12;
+			mp0.s.al = 2;	/* CL-2 */
+			ctrl.s.pocas = 1;
+
+			debug("MODEREG_PARAMS0                               : 0x%016llx\n",
+			      mp0.u64);
+			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+			       mp0.u64);
+			debug("TIMING_PARAMS1                                : 0x%016llx\n",
+			      tp1.u64);
+			lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+
+			debug("LMC_CONTROL                                   : 0x%016llx\n",
+			      ctrl.u64);
+			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+			for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+				if (!(rank_mask & (1 << rankx)))
+					continue;
+
+				/* MR1 */
+				ddr4_mrw(priv, if_num, rankx, -1, 1, 0);
+			}
+		}
+	}
+
+	// this is here just for output, to allow check of the Deskew
+	// settings one last time...
+	if (!disable_deskew_training) {
+		struct deskew_counts dsk_counts;
+
+		debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
+		      node, if_num);
+		validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+					 3);
+	}
+
+	/*
+	 * Workaround Errata 26304 (T88 at 2.0, O75 at 1.x, O78 at 2.x)
+	 *
+	 * When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
+	 * LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
+	 * LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
+	 */
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+	    octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) {
+		union cvmx_lmcx_dll_ctl3 dll_ctl3;
+		union cvmx_lmcx_phy_ctl2 phy_ctl2;
+		union cvmx_lmcx_ext_config ext_cfg;
+		int increased_dsk_adj = 0;
+		int byte;
+
+		phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num));
+		ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+		dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+		for (byte = 0; byte < 8; ++byte) {
+			if (!(if_bytemask & (1 << byte)))
+				continue;
+			increased_dsk_adj |=
+			    (((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4);
+		}
+
+		if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) {
+			ext_cfg.s.drive_ena_bprch = 1;
+			lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+			debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n",
+			      if_num);
+		}
+	}
+}
+
+// Software Write-Leveling block
+
+#define VREF_RANGE1_LIMIT 0x33	// range1 is valid for 0x00 - 0x32
+#define VREF_RANGE2_LIMIT 0x18	// range2 is valid for 0x00 - 0x17
+// full window is valid for 0x00 to 0x4A
+// let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
+#define VREF_LIMIT        (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
+#define VREF_FINAL        (VREF_LIMIT - 1)
+
+enum sw_wl_status {
+	WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */
+	WL_HARDWARE = 1,	/* H/W wleveling succeeded */
+	WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */
+	WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */
+};
+
+static u64 rank_addr __section(".data");
+static int vref_val __section(".data");
+static int final_vref_val __section(".data");
+static int final_vref_range __section(".data");
+static int start_vref_val __section(".data");
+static int computed_final_vref_val __section(".data");
+static char best_vref_val_count __section(".data");
+static char vref_val_count __section(".data");
+static char best_vref_val_start __section(".data");
+static char vref_val_start __section(".data");
+static int bytes_failed __section(".data");
+static enum sw_wl_status byte_test_status[9] __section(".data");
+static enum sw_wl_status sw_wl_rank_status __section(".data");
+static int sw_wl_failed __section(".data");
+static int sw_wl_hw __section(".data");
+static int measured_vref_flag __section(".data");
+
+static void ddr4_vref_loop(struct ddr_priv *priv, int rankx)
+{
+	char *s;
+
+	if (vref_val < VREF_FINAL) {
+		int vrange, vvalue;
+
+		if (vref_val < VREF_RANGE2_LIMIT) {
+			vrange = 1;
+			vvalue = vref_val;
+		} else {
+			vrange = 0;
+			vvalue = vref_val - VREF_RANGE2_LIMIT;
+		}
+
+		set_vref(priv, if_num, rankx, vrange, vvalue);
+	} else {		/* if (vref_val < VREF_FINAL) */
+		/* Print the final vref value first. */
+
+		/* Always print the computed first if its valid */
+		if (computed_final_vref_val >= 0) {
+			debug("N%d.LMC%d.R%d: vref Computed Summary                 :              %2d (0x%02x)\n",
+			      node, if_num, rankx,
+			      computed_final_vref_val, computed_final_vref_val);
+		}
+
+		if (!measured_vref_flag) {	// setup to use the computed
+			best_vref_val_count = 1;
+			final_vref_val = computed_final_vref_val;
+		} else {	// setup to use the measured
+			if (best_vref_val_count > 0) {
+				best_vref_val_count =
+				    max(best_vref_val_count, (char)2);
+				final_vref_val = best_vref_val_start +
+					divide_nint(best_vref_val_count - 1, 2);
+
+				if (final_vref_val < VREF_RANGE2_LIMIT) {
+					final_vref_range = 1;
+				} else {
+					final_vref_range = 0;
+					final_vref_val -= VREF_RANGE2_LIMIT;
+				}
+
+				int vvlo = best_vref_val_start;
+				int vrlo;
+				int vvhi = best_vref_val_start +
+					best_vref_val_count - 1;
+				int vrhi;
+
+				if (vvlo < VREF_RANGE2_LIMIT) {
+					vrlo = 2;
+				} else {
+					vrlo = 1;
+					vvlo -= VREF_RANGE2_LIMIT;
+				}
+
+				if (vvhi < VREF_RANGE2_LIMIT) {
+					vrhi = 2;
+				} else {
+					vrhi = 1;
+					vvhi -= VREF_RANGE2_LIMIT;
+				}
+				debug("N%d.LMC%d.R%d: vref Training Summary                 :  0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
+				      node, if_num, rankx, vvlo, vrlo,
+				      final_vref_val,
+				      final_vref_range + 1, vvhi, vrhi,
+				      best_vref_val_count - 1);
+
+			} else {
+				/*
+				 * If nothing passed use the default vref
+				 * value for this rank
+				 */
+				union cvmx_lmcx_modereg_params2 mp2;
+
+				mp2.u64 =
+					lmc_rd(priv,
+					       CVMX_LMCX_MODEREG_PARAMS2(if_num));
+				final_vref_val = (mp2.u64 >>
+						  (rankx * 10 + 3)) & 0x3f;
+				final_vref_range = (mp2.u64 >>
+						    (rankx * 10 + 9)) & 0x01;
+
+				debug("N%d.LMC%d.R%d: vref Using Default                    :    %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
+				      node, if_num, rankx, final_vref_val,
+				      final_vref_val, final_vref_val,
+				      final_vref_val, final_vref_range + 1);
+			}
+		}
+
+		// allow override
+		s = lookup_env(priv, "ddr%d_vref_val_%1d%1d",
+			       if_num, !!(rankx & 2), !!(rankx & 1));
+		if (s)
+			final_vref_val = strtoul(s, NULL, 0);
+
+		set_vref(priv, if_num, rankx, final_vref_range, final_vref_val);
+	}
+}
+
+#define WL_MIN_NO_ERRORS_COUNT 3	// FIXME? three passes without errors
+
+static int errors __section(".data");
+static int byte_delay[9] __section(".data");
+static u64 bytemask __section(".data");
+static int bytes_todo __section(".data");
+static int no_errors_count __section(".data");
+static u64 bad_bits[2] __section(".data");
+#if ENABLE_SW_WLEVEL_UTILIZATION
+static u64 sum_dram_dclk __section(".data");
+static u64 sum_dram_ops __section(".data");
+static u64 start_dram_dclk __section(".data");
+static u64 stop_dram_dclk __section(".data");
+static u64 start_dram_ops __section(".data");
+static u64 stop_dram_ops __section(".data");
+#endif
+
+static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+	int delay;
+	int b;
+
+	// write the current set of WL delays
+	lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64);
+	wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+
+	// do the test
+	if (sw_wl_hw) {
+		errors = run_best_hw_patterns(priv, if_num, rank_addr,
+					      DBTRAIN_TEST, bad_bits);
+		errors &= bytes_todo;	// keep only the ones we are still doing
+	} else {
+#if ENABLE_SW_WLEVEL_UTILIZATION
+		start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+		start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+#endif
+		errors = test_dram_byte64(priv, if_num, rank_addr, bytemask,
+					  bad_bits);
+
+#if ENABLE_SW_WLEVEL_UTILIZATION
+		stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+		stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+		sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
+		sum_dram_ops += stop_dram_ops - start_dram_ops;
+#endif
+	}
+
+	debug("WL pass1: test_dram_byte returned 0x%x\n", errors);
+
+	// remember, errors will not be returned for byte-lanes that have
+	// maxxed out...
+	if (errors == 0) {
+		no_errors_count++;	// bump
+		// bypass check/update completely
+		if (no_errors_count > 1)
+			return;	// to end of do-while
+	} else {
+		no_errors_count = 0;	// reset
+	}
+
+	// check errors by byte
+	for (b = 0; b < 9; ++b) {
+		if (!(bytes_todo & (1 << b)))
+			continue;
+
+		delay = byte_delay[b];
+		// yes, an error in this byte lane
+		if (errors & (1 << b)) {
+			debug("        byte %d delay %2d Errors\n", b, delay);
+			// since this byte had an error, we move to the next
+			// delay value, unless done with it
+			delay += 8;	// incr by 8 to do delay high-order bits
+			if (delay < 32) {
+				upd_wl_rank(&wl_rank, b, delay);
+				debug("        byte %d delay %2d New\n",
+				      b, delay);
+				byte_delay[b] = delay;
+			} else {
+				// reached max delay, maybe really done with
+				// this byte
+#if SWL_TRY_HWL_ALT
+				// consider an alt only for computed VREF and
+				if (!measured_vref_flag &&
+				    (hwl_alts[rankx].hwl_alt_mask & (1 << b))) {
+					// if an alt exists...
+					// just orig low-3 bits
+					int bad_delay = delay & 0x6;
+
+					// yes, use it
+					delay =	hwl_alts[rankx].hwl_alt_delay[b];
+					// clear that flag
+					hwl_alts[rankx].hwl_alt_mask &=
+						~(1 << b);
+					upd_wl_rank(&wl_rank, b, delay);
+					byte_delay[b] = delay;
+					debug("        byte %d delay %2d ALTERNATE\n",
+					      b, delay);
+					debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
+					      node, if_num,
+					      rankx, b, bad_delay, delay);
+
+				} else
+#endif /* SWL_TRY_HWL_ALT */
+				{
+					unsigned int bits_bad;
+
+					if (b < 8) {
+						// test no longer, remove from
+						// byte mask
+						bytemask &=
+							~(0xffULL << (8 * b));
+						bits_bad = (unsigned int)
+							((bad_bits[0] >>
+							  (8 * b)) & 0xffUL);
+					} else {
+						bits_bad = (unsigned int)
+						    (bad_bits[1] & 0xffUL);
+					}
+
+					// remove from bytes to do
+					bytes_todo &= ~(1 << b);
+					// make sure this is set for this case
+					byte_test_status[b] = WL_ESTIMATED;
+					debug("        byte %d delay %2d Exhausted\n",
+					      b, delay);
+					if (!measured_vref_flag) {
+						// this is too noisy when doing
+						// measured VREF
+						debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n",
+						      node, if_num, rankx,
+						      b, bits_bad, delay);
+					}
+				}
+			}
+		} else {
+			// no error, stay with current delay, but keep testing
+			// it...
+			debug("        byte %d delay %2d Passed\n", b, delay);
+			byte_test_status[b] = WL_HARDWARE;	// change status
+		}
+	}			/* for (b = 0; b < 9; ++b) */
+}
+
+static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx)
+{
+	int save_byte8 = wl_rank.s.byte8;
+
+	byte_test_status[8] = WL_HARDWARE;	/* H/W delay value */
+
+	if (save_byte8 != wl_rank.s.byte3 &&
+	    save_byte8 != wl_rank.s.byte4) {
+		int test_byte8 = save_byte8;
+		int test_byte8_error;
+		int byte8_error = 0x1f;
+		int adder;
+		int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4,
+					    2);
+
+		for (adder = 0; adder <= 32; adder += 8) {
+			test_byte8_error = abs((adder + save_byte8) -
+					       avg_bytes);
+			if (test_byte8_error < byte8_error) {
+				byte8_error = test_byte8_error;
+				test_byte8 = save_byte8 + adder;
+			}
+		}
+
+#if SW_WL_CHECK_PATCH
+		// only do the check if we are not using measured VREF
+		if (!measured_vref_flag) {
+			/* Use only even settings, rounding down... */
+			test_byte8 &= ~1;
+
+			// do validity check on the calculated ECC delay value
+			// this depends on the DIMM type
+			if (spd_rdimm) {	// RDIMM
+				// but not mini-RDIMM
+				if (spd_dimm_type != 5) {
+					// it can be > byte4, but should never
+					// be > byte3
+					if (test_byte8 > wl_rank.s.byte3) {
+						/* say it is still estimated */
+						byte_test_status[8] =
+							WL_ESTIMATED;
+					}
+				}
+			} else {	// UDIMM
+				if (test_byte8 < wl_rank.s.byte3 ||
+				    test_byte8 > wl_rank.s.byte4) {
+					// should never be outside the
+					// byte 3-4 range
+					/* say it is still estimated */
+					byte_test_status[8] = WL_ESTIMATED;
+				}
+			}
+			/*
+			 * Report whenever the calculation appears bad.
+			 * This happens if some of the original values were off,
+			 * or unexpected geometry from DIMM type, or custom
+			 * circuitry (NIC225E, I am looking at you!).
+			 * We will trust the calculated value, and depend on
+			 * later testing to catch any instances when that
+			 * value is truly bad.
+			 */
+			// ESTIMATED means there may be an issue
+			if (byte_test_status[8] == WL_ESTIMATED) {
+				debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
+				      node, if_num, rankx,
+				      (spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4,
+				      test_byte8, wl_rank.s.byte3);
+				byte_test_status[8] = WL_HARDWARE;
+			}
+		}
+#endif /* SW_WL_CHECK_PATCH */
+		/* Use only even settings */
+		wl_rank.s.byte8 = test_byte8 & ~1;
+	}
+
+	if (wl_rank.s.byte8 != save_byte8) {
+		/* Change the status if s/w adjusted the delay */
+		byte_test_status[8] = WL_SOFTWARE;	/* Estimated delay */
+	}
+}
+
+static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv,
+						   int rankx)
+{
+	int errors;
+	int byte_delay[8];
+	int byte_passed[8];
+	u64 bytemask;
+	u64 bitmask;
+	int wl_offset;
+	int bytes_todo;
+	int sw_wl_offset = 1;
+	int delay;
+	int b;
+
+	for (b = 0; b < 8; ++b)
+		byte_passed[b] = 0;
+
+	bytes_todo = if_bytemask;
+
+	for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) {
+		debug("Starting wl_offset for-loop: %d\n", wl_offset);
+
+		bytemask = 0;
+
+		for (b = 0; b < 8; ++b) {
+			byte_delay[b] = 0;
+			// this does not contain fully passed bytes
+			if (!(bytes_todo & (1 << b)))
+				continue;
+
+			// reset across passes if not fully passed
+			byte_passed[b] = 0;
+			upd_wl_rank(&wl_rank, b, 0);	// all delays start at 0
+			bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff;
+			// set the bytes bits in the bytemask
+			bytemask |= bitmask << (8 * b);
+		}		/* for (b = 0; b < 8; ++b) */
+
+		// start a pass if there is any byte lane to test
+		while (bytemask != 0) {
+			debug("Starting bytemask while-loop: 0x%llx\n",
+			      bytemask);
+
+			// write this set of WL delays
+			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+			       wl_rank.u64);
+			wl_rank.u64 = lmc_rd(priv,
+					     CVMX_LMCX_WLEVEL_RANKX(rankx,
+								    if_num));
+
+			// do the test
+			if (sw_wl_hw) {
+				errors = run_best_hw_patterns(priv, if_num,
+							      rank_addr,
+							      DBTRAIN_TEST,
+							      NULL) & 0xff;
+			} else {
+				errors = test_dram_byte64(priv, if_num,
+							  rank_addr, bytemask,
+							  NULL);
+			}
+
+			debug("test_dram_byte returned 0x%x\n", errors);
+
+			// check errors by byte
+			for (b = 0; b < 8; ++b) {
+				if (!(bytes_todo & (1 << b)))
+					continue;
+
+				delay = byte_delay[b];
+				if (errors & (1 << b)) {	// yes, an error
+					debug("        byte %d delay %2d Errors\n",
+					      b, delay);
+					byte_passed[b] = 0;
+				} else {	// no error
+					byte_passed[b] += 1;
+					// Look for consecutive working settings
+					if (byte_passed[b] == (1 + wl_offset)) {
+						debug("        byte %d delay %2d FULLY Passed\n",
+						      b, delay);
+						if (wl_offset == 1) {
+							byte_test_status[b] =
+								WL_SOFTWARE;
+						} else if (wl_offset == 0) {
+							byte_test_status[b] =
+								WL_SOFTWARE1;
+						}
+
+						// test no longer, remove
+						// from byte mask this pass
+						bytemask &= ~(0xffULL <<
+							      (8 * b));
+						// remove completely from
+						// concern
+						bytes_todo &= ~(1 << b);
+						// on to the next byte, bypass
+						// delay updating!!
+						continue;
+					} else {
+						debug("        byte %d delay %2d Passed\n",
+						      b, delay);
+					}
+				}
+
+				// error or no, here we move to the next delay
+				// value for this byte, unless done all delays
+				// only a byte that has "fully passed" will
+				// bypass around this,
+				delay += 2;
+				if (delay < 32) {
+					upd_wl_rank(&wl_rank, b, delay);
+					debug("        byte %d delay %2d New\n",
+					      b, delay);
+					byte_delay[b] = delay;
+				} else {
+					// reached max delay, done with this
+					// byte
+					debug("        byte %d delay %2d Exhausted\n",
+					      b, delay);
+					// test no longer, remove from byte
+					// mask this pass
+					bytemask &= ~(0xffULL << (8 * b));
+				}
+			}	/* for (b = 0; b < 8; ++b) */
+			debug("End of for-loop: bytemask 0x%llx\n", bytemask);
+		}		/* while (bytemask != 0) */
+	}
+
+	for (b = 0; b < 8; ++b) {
+		// any bytes left in bytes_todo did not pass
+		if (bytes_todo & (1 << b)) {
+			union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank;
+
+			/*
+			 * Last resort. Use Rlevel settings to estimate
+			 * Wlevel if software write-leveling fails
+			 */
+			debug("Using RLEVEL as WLEVEL estimate for byte %d\n",
+			      b);
+			lmc_rlevel_rank.u64 =
+				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+								    if_num));
+			rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b);
+		}
+	}			/* for (b = 0; b < 8; ++b) */
+}
+
+static int lmc_sw_write_leveling(struct ddr_priv *priv)
+{
+	/* Try to determine/optimize write-level delays experimentally. */
+	union cvmx_lmcx_wlevel_rankx wl_rank_hw_res;
+	union cvmx_lmcx_config cfg;
+	int rankx;
+	int byte;
+	char *s;
+	int i;
+
+	int active_rank;
+	int sw_wl_enable = 1;	/* FIX... Should be customizable. */
+	int interfaces;
+
+	static const char * const wl_status_strings[] = {
+		"(e)",
+		"   ",
+		"   ",
+		"(1)"
+	};
+
+	// FIXME: make HW-assist the default now?
+	int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT;
+	int dram_connection = c_cfg->dram_connection;
+
+	s = lookup_env(priv, "ddr_sw_wlevel_hw");
+	if (s)
+		sw_wl_hw_default = !!strtoul(s, NULL, 0);
+	if (!if_64b)		// must use SW algo if 32-bit mode
+		sw_wl_hw_default = 0;
+
+	// can never use hw-assist
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+		sw_wl_hw_default = 0;
+
+	s = lookup_env(priv, "ddr_software_wlevel");
+	if (s)
+		sw_wl_enable = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr%d_dram_connection", if_num);
+	if (s)
+		dram_connection = !!strtoul(s, NULL, 0);
+
+	cvmx_rng_enable();
+
+#if SWL_WITH_HW_ALTS_CHOOSE_SW
+	// Choose the SW algo for SWL if any HWL alternates were found
+	// NOTE: we have to do this here, and for all, since HW-assist
+	// including ECC requires ECC enable
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		if (!sw_wl_enable)
+			break;
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		// if we are doing HW-assist, and there are alternates,
+		// switch to SW-algorithm for all
+		if (sw_wl_hw_default && hwl_alts[rankx].hwl_alt_mask) {
+			debug("N%d.LMC%d.R%d: Using SW algorithm for write-leveling this rank\n",
+			      node, if_num, rankx);
+			sw_wl_hw_default = 0;
+			break;
+		}
+	}
+#endif
+
+	/*
+	 * Get the measured_vref setting from the config, check for an
+	 * override...
+	 */
+	/* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */
+	// NOTE: measured VREF can only be done for DDR4
+	if (ddr_type == DDR4_DRAM) {
+		measured_vref_flag = c_cfg->measured_vref;
+		s = lookup_env(priv, "ddr_measured_vref");
+		if (s)
+			measured_vref_flag = !!strtoul(s, NULL, 0);
+	} else {
+		measured_vref_flag = 0;	// OFF for DDR3
+	}
+
+	/*
+	 * Ensure disabled ECC for DRAM tests using the SW algo, else leave
+	 * it untouched
+	 */
+	if (!sw_wl_hw_default) {
+		cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+		cfg.cn78xx.ecc_ena = 0;
+		lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+	}
+
+	/*
+	 * We need to track absolute rank number, as well as how many
+	 * active ranks we have.  Two single rank DIMMs show up as
+	 * ranks 0 and 2, but only 2 ranks are active.
+	 */
+	active_rank = 0;
+
+	interfaces = __builtin_popcount(if_mask);
+
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		final_vref_range = 0;
+		start_vref_val = 0;
+		computed_final_vref_val = -1;
+		sw_wl_rank_status = WL_HARDWARE;
+		sw_wl_failed = 0;
+		sw_wl_hw = sw_wl_hw_default;
+
+		if (!sw_wl_enable)
+			break;
+
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
+		      node, if_num, rankx,
+		      (sw_wl_hw) ? "with H/W assist" :
+		      "with S/W algorithm");
+
+		if (ddr_type == DDR4_DRAM && num_ranks != 4) {
+			// always compute when we can...
+			computed_final_vref_val =
+			    compute_vref_val(priv, if_num, rankx, dimm_count,
+					     num_ranks, imp_val,
+					     is_stacked_die, dram_connection);
+
+			// but only use it if allowed
+			if (!measured_vref_flag) {
+				// skip all the measured vref processing,
+				// just the final setting
+				start_vref_val = VREF_FINAL;
+			}
+		}
+
+		/* Save off the h/w wl results */
+		wl_rank_hw_res.u64 = lmc_rd(priv,
+					    CVMX_LMCX_WLEVEL_RANKX(rankx,
+								   if_num));
+
+		vref_val_count = 0;
+		vref_val_start = 0;
+		best_vref_val_count = 0;
+		best_vref_val_start = 0;
+
+		/* Loop one extra time using the Final vref value. */
+		for (vref_val = start_vref_val; vref_val < VREF_LIMIT;
+		     ++vref_val) {
+			if (ddr_type == DDR4_DRAM)
+				ddr4_vref_loop(priv, rankx);
+
+			/* Restore the saved value */
+			wl_rank.u64 = wl_rank_hw_res.u64;
+
+			for (byte = 0; byte < 9; ++byte)
+				byte_test_status[byte] = WL_ESTIMATED;
+
+			if (wl_mask_err == 0) {
+				/*
+				 * Determine address of DRAM to test for
+				 * pass 1 of software write leveling.
+				 */
+				rank_addr = active_rank *
+					(1ull << (pbank_lsb - bunk_enable +
+						  (interfaces / 2)));
+
+				/*
+				 * Adjust address for boot bus hole in memory
+				 * map.
+				 */
+				if (rank_addr > 0x10000000)
+					rank_addr += 0x10000000;
+
+				debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
+				      node, if_num, rankx, active_rank,
+				      rank_addr);
+
+				// start parallel write-leveling block for
+				// delay high-order bits
+				errors = 0;
+				no_errors_count = 0;
+#if ENABLE_SW_WLEVEL_UTILIZATION
+				sum_dram_dclk = 0;
+				sum_dram_ops = 0;
+#endif
+
+				if (if_64b) {
+					bytes_todo = (sw_wl_hw) ?
+						if_bytemask : 0xFF;
+					bytemask = ~0ULL;
+				} else {
+					// 32-bit, must be using SW algo,
+					// only data bytes
+					bytes_todo = 0x0f;
+					bytemask = 0x00000000ffffffffULL;
+				}
+
+				for (byte = 0; byte < 9; ++byte) {
+					if (!(bytes_todo & (1 << byte))) {
+						byte_delay[byte] = 0;
+					} else {
+						byte_delay[byte] =
+						    get_wl_rank(&wl_rank, byte);
+					}
+				}	/* for (byte = 0; byte < 9; ++byte) */
+
+				do {
+					lmc_sw_write_leveling_loop(priv, rankx);
+				} while (no_errors_count <
+					 WL_MIN_NO_ERRORS_COUNT);
+
+#if ENABLE_SW_WLEVEL_UTILIZATION
+				if (!sw_wl_hw) {
+					u64 percent_x10;
+
+					if (sum_dram_dclk == 0)
+						sum_dram_dclk = 1;
+					percent_x10 = sum_dram_ops * 1000 /
+						sum_dram_dclk;
+					debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
+					      node, if_num, rankx, sum_dram_ops,
+					      sum_dram_dclk, percent_x10 / 10,
+					      percent_x10 % 10);
+				}
+#endif
+				if (errors) {
+					debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n",
+					      vref_val, vref_val, errors);
+				}
+				// end parallel write-leveling block for
+				// delay high-order bits
+
+				// if we used HW-assist, we did the ECC byte
+				// when approp.
+				if (sw_wl_hw) {
+					if (wl_print) {
+						debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n",
+						      node, if_num, rankx);
+					}
+					goto no_ecc_estimate;
+				}
+
+				if ((if_bytemask & 0xff) == 0xff) {
+					if (use_ecc) {
+						sw_write_lvl_use_ecc(priv,
+								     rankx);
+					} else {
+						/* H/W delay value */
+						byte_test_status[8] =
+							WL_HARDWARE;
+						/* ECC is not used */
+						wl_rank.s.byte8 =
+							wl_rank.s.byte0;
+					}
+				} else {
+					if (use_ecc) {
+						/* Estimate the ECC byte dly */
+						// add hi-order to b4
+						wl_rank.s.byte4 |=
+							(wl_rank.s.byte3 &
+							 0x38);
+						if ((wl_rank.s.byte4 & 0x06) <
+						    (wl_rank.s.byte3 & 0x06)) {
+							// must be next clock
+							wl_rank.s.byte4 += 8;
+						}
+					} else {
+						/* ECC is not used */
+						wl_rank.s.byte4 =
+							wl_rank.s.byte0;
+					}
+
+					/*
+					 * Change the status if s/w adjusted
+					 * the delay
+					 */
+					/* Estimated delay */
+					byte_test_status[4] = WL_SOFTWARE;
+				}	/* if ((if_bytemask & 0xff) == 0xff) */
+			}	/* if (wl_mask_err == 0) */
+
+no_ecc_estimate:
+
+			bytes_failed = 0;
+			for (byte = 0; byte < 9; ++byte) {
+				/* Don't accumulate errors for untested bytes */
+				if (!(if_bytemask & (1 << byte)))
+					continue;
+				bytes_failed +=
+				    (byte_test_status[byte] == WL_ESTIMATED);
+			}
+
+			/* vref training loop is only used for DDR4  */
+			if (ddr_type != DDR4_DRAM)
+				break;
+
+			if (bytes_failed == 0) {
+				if (vref_val_count == 0)
+					vref_val_start = vref_val;
+
+				++vref_val_count;
+				if (vref_val_count > best_vref_val_count) {
+					best_vref_val_count = vref_val_count;
+					best_vref_val_start = vref_val_start;
+					debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    0x%02x <----- ???? -----> 0x%02x\n",
+					      node, if_num, rankx, vref_val,
+					      best_vref_val_start,
+					      best_vref_val_start +
+					      best_vref_val_count - 1);
+				}
+			} else {
+				vref_val_count = 0;
+				debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    failed\n",
+				      node, if_num, rankx, vref_val);
+			}
+		}
+
+		/*
+		 * Determine address of DRAM to test for software write
+		 * leveling.
+		 */
+		rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable +
+						    (interfaces / 2)));
+		/* Adjust address for boot bus hole in memory map. */
+		if (rank_addr > 0x10000000)
+			rank_addr += 0x10000000;
+
+		debug("Rank Address: 0x%llx\n", rank_addr);
+
+		if (bytes_failed) {
+#if !DISABLE_SW_WL_PASS_2
+			debug("N%d.LMC%d.R%d: Starting SW Write-leveling pass 2\n",
+			      node, if_num, rankx);
+
+			sw_wl_rank_status = WL_SOFTWARE;
+
+			/*
+			 * If s/w fixups failed then retry using s/w
+			 * write-leveling.
+			 */
+			if (wl_mask_err == 0) {
+				/*
+				 * h/w succeeded but s/w fixups failed.
+				 * So retry s/w.
+				 */
+				debug("N%d.LMC%d.R%d: Retrying software Write-Leveling.\n",
+				      node, if_num, rankx);
+			}
+
+			// start parallel write-leveling block for delay
+			// low-order bits
+			parallel_wl_block_delay(priv, rankx);
+
+			if (use_ecc) {
+				/*
+				 * ECC byte has to be estimated. Take the
+				 * average of the two surrounding bytes.
+				 */
+				int test_byte8 = divide_nint(wl_rank.s.byte3 +
+							     wl_rank.s.byte4 +
+							     2, 2);
+				/* Use only even settings */
+				wl_rank.s.byte8 = test_byte8 & ~1;
+				/* Estimated delay */
+				byte_test_status[8] = WL_ESTIMATED;
+			} else {
+				/* H/W delay value */
+				byte_test_status[8] = WL_HARDWARE;
+				/* ECC is not used */
+				wl_rank.s.byte8 = wl_rank.s.byte0;
+			}
+
+			/* Set delays for unused bytes to match byte 0. */
+			for (byte = 0; byte < 8; ++byte) {
+				if ((if_bytemask & (1 << byte)))
+					continue;
+				upd_wl_rank(&wl_rank, byte, wl_rank.s.byte0);
+				byte_test_status[byte] = WL_SOFTWARE;
+			}
+#else /* !DISABLE_SW_WL_PASS_2 */
+			// FIXME? the big hammer, did not even try SW WL pass2,
+			// assume only chip reset will help
+			debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
+			      node, if_num, rankx);
+			sw_wl_failed = 1;
+#endif /* !DISABLE_SW_WL_PASS_2 */
+		} else {	/* if (bytes_failed) */
+			// SW WL pass 1 was OK, write the settings
+			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+			       wl_rank.u64);
+			wl_rank.u64 = lmc_rd(priv,
+					     CVMX_LMCX_WLEVEL_RANKX(rankx,
+								    if_num));
+
+#if SW_WL_CHECK_PATCH
+			// do validity check on the delay values by running
+			// the test 1 more time...
+			// FIXME: we really need to check the ECC byte setting
+			// here as well, so we need to enable ECC for this test!
+			// if there are any errors, claim SW WL failure
+			u64 datamask = (if_64b) ? 0xffffffffffffffffULL :
+				0x00000000ffffffffULL;
+			int errors;
+
+			// do the test
+			if (sw_wl_hw) {
+				errors = run_best_hw_patterns(priv, if_num,
+							      rank_addr,
+							      DBTRAIN_TEST,
+							      NULL) & 0xff;
+			} else {
+				errors = test_dram_byte64(priv, if_num,
+							  rank_addr, datamask,
+							  NULL);
+			}
+
+			if (errors) {
+				debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n",
+				      node, if_num, rankx, errors);
+				sw_wl_failed = 1;
+			}
+#endif /* SW_WL_CHECK_PATCH */
+		}		/* if (bytes_failed) */
+
+		// FIXME? dump the WL settings, so we get more of a clue
+		// as to what happened where
+		debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX  : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
+		      node, if_num, rankx, wl_rank.s.status, wl_rank.u64,
+		      wl_rank.s.byte8, wl_status_strings[byte_test_status[8]],
+		      wl_rank.s.byte7, wl_status_strings[byte_test_status[7]],
+		      wl_rank.s.byte6, wl_status_strings[byte_test_status[6]],
+		      wl_rank.s.byte5, wl_status_strings[byte_test_status[5]],
+		      wl_rank.s.byte4, wl_status_strings[byte_test_status[4]],
+		      wl_rank.s.byte3, wl_status_strings[byte_test_status[3]],
+		      wl_rank.s.byte2, wl_status_strings[byte_test_status[2]],
+		      wl_rank.s.byte1, wl_status_strings[byte_test_status[1]],
+		      wl_rank.s.byte0, wl_status_strings[byte_test_status[0]],
+		      (sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)");
+
+		// finally, check for fatal conditions: either chip reset
+		// right here, or return error flag
+		if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) ||
+		    sw_wl_failed) {
+			if (!ddr_disable_chip_reset) {	// do chip RESET
+				printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n",
+				       node, if_num, rankx);
+				mdelay(500);
+				do_reset(NULL, 0, 0, NULL);
+			} else {
+				// return error flag so LMC init can be retried.
+				debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n",
+				      node, if_num, rankx);
+				return -EAGAIN;	// 0 indicates restart possible.
+			}
+		}
+		active_rank++;
+	}
+
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		int parameter_set = 0;
+		u64 value;
+
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+								  if_num));
+
+		for (i = 0; i < 9; ++i) {
+			s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d",
+				       if_num, rankx, i);
+			if (s) {
+				parameter_set |= 1;
+				value = strtoul(s, NULL, 0);
+
+				upd_wl_rank(&wl_rank, i, value);
+			}
+		}
+
+		s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx);
+		if (s) {
+			parameter_set |= 1;
+			value = strtoull(s, NULL, 0);
+			wl_rank.u64 = value;
+		}
+
+		if (parameter_set) {
+			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+			       wl_rank.u64);
+			wl_rank.u64 =
+			    lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+			display_wl(if_num, wl_rank, rankx);
+		}
+#if WLEXTRAS_PATCH
+		// if there are unused entries to be filled
+		if ((rank_mask & 0x0F) != 0x0F) {
+			if (rankx < 3) {
+				debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
+				      node, if_num, rankx);
+
+				// if rank 0, write ranks 1 and 2 here if empty
+				if (rankx == 0) {
+					// check that rank 1 is empty
+					if (!(rank_mask & (1 << 1))) {
+						debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+						      node, if_num, rankx, 1);
+						lmc_wr(priv,
+						       CVMX_LMCX_WLEVEL_RANKX(1,
+								if_num),
+						       wl_rank.u64);
+					}
+
+					// check that rank 2 is empty
+					if (!(rank_mask & (1 << 2))) {
+						debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+						      node, if_num, rankx, 2);
+						lmc_wr(priv,
+						       CVMX_LMCX_WLEVEL_RANKX(2,
+								if_num),
+						       wl_rank.u64);
+					}
+				}
+
+				// if rank 0, 1 or 2, write rank 3 here if empty
+				// check that rank 3 is empty
+				if (!(rank_mask & (1 << 3))) {
+					debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+					      node, if_num, rankx, 3);
+					lmc_wr(priv,
+					       CVMX_LMCX_WLEVEL_RANKX(3,
+								      if_num),
+					       wl_rank.u64);
+				}
+			}
+		}
+#endif /* WLEXTRAS_PATCH */
+	}
+
+	/* Enable 32-bit mode if required. */
+	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	cfg.cn78xx.mode32b = (!if_64b);
+	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+	/* Restore the ECC configuration */
+	if (!sw_wl_hw_default)
+		cfg.cn78xx.ecc_ena = use_ecc;
+
+	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+
+	return 0;
+}
+
+static void lmc_dll(struct ddr_priv *priv)
+{
+#ifdef CAVIUM_ONLY
+	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+	int setting[9];
+	int i;
+
+	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+	for (i = 0; i < 9; ++i) {
+		SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i));
+		lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+		lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+		ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+		setting[i] = GET_DDR_DLL_CTL3(dll90_setting);
+		debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num,
+		      GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64,
+		      setting[i]);
+	}
+
+	debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+	      node, if_num, "DLL90 Setting 8:0",
+	      setting[8], setting[7], setting[6], setting[5], setting[4],
+	      setting[3], setting[2], setting[1], setting[0]);
+#endif /* CAVIUM_ONLY */
+
+	process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset",
+				   c_cfg->dll_write_offset,
+				   "ddr%d_dll_write_offset_byte%d", 1);
+	process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset",
+				   c_cfg->dll_read_offset,
+				   "ddr%d_dll_read_offset_byte%d", 2);
+}
+
+#define SLOT_CTL_INCR(csr, chip, field, incr)				\
+	csr.chip.field = (csr.chip.field < (64 - incr)) ?		\
+		(csr.chip.field + incr) : 63
+
+#define INCR(csr, chip, field, incr)                                    \
+	csr.chip.field = (csr.chip.field < (64 - incr)) ?		\
+		(csr.chip.field + incr) : 63
+
+static void lmc_workaround_2(struct ddr_priv *priv)
+{
+	/* Workaround Errata 21063 */
+	if (octeon_is_cpuid(OCTEON_CN78XX) ||
+	    octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+		union cvmx_lmcx_slot_ctl0 slot_ctl0;
+		union cvmx_lmcx_slot_ctl1 slot_ctl1;
+		union cvmx_lmcx_slot_ctl2 slot_ctl2;
+		union cvmx_lmcx_ext_config ext_cfg;
+
+		slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
+		slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+		slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+
+		ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+
+		/* When ext_cfg.s.read_ena_bprch is set add 1 */
+		if (ext_cfg.s.read_ena_bprch) {
+			SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1);
+			SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1);
+			SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1);
+			SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1);
+		}
+
+		/* Always add 2 */
+		SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2);
+		SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2);
+
+		lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64);
+		lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+		lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+	}
+
+	/* Workaround Errata 21216 */
+	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) ||
+	    octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+		union cvmx_lmcx_slot_ctl1 slot_ctl1;
+		union cvmx_lmcx_slot_ctl2 slot_ctl2;
+
+		slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+		slot_ctl1.cn78xx.w2w_xrank_init =
+		    max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init);
+		lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+
+		slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+		slot_ctl2.cn78xx.w2w_xdimm_init =
+		    max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init);
+		lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+	}
+}
+
+static void lmc_final(struct ddr_priv *priv)
+{
+	/*
+	 * 4.8.11 Final LMC Initialization
+	 *
+	 * Early LMC initialization, LMC write-leveling, and LMC read-leveling
+	 * must be completed prior to starting this final LMC initialization.
+	 *
+	 * LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
+	 * LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
+	 * readleveling and write-leveling settings. Software should not write
+	 * the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
+	 * values until after the final read-leveling and write-leveling
+	 * settings are written.
+	 *
+	 * Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
+	 * LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
+	 * select the minimum gaps between read operations and write operations
+	 * of various types.
+	 *
+	 * Software must not reduce the values in these CSR fields below the
+	 * values previously selected by the LMC hardware (during write-leveling
+	 * and read-leveling steps above).
+	 *
+	 * All sections in this chapter may be used to derive proper settings
+	 * for these registers.
+	 *
+	 * For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
+	 * properly. This should be done prior to the first read.
+	 */
+
+#ifdef ENABLE_SLOT_CTL_ACCESS
+	union cvmx_lmcx_slot_ctl0 lmc_slot_ctl0;
+	union cvmx_lmcx_slot_ctl1 lmc_slot_ctl1;
+	union cvmx_lmcx_slot_ctl2 lmc_slot_ctl2;
+	union cvmx_lmcx_slot_ctl3 lmc_slot_ctl3;
+
+	lmc_slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
+	lmc_slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+	lmc_slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+	lmc_slot_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL3(if_num));
+
+	debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL0", lmc_slot_ctl0.u64);
+	debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL1", lmc_slot_ctl1.u64);
+	debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL2", lmc_slot_ctl2.u64);
+	debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL3", lmc_slot_ctl3.u64);
+
+	// for now, look only for SLOT_CTL1 envvar for override of contents
+	s = lookup_env(priv, "ddr%d_slot_ctl1", if_num);
+	if (s) {
+		int slot_ctl1_incr = strtoul(s, NULL, 0);
+		// validate the value
+		if (slot_ctl1_incr < 1 || slot_ctl1_incr > 3) {
+			printf("ddr%d_slot_ctl1 illegal value (%d); must be 1-3\n",
+			       if_num, slot_ctl1_incr);
+		} else {
+			// modify all the SLOT_CTL1 fields by the increment,
+			// for now...
+			// but make sure the value will not overflow!!!
+			INCR(lmc_slot_ctl1, s, r2r_xrank_init, slot_ctl1_incr);
+			INCR(lmc_slot_ctl1, s, r2w_xrank_init, slot_ctl1_incr);
+			INCR(lmc_slot_ctl1, s, w2r_xrank_init, slot_ctl1_incr);
+			INCR(lmc_slot_ctl1, s, w2w_xrank_init, slot_ctl1_incr);
+			lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num),
+			       lmc_slot_ctl1.u64);
+		}
+	}
+#endif /* ENABLE_SLOT_CTL_ACCESS */
+
+	/* Clear any residual ECC errors */
+	int num_tads = 1;
+	int tad;
+	int num_mcis = 1;
+	int mci;
+
+	if (octeon_is_cpuid(OCTEON_CN78XX)) {
+		num_tads = 8;
+		num_mcis = 4;
+	} else if (octeon_is_cpuid(OCTEON_CN70XX)) {
+		num_tads = 1;
+		num_mcis = 1;
+	} else if (octeon_is_cpuid(OCTEON_CN73XX) ||
+		   octeon_is_cpuid(OCTEON_CNF75XX)) {
+		num_tads = 4;
+		num_mcis = 3;
+	}
+
+	lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL);
+	lmc_rd(priv, CVMX_LMCX_INT(if_num));
+
+	for (tad = 0; tad < num_tads; tad++) {
+		l2c_wr(priv, CVMX_L2C_TADX_INT(tad),
+		       l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+		debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad,
+		      l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+	}
+
+	for (mci = 0; mci < num_mcis; mci++) {
+		l2c_wr(priv, CVMX_L2C_MCIX_INT(mci),
+		       l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+		debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci,
+		      l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+	}
+
+	debug("%-45s : 0x%08llx\n", "LMC_INT",
+	      lmc_rd(priv, CVMX_LMCX_INT(if_num)));
+}
+
+static void lmc_scrambling(struct ddr_priv *priv)
+{
+	// Make sure scrambling is disabled during init...
+	union cvmx_lmcx_control ctrl;
+	union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0;
+	union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1;
+	union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2;
+	union cvmx_lmcx_ns_ctl lmc_ns_ctl;
+	int use_scramble = 0;	// default OFF
+	char *s;
+
+	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num));
+	lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num));
+	lmc_scramble_cfg2.u64 = 0;	// quiet compiler
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+		lmc_scramble_cfg2.u64 =
+		    lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num));
+	}
+	lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num));
+
+	s = lookup_env_ull(priv, "ddr_use_scramble");
+	if (s)
+		use_scramble = simple_strtoull(s, NULL, 0);
+
+	/* Generate random values if scrambling is needed */
+	if (use_scramble) {
+		lmc_scramble_cfg0.u64 = cvmx_rng_get_random64();
+		lmc_scramble_cfg1.u64 = cvmx_rng_get_random64();
+		lmc_scramble_cfg2.u64 = cvmx_rng_get_random64();
+		lmc_ns_ctl.s.ns_scramble_dis = 0;
+		lmc_ns_ctl.s.adr_offset = 0;
+		ctrl.s.scramble_ena = 1;
+	}
+
+	s = lookup_env_ull(priv, "ddr_scramble_cfg0");
+	if (s) {
+		lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0);
+		ctrl.s.scramble_ena = 1;
+	}
+	debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0",
+	      lmc_scramble_cfg0.u64);
+
+	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64);
+
+	s = lookup_env_ull(priv, "ddr_scramble_cfg1");
+	if (s) {
+		lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0);
+		ctrl.s.scramble_ena = 1;
+	}
+	debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1",
+	      lmc_scramble_cfg1.u64);
+	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64);
+
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+		s = lookup_env_ull(priv, "ddr_scramble_cfg2");
+		if (s) {
+			lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0);
+			ctrl.s.scramble_ena = 1;
+		}
+		debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2",
+		      lmc_scramble_cfg1.u64);
+		lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num),
+		       lmc_scramble_cfg2.u64);
+	}
+
+	s = lookup_env_ull(priv, "ddr_ns_ctl");
+	if (s)
+		lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0);
+	debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64);
+	lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64);
+
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+struct rl_score {
+	u64 setting;
+	int score;
+};
+
+static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data");
+static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data");
+static unsigned char rodt_ctl __section(".data");
+
+static int rl_rodt_err __section(".data");
+static unsigned char rtt_nom __section(".data");
+static unsigned char rtt_idx __section(".data");
+static char min_rtt_nom_idx __section(".data");
+static char max_rtt_nom_idx __section(".data");
+static char min_rodt_ctl __section(".data");
+static char max_rodt_ctl __section(".data");
+static int rl_dbg_loops __section(".data");
+static unsigned char save_ddr2t __section(".data");
+static int rl_samples __section(".data");
+static char rl_compute __section(".data");
+static char saved_ddr__ptune __section(".data");
+static char saved_ddr__ntune __section(".data");
+static char rl_comp_offs __section(".data");
+static char saved_int_zqcs_dis __section(".data");
+static int max_adj_rl_del_inc __section(".data");
+static int print_nom_ohms __section(".data");
+static int rl_print __section(".data");
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+static char part_number[21] __section(".data");
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+#if PERFECT_BITMASK_COUNTING
+struct perfect_counts {
+	u16 count[9][32]; // 8+ECC by 64 values
+	u32 mask[9];      // 8+ECC, bitmask of perfect delays
+};
+
+static struct perfect_counts rank_perf[4] __section(".data");
+static struct perfect_counts rodt_perfect_counts __section(".data");
+static int pbm_lowsum_limit __section(".data");
+// FIXME: PBM skip for RODT 240 and 34
+static u32 pbm_rodt_skip __section(".data");
+#endif /* PERFECT_BITMASK_COUNTING */
+
+// control rank majority processing
+static int disable_rank_majority __section(".data");
+
+// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+// for DDR3
+static int enable_rldelay_bump __section(".data");
+static int rldelay_bump_incr __section(".data");
+static int disable_rlv_bump_this_byte __section(".data");
+static u64 value_mask __section(".data");
+
+static struct rlevel_byte_data rl_byte[9] __section(".data");
+static int sample_loops __section(".data");
+static int max_samples __section(".data");
+static int rl_rank_errors __section(".data");
+static int rl_mask_err __section(".data");
+static int rl_nonseq_err __section(".data");
+static struct rlevel_bitmask rl_mask[9] __section(".data");
+static int rl_best_rank_score __section(".data");
+
+static int rodt_row_skip_mask __section(".data");
+
+static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score
+		      rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+	union cvmx_lmcx_comp_ctl2 cc2;
+	const int rl_separate_ab = 1;
+	int i;
+
+	rl_best_rank_score = DEFAULT_BEST_RANK_SCORE;
+	rl_rodt_err = 0;
+	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+	cc2.cn78xx.rodt_ctl = rodt_ctl;
+	lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+	udelay(1); /* Give it a little time to take affect */
+	if (rl_print > 1) {
+		debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+		      cc2.cn78xx.rodt_ctl,
+		      imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+	}
+
+	memset(rl_byte, 0, sizeof(rl_byte));
+#if PERFECT_BITMASK_COUNTING
+	memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts));
+#endif /* PERFECT_BITMASK_COUNTING */
+
+	// when iter RODT is the target RODT, take more samples...
+	max_samples = rl_samples;
+	if (rodt_ctl == default_rodt_ctl)
+		max_samples += rl_samples + 1;
+
+	for (sample_loops = 0; sample_loops < max_samples; sample_loops++) {
+		int redoing_nonseq_errs = 0;
+
+		rl_mask_err = 0;
+
+		if (!(rl_separate_ab && spd_rdimm &&
+		      ddr_type == DDR4_DRAM)) {
+			/* Clear read-level delays */
+			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+			/* read-leveling */
+			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+			do {
+				rl_rank.u64 =
+					lmc_rd(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(rankx,
+								      if_num));
+			} while (rl_rank.cn78xx.status != 3);
+		}
+
+		rl_rank.u64 =
+			lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+		// start bitmask interpretation block
+
+		memset(rl_mask, 0, sizeof(rl_mask));
+
+		if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) {
+			union cvmx_lmcx_rlevel_rankx rl_rank_aside;
+			union cvmx_lmcx_modereg_params0 mp0;
+
+			/* A-side */
+			mp0.u64 =
+				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+			mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+			lmc_wr(priv,
+			       CVMX_LMCX_MODEREG_PARAMS0(if_num),
+			       mp0.u64);
+
+			/* Clear read-level delays */
+			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+			/* read-leveling */
+			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+			do {
+				rl_rank.u64 =
+					lmc_rd(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(rankx,
+								      if_num));
+			} while (rl_rank.cn78xx.status != 3);
+
+			rl_rank.u64 =
+				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+								    if_num));
+
+			rl_rank_aside.u64 = rl_rank.u64;
+
+			rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0);
+			rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1);
+			rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2);
+			rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3);
+			rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8);
+			/* A-side complete */
+
+			/* B-side */
+			mp0.u64 =
+				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+			mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */
+			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+			       mp0.u64);
+
+			/* Clear read-level delays */
+			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+			/* read-leveling */
+			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+			do {
+				rl_rank.u64 =
+					lmc_rd(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(rankx,
+								      if_num));
+			} while (rl_rank.cn78xx.status != 3);
+
+			rl_rank.u64 =
+				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+								    if_num));
+
+			rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4);
+			rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5);
+			rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6);
+			rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7);
+			/* B-side complete */
+
+			upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0);
+			upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1);
+			upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2);
+			upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3);
+			/* ECC A-side */
+			upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8);
+
+			mp0.u64 =
+				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+			mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+			       mp0.u64);
+		}
+
+		/*
+		 * Evaluate the quality of the read-leveling delays from the
+		 * bitmasks. Also save off a software computed read-leveling
+		 * mask that may be used later to qualify the delay results
+		 * from Octeon.
+		 */
+		for (i = 0; i < (8 + ecc_ena); ++i) {
+			int bmerr;
+
+			if (!(if_bytemask & (1 << i)))
+				continue;
+			if (!(rl_separate_ab && spd_rdimm &&
+			      ddr_type == DDR4_DRAM)) {
+				rl_mask[i].bm =
+					lmc_ddr3_rl_dbg_read(priv, if_num, i);
+			}
+			bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i],
+							     ddr_type);
+			rl_mask[i].errs = bmerr;
+			rl_mask_err += bmerr;
+#if PERFECT_BITMASK_COUNTING
+			// count only the "perfect" bitmasks
+			if (ddr_type == DDR4_DRAM && !bmerr) {
+				int delay;
+				// FIXME: for now, simple filtering:
+				// do NOT count PBMs for RODTs in skip mask
+				if ((1U << rodt_ctl) & pbm_rodt_skip)
+					continue;
+				// FIXME: could optimize this a bit?
+				delay = get_rl_rank(&rl_rank, i);
+				rank_perf[rankx].count[i][delay] += 1;
+				rank_perf[rankx].mask[i] |=
+					(1ULL << delay);
+				rodt_perfect_counts.count[i][delay] += 1;
+				rodt_perfect_counts.mask[i] |= (1ULL << delay);
+			}
+#endif /* PERFECT_BITMASK_COUNTING */
+		}
+
+		/* Set delays for unused bytes to match byte 0. */
+		for (i = 0; i < 9; ++i) {
+			if (if_bytemask & (1 << i))
+				continue;
+			upd_rl_rank(&rl_rank, i, rl_rank.s.byte0);
+		}
+
+		/*
+		 * Save a copy of the byte delays in physical
+		 * order for sequential evaluation.
+		 */
+		unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank);
+
+	redo_nonseq_errs:
+
+		rl_nonseq_err  = 0;
+		if (!disable_sequential_delay_check) {
+			for (i = 0; i < 9; ++i)
+				rl_byte[i].sqerrs = 0;
+
+			if ((if_bytemask & 0xff) == 0xff) {
+				/*
+				 * Evaluate delay sequence across the whole
+				 * range of bytes for standard dimms.
+				 */
+				/* 1=RDIMM, 5=Mini-RDIMM */
+				if (spd_dimm_type == 1 || spd_dimm_type == 5) {
+					int reg_adj_del = abs(rl_byte[4].delay -
+							      rl_byte[5].delay);
+
+					/*
+					 * Registered dimm topology routes
+					 * from the center.
+					 */
+					rl_nonseq_err +=
+						nonseq_del(rl_byte, 0,
+							   3 + ecc_ena,
+							   max_adj_rl_del_inc);
+					rl_nonseq_err +=
+						nonseq_del(rl_byte, 5,
+							   7 + ecc_ena,
+							   max_adj_rl_del_inc);
+					// byte 5 sqerrs never gets cleared
+					// for RDIMMs
+					rl_byte[5].sqerrs = 0;
+					if (reg_adj_del > 1) {
+						/*
+						 * Assess proximity of bytes on
+						 * opposite sides of register
+						 */
+						rl_nonseq_err += (reg_adj_del -
+								  1) *
+							RLEVEL_ADJACENT_DELAY_ERROR;
+						// update byte 5 error
+						rl_byte[5].sqerrs +=
+							(reg_adj_del - 1) *
+							RLEVEL_ADJACENT_DELAY_ERROR;
+					}
+				}
+
+				/* 2=UDIMM, 6=Mini-UDIMM */
+				if (spd_dimm_type == 2 || spd_dimm_type == 6) {
+					/*
+					 * Unbuffered dimm topology routes
+					 * from end to end.
+					 */
+					rl_nonseq_err += nonseq_del(rl_byte, 0,
+								    7 + ecc_ena,
+								    max_adj_rl_del_inc);
+				}
+			} else {
+				rl_nonseq_err += nonseq_del(rl_byte, 0,
+							    3 + ecc_ena,
+							    max_adj_rl_del_inc);
+			}
+		} /* if (! disable_sequential_delay_check) */
+
+		rl_rank_errors = rl_mask_err + rl_nonseq_err;
+
+		// print original sample here only if we are not really
+		// averaging or picking best
+		// also do not print if we were redoing the NONSEQ score
+		// for using COMPUTED
+		if (!redoing_nonseq_errs && rl_samples < 2) {
+			if (rl_print > 1) {
+				display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+				display_rl_bm_scores(if_num, rankx, rl_mask,
+						     ecc_ena);
+				display_rl_seq_scores(if_num, rankx, rl_byte,
+						      ecc_ena);
+			}
+			display_rl_with_score(if_num, rl_rank, rankx,
+					      rl_rank_errors);
+		}
+
+		if (rl_compute) {
+			if (!redoing_nonseq_errs) {
+				/* Recompute the delays based on the bitmask */
+				for (i = 0; i < (8 + ecc_ena); ++i) {
+					if (!(if_bytemask & (1 << i)))
+						continue;
+
+					upd_rl_rank(&rl_rank, i,
+						    compute_ddr3_rlevel_delay(
+							    rl_mask[i].mstart,
+							    rl_mask[i].width,
+							    rl_ctl));
+				}
+
+				/*
+				 * Override the copy of byte delays with the
+				 * computed results.
+				 */
+				unpack_rlevel_settings(if_bytemask, ecc_ena,
+						       rl_byte, rl_rank);
+
+				redoing_nonseq_errs = 1;
+				goto redo_nonseq_errs;
+
+			} else {
+				/*
+				 * now print this if already printed the
+				 * original sample
+				 */
+				if (rl_samples < 2 || rl_print) {
+					display_rl_with_computed(if_num,
+								 rl_rank, rankx,
+								 rl_rank_errors);
+				}
+			}
+		} /* if (rl_compute) */
+
+		// end bitmask interpretation block
+
+		// if it is a better (lower) score, then  keep it
+		if (rl_rank_errors < rl_best_rank_score) {
+			rl_best_rank_score = rl_rank_errors;
+
+			// save the new best delays and best errors
+			for (i = 0; i < (8 + ecc_ena); ++i) {
+				rl_byte[i].best = rl_byte[i].delay;
+				rl_byte[i].bestsq = rl_byte[i].sqerrs;
+				// save bitmasks and their scores as well
+				// xlate UNPACKED index to PACKED index to
+				// get from rl_mask
+				rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm;
+				rl_byte[i].bmerrs =
+					rl_mask[XUP(i, !!ecc_ena)].errs;
+			}
+		}
+
+		rl_rodt_err += rl_rank_errors;
+	}
+
+	/* We recorded the best score across the averaging loops */
+	rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score;
+
+	/*
+	 * Restore the delays from the best fields that go with the best
+	 * score
+	 */
+	for (i = 0; i < 9; ++i) {
+		rl_byte[i].delay = rl_byte[i].best;
+		rl_byte[i].sqerrs = rl_byte[i].bestsq;
+	}
+
+	rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+	pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank);
+
+	if (rl_samples > 1) {
+		// restore the "best" bitmasks and their scores for printing
+		for (i = 0; i < 9; ++i) {
+			if ((if_bytemask & (1 << i)) == 0)
+				continue;
+			// xlate PACKED index to UNPACKED index to get from
+			// rl_byte
+			rl_mask[i].bm   = rl_byte[XPU(i, !!ecc_ena)].bm;
+			rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs;
+		}
+
+		// maybe print bitmasks/scores here
+		if (rl_print > 1) {
+			display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+			display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena);
+			display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena);
+
+			display_rl_with_rodt(if_num, rl_rank, rankx,
+					     rl_score[rtt_nom][rodt_ctl][rankx].score,
+					     print_nom_ohms,
+					     imp_val->rodt_ohms[rodt_ctl],
+					     WITH_RODT_BESTSCORE);
+
+			debug("-----------\n");
+		}
+	}
+
+	rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64;
+
+#if PERFECT_BITMASK_COUNTING
+	// print out the PBMs for the current RODT
+	if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity?
+#if PRINT_PERFECT_COUNTS
+		// FIXME: change verbosity level after debug complete...
+
+		for (i = 0; i < 9; i++) {
+			u64 temp_mask;
+			int num_values;
+
+			// FIXME: PBM skip for RODTs in mask
+			if ((1U << rodt_ctl) & pbm_rodt_skip)
+				continue;
+
+			temp_mask = rodt_perfect_counts.mask[i];
+			num_values = __builtin_popcountll(temp_mask);
+			i = __builtin_ffsll(temp_mask) - 1;
+
+			debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ",
+			      node, if_num, rankx,
+			      imp_val->rodt_ohms[rodt_ctl],
+			      i, temp_mask >> i, num_values);
+
+			while (temp_mask != 0) {
+				i = __builtin_ffsll(temp_mask) - 1;
+				debug("%2d(%2d) ", i,
+				      rodt_perfect_counts.count[i][i]);
+				temp_mask &= ~(1UL << i);
+			} /* while (temp_mask != 0) */
+			debug("\n");
+		}
+#endif
+	}
+#endif /* PERFECT_BITMASK_COUNTING */
+}
+
+static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score
+			    rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+	/* Start with an arbitrarily high score */
+	int best_rank_score = DEFAULT_BEST_RANK_SCORE;
+	int best_rank_rtt_nom = 0;
+	int best_rank_ctl = 0;
+	int best_rank_ohms = 0;
+	int best_rankx = 0;
+	int dimm_rank_mask;
+	int max_rank_score;
+	union cvmx_lmcx_rlevel_rankx saved_rl_rank;
+	int next_ohms;
+	int orankx;
+	int next_score = 0;
+	int best_byte, new_byte, temp_byte, orig_best_byte;
+	int rank_best_bytes[9];
+	int byte_sh;
+	int avg_byte;
+	int avg_diff;
+	int i;
+
+	if (!(rank_mask & (1 << rankx)))
+		return;
+
+	// some of the rank-related loops below need to operate only on
+	// the ranks of a single DIMM,
+	// so create a mask for their use here
+	if (num_ranks == 4) {
+		dimm_rank_mask = rank_mask; // should be 1111
+	} else {
+		dimm_rank_mask = rank_mask & 3; // should be 01 or 11
+		if (rankx >= 2) {
+			// doing a rank on the second DIMM, should be
+			// 0100 or 1100
+			dimm_rank_mask <<= 2;
+		}
+	}
+	debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n",
+	      dimm_rank_mask, rank_mask, rankx);
+
+	// this is the start of the BEST ROW SCORE LOOP
+
+	for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+		rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+		debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
+		      node, if_num, rankx, rtt_nom,
+		      imp_val->rtt_nom_ohms[rtt_nom]);
+
+		for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+		     --rodt_ctl) {
+			next_ohms = imp_val->rodt_ohms[rodt_ctl];
+
+			// skip RODT rows in mask, but *NOT* rows with too
+			// high a score;
+			// we will not use the skipped ones for printing or
+			// evaluating, but we need to allow all the
+			// non-skipped ones to be candidates for "best"
+			if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
+				debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
+				      node, if_num, rankx, rodt_ctl,
+				      next_ohms, next_score);
+				continue;
+			}
+
+			// this is ROFFIX-0528
+			for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+				// stay on the same DIMM
+				if (!(dimm_rank_mask & (1 << orankx)))
+					continue;
+
+				next_score = rl_score[rtt_nom][rodt_ctl][orankx].score;
+
+				// always skip a higher score
+				if (next_score > best_rank_score)
+					continue;
+
+				// if scores are equal
+				if (next_score == best_rank_score) {
+					// always skip lower ohms
+					if (next_ohms < best_rank_ohms)
+						continue;
+
+					// if same ohms
+					if (next_ohms == best_rank_ohms) {
+						// always skip the other rank(s)
+						if (orankx != rankx)
+							continue;
+					}
+					// else next_ohms are greater,
+					// always choose it
+				}
+				// else next_score is less than current best,
+				// so always choose it
+				debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
+				      node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
+				      best_rank_score, best_rank_ohms);
+				best_rank_score	    = next_score;
+				best_rank_rtt_nom   = rtt_nom;
+				//best_rank_nom_ohms  = rtt_nom_ohms;
+				best_rank_ctl       = rodt_ctl;
+				best_rank_ohms      = next_ohms;
+				best_rankx          = orankx;
+				rl_rank.u64 =
+					rl_score[rtt_nom][rodt_ctl][orankx].setting;
+			}
+		}
+	}
+
+	// this is the end of the BEST ROW SCORE LOOP
+
+	// DANGER, Will Robinson!! Abort now if we did not find a best
+	// score at all...
+	if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
+		printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n",
+		       node, if_num, rankx);
+		mdelay(500);
+		do_reset(NULL, 0, 0, NULL);
+	}
+
+	// FIXME: relative now, but still arbitrary...
+	max_rank_score = best_rank_score;
+	if (ddr_type == DDR4_DRAM) {
+		// halve the range if 2 DIMMs unless they are single rank...
+		max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ?
+							   dimm_count : 1));
+	} else {
+		// Since DDR3 typically has a wider score range,
+		// keep more of them always
+		max_rank_score += MAX_RANK_SCORE_LIMIT;
+	}
+
+	if (!ecc_ena) {
+		/* ECC is not used */
+		rl_rank.s.byte8 = rl_rank.s.byte0;
+	}
+
+	// at the end, write the best row settings to the current rank
+	lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64);
+	rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+	saved_rl_rank.u64 = rl_rank.u64;
+
+	// this is the start of the PRINT LOOP
+	int pass;
+
+	// for pass==0, print current rank, pass==1 print other rank(s)
+	// this is done because we want to show each ranks RODT values
+	// together, not interlaced
+#if COUNT_RL_CANDIDATES
+	// keep separates for ranks - pass=0 target rank, pass=1 other
+	// rank on DIMM
+	int mask_skipped[2] = {0, 0};
+	int score_skipped[2] = {0, 0};
+	int selected_rows[2] = {0, 0};
+	int zero_scores[2] = {0, 0};
+#endif /* COUNT_RL_CANDIDATES */
+	for (pass = 0; pass < 2; pass++) {
+		for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+			// stay on the same DIMM
+			if (!(dimm_rank_mask & (1 << orankx)))
+				continue;
+
+			if ((pass == 0 && orankx != rankx) ||
+			    (pass != 0 && orankx == rankx))
+				continue;
+
+			for (rtt_idx = min_rtt_nom_idx;
+			     rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+				rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+				if (dyn_rtt_nom_mask == 0) {
+					print_nom_ohms = -1;
+				} else {
+					print_nom_ohms =
+						imp_val->rtt_nom_ohms[rtt_nom];
+				}
+
+				// cycle through all the RODT values...
+				for (rodt_ctl = max_rodt_ctl;
+				     rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+					union cvmx_lmcx_rlevel_rankx
+						temp_rl_rank;
+					int temp_score =
+						rl_score[rtt_nom][rodt_ctl][orankx].score;
+					int skip_row;
+
+					temp_rl_rank.u64 =
+						rl_score[rtt_nom][rodt_ctl][orankx].setting;
+
+					// skip RODT rows in mask, or rows
+					// with too high a score;
+					// we will not use them for printing
+					// or evaluating...
+#if COUNT_RL_CANDIDATES
+					if ((1 << rodt_ctl) &
+					    rodt_row_skip_mask) {
+						skip_row = WITH_RODT_SKIPPING;
+						++mask_skipped[pass];
+					} else if (temp_score >
+						   max_rank_score) {
+						skip_row = WITH_RODT_SKIPPING;
+						++score_skipped[pass];
+					} else {
+						skip_row = WITH_RODT_BLANK;
+						++selected_rows[pass];
+						if (temp_score == 0)
+							++zero_scores[pass];
+					}
+
+#else /* COUNT_RL_CANDIDATES */
+					skip_row = (((1 << rodt_ctl) &
+						     rodt_row_skip_mask) ||
+						    (temp_score >
+						     max_rank_score))
+						? WITH_RODT_SKIPPING :
+						WITH_RODT_BLANK;
+#endif
+					// identify and print the BEST ROW
+					// when it comes up
+					if (skip_row == WITH_RODT_BLANK &&
+					    best_rankx == orankx &&
+					    best_rank_rtt_nom == rtt_nom &&
+					    best_rank_ctl == rodt_ctl)
+						skip_row = WITH_RODT_BESTROW;
+
+					if (rl_print) {
+						display_rl_with_rodt(if_num,
+								     temp_rl_rank, orankx, temp_score,
+								     print_nom_ohms,
+								     imp_val->rodt_ohms[rodt_ctl],
+								     skip_row);
+					}
+				}
+			}
+		}
+	}
+#if COUNT_RL_CANDIDATES
+	debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
+	      node, if_num, rankx, selected_rows[0], selected_rows[1],
+	      zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1],
+	      score_skipped[0], score_skipped[1]);
+#endif /* COUNT_RL_CANDIDATES */
+	// this is the end of the PRINT LOOP
+
+	// now evaluate which bytes need adjusting
+	// collect the new byte values; first init with current best for
+	// neighbor use
+	for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+		rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) &
+			RLEVEL_BYTE_MSK;
+	}
+
+	// this is the start of the BEST BYTE LOOP
+
+	for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+		int sum = 0, count = 0;
+		int count_less = 0, count_same = 0, count_more = 0;
+#if FAILSAFE_CHECK
+		int count_byte; // save the value we counted around
+#endif /* FAILSAFE_CHECK */
+		// for rank majority use
+		int rank_less = 0, rank_same = 0, rank_more = 0;
+		int neighbor;
+		int neigh_byte;
+
+		best_byte = rank_best_bytes[i];
+		orig_best_byte = rank_best_bytes[i];
+
+		// this is the start of the BEST BYTE AVERAGING LOOP
+
+		// validate the initial "best" byte by looking at the
+		// average of the unskipped byte-column entries
+		// we want to do this before we go further, so we can
+		// try to start with a better initial value
+		// this is the so-called "BESTBUY" patch set
+
+		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+		     ++rtt_idx) {
+			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+			for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+			     --rodt_ctl) {
+				union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+				int temp_score;
+
+				// average over all the ranks
+				for (orankx = 0; orankx < dimm_count * 4;
+				     orankx++) {
+					// stay on the same DIMM
+					if (!(dimm_rank_mask & (1 << orankx)))
+						continue;
+
+					temp_score =
+						rl_score[rtt_nom][rodt_ctl][orankx].score;
+					// skip RODT rows in mask, or rows with
+					// too high a score;
+					// we will not use them for printing or
+					// evaluating...
+
+					if (!((1 << rodt_ctl) &
+					      rodt_row_skip_mask) &&
+					    temp_score <= max_rank_score) {
+						temp_rl_rank.u64 =
+							rl_score[rtt_nom][rodt_ctl][orankx].setting;
+						temp_byte =
+							(int)(temp_rl_rank.u64 >> byte_sh) &
+							RLEVEL_BYTE_MSK;
+						sum += temp_byte;
+						count++;
+					}
+				}
+			}
+		}
+
+		// this is the end of the BEST BYTE AVERAGING LOOP
+
+		// FIXME: validate count and sum??
+		avg_byte = (int)divide_nint(sum, count);
+		avg_diff = best_byte - avg_byte;
+		new_byte = best_byte;
+		if (avg_diff != 0) {
+			// bump best up/dn by 1, not necessarily all the
+			// way to avg
+			new_byte = best_byte + ((avg_diff > 0) ? -1 : 1);
+		}
+
+		if (rl_print) {
+			debug("N%d.LMC%d.R%d: START:   Byte %d: best %d is different by %d from average %d, using %d.\n",
+			      node, if_num, rankx,
+			      i, best_byte, avg_diff, avg_byte, new_byte);
+		}
+		best_byte = new_byte;
+#if FAILSAFE_CHECK
+		count_byte = new_byte; // save the value we will count around
+#endif /* FAILSAFE_CHECK */
+
+		// At this point best_byte is either:
+		// 1. the original byte-column value from the best scoring
+		//    RODT row, OR
+		// 2. that value bumped toward the average of all the
+		//    byte-column values
+		//
+		// best_byte will not change from here on...
+
+		// this is the start of the BEST BYTE COUNTING LOOP
+
+		// NOTE: we do this next loop separately from above, because
+		// we count relative to "best_byte"
+		// which may have been modified by the above averaging
+		// operation...
+
+		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+		     ++rtt_idx) {
+			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+			for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+			     --rodt_ctl) {
+				union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+				int temp_score;
+
+				for (orankx = 0; orankx < dimm_count * 4;
+				     orankx++) { // count over all the ranks
+					// stay on the same DIMM
+					if (!(dimm_rank_mask & (1 << orankx)))
+						continue;
+
+					temp_score =
+						rl_score[rtt_nom][rodt_ctl][orankx].score;
+					// skip RODT rows in mask, or rows
+					// with too high a score;
+					// we will not use them for printing
+					// or evaluating...
+					if (((1 << rodt_ctl) &
+					     rodt_row_skip_mask) ||
+					    temp_score > max_rank_score)
+						continue;
+
+					temp_rl_rank.u64 =
+						rl_score[rtt_nom][rodt_ctl][orankx].setting;
+					temp_byte = (temp_rl_rank.u64 >>
+						     byte_sh) & RLEVEL_BYTE_MSK;
+
+					if (temp_byte == 0)
+						;  // do not count it if illegal
+					else if (temp_byte == best_byte)
+						count_same++;
+					else if (temp_byte == best_byte - 1)
+						count_less++;
+					else if (temp_byte == best_byte + 1)
+						count_more++;
+					// else do not count anything more
+					// than 1 away from the best
+
+					// no rank counting if disabled
+					if (disable_rank_majority)
+						continue;
+
+					// FIXME? count is relative to
+					// best_byte; should it be rank-based?
+					// rank counts only on main rank
+					if (orankx != rankx)
+						continue;
+					else if (temp_byte == best_byte)
+						rank_same++;
+					else if (temp_byte == best_byte - 1)
+						rank_less++;
+					else if (temp_byte == best_byte + 1)
+						rank_more++;
+				}
+			}
+		}
+
+		if (rl_print) {
+			debug("N%d.LMC%d.R%d: COUNT:   Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
+			      node, if_num, rankx,
+			      i, orig_best_byte, best_byte,
+			      count_more, count_same, count_less,
+			      rank_more, rank_same, rank_less);
+		}
+
+		// this is the end of the BEST BYTE COUNTING LOOP
+
+		// choose the new byte value
+		// we need to check that there is no gap greater than 2
+		// between adjacent bytes (adjacency depends on DIMM type)
+		// use the neighbor value to help decide
+		// initially, the rank_best_bytes[] will contain values from
+		// the chosen lowest score rank
+		new_byte = 0;
+
+		// neighbor is index-1 unless we are index 0 or index 8 (ECC)
+		neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1);
+		neigh_byte = rank_best_bytes[neighbor];
+
+		// can go up or down or stay the same, so look at a numeric
+		// average to help
+		new_byte = (int)divide_nint(((count_more * (best_byte + 1)) +
+					     (count_same * (best_byte + 0)) +
+					     (count_less * (best_byte - 1))),
+					    max(1, (count_more + count_same +
+						    count_less)));
+
+		// use neighbor to help choose with average
+		if (i > 0 && (abs(neigh_byte - new_byte) > 2) &&
+		    !disable_sequential_delay_check) {
+			// but not for byte 0
+			int avg_pick = new_byte;
+
+			if ((new_byte - best_byte) != 0) {
+				// back to best, average did not get better
+				new_byte = best_byte;
+			} else {
+				// avg was the same, still too far, now move
+				// it towards the neighbor
+				new_byte += (neigh_byte > new_byte) ? 1 : -1;
+			}
+
+			if (rl_print) {
+				debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
+				      node, if_num, rankx,
+				      i, neighbor, neigh_byte, avg_pick,
+				      new_byte);
+			}
+		} else {
+			// NOTE:
+			// For now, we let the neighbor processing above trump
+			// the new simple majority processing here.
+			// This is mostly because we have seen no smoking gun
+			// for a neighbor bad choice (yet?).
+			// Also note that we will ALWAYS be using byte 0
+			// majority, because of the if clause above.
+
+			// majority is dependent on the counts, which are
+			// relative to best_byte, so start there
+			int maj_byte = best_byte;
+			int rank_maj;
+			int rank_sum;
+
+			if (count_more > count_same &&
+			    count_more > count_less) {
+				maj_byte++;
+			} else if (count_less > count_same &&
+				   count_less > count_more) {
+				maj_byte--;
+			}
+
+			if (maj_byte != new_byte) {
+				// print only when majority choice is
+				// different from average
+				if (rl_print) {
+					debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
+					      node, if_num, rankx, i, maj_byte,
+					      new_byte);
+				}
+				new_byte = maj_byte;
+			} else {
+				if (rl_print) {
+					debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
+					      node, if_num, rankx, i, new_byte);
+				}
+			}
+
+			if (!disable_rank_majority) {
+				// rank majority is dependent on the rank
+				// counts, which are relative to best_byte,
+				// so start there, and adjust according to the
+				// rank counts majority
+				rank_maj = best_byte;
+				if (rank_more > rank_same &&
+				    rank_more > rank_less) {
+					rank_maj++;
+				} else if (rank_less > rank_same &&
+					   rank_less > rank_more) {
+					rank_maj--;
+				}
+				rank_sum = rank_more + rank_same + rank_less;
+
+				// now, let rank majority possibly rule over
+				// the current new_byte however we got it
+				if (rank_maj != new_byte) { // only if different
+					// Here is where we decide whether to
+					// completely apply RANK_MAJORITY or not
+					// ignore if less than
+					if (rank_maj < new_byte) {
+						if (rl_print) {
+							debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n",
+							      node, if_num,
+							      rankx, i,
+							      rank_maj,
+							      new_byte);
+						}
+					} else {
+						// For the moment, we do it
+						// ONLY when running 2-slot
+						// configs
+						//  OR when rank_sum is big
+						// enough
+						if (dimm_count > 1 ||
+						    rank_sum > 2) {
+							// print only when rank
+							// majority choice is
+							// selected
+							if (rl_print) {
+								debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
+								      node,
+								      if_num,
+								      rankx,
+								      i,
+								      rank_maj,
+								      new_byte);
+							}
+							new_byte = rank_maj;
+						} else {
+							// FIXME: print some
+							// info when we could
+							// have chosen RANKMAJ
+							// but did not
+							if (rl_print) {
+								debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
+								      node,
+								      if_num,
+								      rankx,
+								      i,
+								      rank_maj,
+								      new_byte,
+								      best_byte,
+								      rank_sum);
+							}
+						}
+					}
+				}
+			} /* if (!disable_rank_majority) */
+		}
+#if FAILSAFE_CHECK
+		// one last check:
+		// if new_byte is still count_byte, BUT there was no count
+		// for that value, DO SOMETHING!!!
+		// FIXME: go back to original best byte from the best row
+		if (new_byte == count_byte && count_same == 0) {
+			new_byte = orig_best_byte;
+			if (rl_print) {
+				debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
+				      node, if_num, rankx, i, new_byte);
+			}
+		}
+#endif /* FAILSAFE_CHECK */
+#if PERFECT_BITMASK_COUNTING
+		// Look at counts for "perfect" bitmasks (PBMs) if we had
+		// any for this byte-lane.
+		// Remember, we only counted for DDR4, so zero means none
+		// or DDR3, and we bypass this...
+		value_mask = rank_perf[rankx].mask[i];
+		disable_rlv_bump_this_byte = 0;
+
+		if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) {
+			int i, delay_count, delay_max = 0, del_val = 0;
+			int num_values = __builtin_popcountll(value_mask);
+			int sum_counts = 0;
+			u64 temp_mask = value_mask;
+
+			disable_rlv_bump_this_byte = 1;
+			i = __builtin_ffsll(temp_mask) - 1;
+			if (rl_print)
+				debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ",
+				      node, if_num, rankx, i, value_mask >> i,
+				      num_values);
+
+			while (temp_mask != 0) {
+				i = __builtin_ffsll(temp_mask) - 1;
+				delay_count = rank_perf[rankx].count[i][i];
+				sum_counts += delay_count;
+				if (rl_print)
+					debug("%2d(%2d) ", i, delay_count);
+				if (delay_count >= delay_max) {
+					delay_max = delay_count;
+					del_val = i;
+				}
+				temp_mask &= ~(1UL << i);
+			} /* while (temp_mask != 0) */
+
+			// if sum_counts is small, just use NEW_BYTE
+			if (sum_counts < pbm_lowsum_limit) {
+				if (rl_print)
+					debug(": LOWSUM (%2d), choose ORIG ",
+					      sum_counts);
+				del_val = new_byte;
+				delay_max = rank_perf[rankx].count[i][del_val];
+			}
+
+			// finish printing here...
+			if (rl_print) {
+				debug(": USING %2d (%2d) D%d\n", del_val,
+				      delay_max, disable_rlv_bump_this_byte);
+			}
+
+			new_byte = del_val; // override with best PBM choice
+
+		} else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) {
+			//                        if (value_mask != 0) {
+			int i, delay_count, del_val;
+			int num_values = __builtin_popcountll(value_mask);
+			int sum_counts = 0;
+			u64 temp_mask = value_mask;
+
+			i = __builtin_ffsll(temp_mask) - 1;
+			if (rl_print)
+				debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ",
+				      node, if_num, rankx, i, value_mask >> i,
+				      num_values);
+			while (temp_mask != 0) {
+				i = __builtin_ffsll(temp_mask) - 1;
+				delay_count = rank_perf[rankx].count[i][i];
+				sum_counts += delay_count;
+				if (rl_print)
+					debug("%2d(%2d) ", i, delay_count);
+				temp_mask &= ~(1UL << i);
+			} /* while (temp_mask != 0) */
+
+			del_val = __builtin_ffsll(value_mask) - 1;
+			delay_count =
+				rank_perf[rankx].count[i][del_val];
+
+			// overkill, normally only 1-4 bits
+			i = (value_mask >> del_val) & 0x1F;
+
+			// if sum_counts is small, treat as special and use
+			// NEW_BYTE
+			if (sum_counts < pbm_lowsum_limit) {
+				if (rl_print)
+					debug(": LOWSUM (%2d), choose ORIG",
+					      sum_counts);
+				i = 99; // SPECIAL case...
+			}
+
+			switch (i) {
+			case 0x01 /* 00001b */:
+				// allow BUMP
+				break;
+
+			case 0x13 /* 10011b */:
+			case 0x0B /* 01011b */:
+			case 0x03 /* 00011b */:
+				del_val += 1; // take the second
+				disable_rlv_bump_this_byte = 1; // allow no BUMP
+				break;
+
+			case 0x0D /* 01101b */:
+			case 0x05 /* 00101b */:
+				// test count of lowest and all
+				if (delay_count >= 5 || sum_counts <= 5)
+					del_val += 1; // take the hole
+				else
+					del_val += 2; // take the next set
+				disable_rlv_bump_this_byte = 1; // allow no BUMP
+				break;
+
+			case 0x0F /* 01111b */:
+			case 0x17 /* 10111b */:
+			case 0x07 /* 00111b */:
+				del_val += 1; // take the second
+				if (delay_count < 5) { // lowest count is small
+					int second =
+						rank_perf[rankx].count[i][del_val];
+					int third =
+						rank_perf[rankx].count[i][del_val + 1];
+					// test if middle is more than 1 OR
+					// top is more than 1;
+					// this means if they are BOTH 1,
+					// then we keep the second...
+					if (second > 1 || third > 1) {
+						// if middle is small OR top
+						// is large
+						if (second < 5 ||
+						    third > 1) {
+							// take the top
+							del_val += 1;
+							if (rl_print)
+								debug(": TOP7 ");
+						}
+					}
+				}
+				disable_rlv_bump_this_byte = 1; // allow no BUMP
+				break;
+
+			default: // all others...
+				if (rl_print)
+					debug(": ABNORMAL, choose ORIG");
+
+			case 99: // special
+				 // FIXME: choose original choice?
+				del_val = new_byte;
+				disable_rlv_bump_this_byte = 1; // allow no BUMP
+				break;
+			}
+			delay_count =
+				rank_perf[rankx].count[i][del_val];
+
+			// finish printing here...
+			if (rl_print)
+				debug(": USING %2d (%2d) D%d\n", del_val,
+				      delay_count, disable_rlv_bump_this_byte);
+			new_byte = del_val; // override with best PBM choice
+		} else {
+			if (ddr_type == DDR4_DRAM) { // only report when DDR4
+				// FIXME: remove or increase VBL for this
+				// output...
+				if (rl_print)
+					debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n",
+					      node, if_num, rankx, i,
+					      new_byte);
+				// prevent ODD bump, rely on original
+				disable_rlv_bump_this_byte = 1;
+			}
+		} /* if (value_mask != 0) */
+#endif /* PERFECT_BITMASK_COUNTING */
+
+		// optionally bump the delay value
+		if (enable_rldelay_bump && !disable_rlv_bump_this_byte) {
+			if ((new_byte & enable_rldelay_bump) ==
+			    enable_rldelay_bump) {
+				int bump_value = new_byte + rldelay_bump_incr;
+
+				if (rl_print) {
+					debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n",
+					      node, if_num, rankx, i,
+					      new_byte, bump_value,
+					      (value_mask &
+					       (1 << bump_value)) ?
+					      "PBM" : "NOPBM");
+				}
+				new_byte = bump_value;
+			}
+		}
+
+		// last checks for count-related purposes
+		if (new_byte == best_byte && count_more > 0 &&
+		    count_less == 0) {
+			// we really should take best_byte + 1
+			if (rl_print) {
+				debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n",
+				      node, if_num, rankx, i,
+				      new_byte, best_byte + 1);
+				new_byte = best_byte + 1;
+			}
+		} else if ((new_byte < best_byte) && (count_same > 0)) {
+			// we really should take best_byte
+			if (rl_print) {
+				debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n",
+				      node, if_num, rankx, i,
+				      new_byte, best_byte);
+				new_byte = best_byte;
+			}
+		} else if (new_byte > best_byte) {
+			if ((new_byte == (best_byte + 1)) &&
+			    count_more == 0 && count_less > 0) {
+				// we really should take best_byte
+				if (rl_print) {
+					debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n",
+					      node, if_num, rankx, i,
+					      new_byte, best_byte);
+					new_byte = best_byte;
+				}
+			} else if ((new_byte >= (best_byte + 2)) &&
+				   ((count_more > 0) || (count_same > 0))) {
+				if (rl_print) {
+					debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n",
+					      node, if_num, rankx, i,
+					      new_byte, best_byte + 1);
+					new_byte = best_byte + 1;
+				}
+			}
+		}
+
+		if (rl_print) {
+			debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n",
+			      node, if_num, rankx, i, orig_best_byte,
+			      best_byte, count_more, count_same, count_less,
+			      new_byte);
+		}
+
+		// update the byte with the new value (NOTE: orig value in
+		// the CSR may not be current "best")
+		upd_rl_rank(&rl_rank, i, new_byte);
+
+		// save new best for neighbor use
+		rank_best_bytes[i] = new_byte;
+	} /* for (i = 0; i < 8+ecc_ena; i++) */
+
+	////////////////// this is the end of the BEST BYTE LOOP
+
+	if (saved_rl_rank.u64 != rl_rank.u64) {
+		lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+		       rl_rank.u64);
+		rl_rank.u64 = lmc_rd(priv,
+				     CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+		debug("Adjusting Read-Leveling per-RANK settings.\n");
+	} else {
+		debug("Not Adjusting Read-Leveling per-RANK settings.\n");
+	}
+	display_rl_with_final(if_num, rl_rank, rankx);
+
+	// FIXME: does this help make the output a little easier to focus?
+	if (rl_print > 0)
+		debug("-----------\n");
+
+#if RLEXTRAS_PATCH
+#define RLEVEL_RANKX_EXTRAS_INCR  0
+	// if there are unused entries to be filled
+	if ((rank_mask & 0x0f) != 0x0f) {
+		// copy the current rank
+		union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank;
+
+		if (rankx < 3) {
+#if RLEVEL_RANKX_EXTRAS_INCR > 0
+			int byte, delay;
+
+			// modify the copy in prep for writing to empty slot(s)
+			for (byte = 0; byte < 9; byte++) {
+				delay = get_rl_rank(&temp_rl_rank, byte) +
+					RLEVEL_RANKX_EXTRAS_INCR;
+				if (delay > RLEVEL_BYTE_MSK)
+					delay = RLEVEL_BYTE_MSK;
+				upd_rl_rank(&temp_rl_rank, byte, delay);
+			}
+#endif
+
+			// if rank 0, write rank 1 and rank 2 here if empty
+			if (rankx == 0) {
+				// check that rank 1 is empty
+				if (!(rank_mask & (1 << 1))) {
+					debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+					      node, if_num, rankx, 1);
+					lmc_wr(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(1,
+								      if_num),
+					       temp_rl_rank.u64);
+				}
+
+				// check that rank 2 is empty
+				if (!(rank_mask & (1 << 2))) {
+					debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+					      node, if_num, rankx, 2);
+					lmc_wr(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(2,
+								      if_num),
+					       temp_rl_rank.u64);
+				}
+			}
+
+			// if ranks 0, 1 or 2, write rank 3 here if empty
+			// check that rank 3 is empty
+			if (!(rank_mask & (1 << 3))) {
+				debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+				      node, if_num, rankx, 3);
+				lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num),
+				       temp_rl_rank.u64);
+			}
+		}
+	}
+#endif /* RLEXTRAS_PATCH */
+}
+
+static void lmc_read_leveling(struct ddr_priv *priv)
+{
+	struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
+	union cvmx_lmcx_control ctl;
+	union cvmx_lmcx_config cfg;
+	int rankx;
+	char *s;
+	int i;
+
+	/*
+	 * 4.8.10 LMC Read Leveling
+	 *
+	 * LMC supports an automatic read-leveling separately per byte-lane
+	 * using the DDR3 multipurpose register predefined pattern for system
+	 * calibration defined in the JEDEC DDR3 specifications.
+	 *
+	 * All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
+	 * must be completed prior to starting this LMC read-leveling sequence.
+	 *
+	 * Software could simply write the desired read-leveling values into
+	 * LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
+	 * LMC's autoread-leveling capabilities.
+	 *
+	 * When LMC does the read-leveling sequence for a rank, it first enables
+	 * the DDR3 multipurpose register predefined pattern for system
+	 * calibration on the selected DRAM rank via a DDR3 MR3 write, then
+	 * executes 64 RD operations at different internal delay settings, then
+	 * disables the predefined pattern via another DDR3 MR3 write
+	 * operation. LMC determines the pass or fail of each of the 64 settings
+	 * independently for each byte lane, then writes appropriate
+	 * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
+	 *
+	 * After read-leveling for a rank, software can read the 64 pass/fail
+	 * indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK].
+	 * Software can observe all pass/fail results for all byte lanes in a
+	 * rank via separate read-leveling sequences on the rank with different
+	 * LMC(0)_RLEVEL_CTL[BYTE] values.
+	 *
+	 * The 64 pass/fail results will typically have failures for the low
+	 * delays, followed by a run of some passing settings, followed by more
+	 * failures in the remaining high delays.  LMC sets
+	 * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
+	 * First, LMC selects the longest run of successes in the 64 results.
+	 * (In the unlikely event that there is more than one longest run, LMC
+	 * selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
+	 * the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
+	 * LMC selects the last passing setting in the run minus
+	 * LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting
+	 * in the run (rounding earlier when necessary). We expect the
+	 * read-leveling sequence to produce good results with the reset values
+	 * LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
+	 *
+	 * The read-leveling sequence has the following steps:
+	 *
+	 * 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
+	 *    Do the remaining substeps 2-4 separately for each rank i with
+	 *    attached DRAM.
+	 *
+	 * 2. Without changing any other fields in LMC(0)_CONFIG,
+	 *
+	 *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
+	 *
+	 *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+	 *
+	 *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
+	 *
+	 *    This initiates the previously-described read-leveling.
+	 *
+	 * 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
+	 *
+	 *    LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte
+	 *    lanes at this point.
+	 *
+	 *    If ECC DRAM is not present (i.e. when DRAM is not attached to the
+	 *    DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
+	 *    DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
+	 *    LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
+	 *    LMC(0)_RLEVEL_RANK*[BYTE0].
+	 *
+	 * 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
+	 *    LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
+	 *    LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify
+	 *    LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all
+	 *    BITMASKs can be observed.
+	 *
+	 * 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
+	 *
+	 *    Let rank i be a rank with attached DRAM.
+	 *
+	 *    For all ranks j that do not have attached DRAM, set
+	 *    LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
+	 *
+	 * This read-leveling sequence can help select the proper CN70XX ODT
+	 * resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
+	 * LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
+	 * drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
+	 * (for a used byte lane k) can indicate that the CN70XX ODT value is
+	 * bad. It is possible to simultaneously optimize both
+	 * LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
+	 * performing this read-leveling sequence for several
+	 * LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the
+	 * best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
+	 */
+
+	rl_rodt_err = 0;
+	rl_dbg_loops = 1;
+	saved_int_zqcs_dis = 0;
+	max_adj_rl_del_inc = 0;
+	rl_print = RLEVEL_PRINTALL_DEFAULT;
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+	part_number[21] = {0};
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+#if PERFECT_BITMASK_COUNTING
+	pbm_lowsum_limit = 5; // FIXME: is this a good default?
+	// FIXME: PBM skip for RODT 240 and 34
+	pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) |
+		(1U << ddr4_rodt_ctl_34_ohm);
+#endif /* PERFECT_BITMASK_COUNTING */
+
+	disable_rank_majority = 0; // control rank majority processing
+
+	// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+	// for DDR3
+	rldelay_bump_incr = 0;
+	disable_rlv_bump_this_byte = 0;
+
+	enable_rldelay_bump = (ddr_type == DDR4_DRAM) ?
+		((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0;
+
+	s = lookup_env(priv, "ddr_disable_rank_majority");
+	if (s)
+		disable_rank_majority = !!simple_strtoul(s, NULL, 0);
+
+#if PERFECT_BITMASK_COUNTING
+	s = lookup_env(priv, "ddr_pbm_lowsum_limit");
+	if (s)
+		pbm_lowsum_limit = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_pbm_rodt_skip");
+	if (s)
+		pbm_rodt_skip = simple_strtoul(s, NULL, 0);
+	memset(rank_perf, 0, sizeof(rank_perf));
+#endif /* PERFECT_BITMASK_COUNTING */
+
+	ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	save_ddr2t = ctl.cn78xx.ddr2t;
+
+	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+	ecc_ena = cfg.cn78xx.ecc_ena;
+
+	s = lookup_env(priv, "ddr_rlevel_2t");
+	if (s)
+		ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0);
+
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+	debug("LMC%d: Performing Read-Leveling\n", if_num);
+
+	rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+
+	rl_samples = c_cfg->rlevel_average_loops;
+	if (rl_samples == 0) {
+		rl_samples = RLEVEL_SAMPLES_DEFAULT;
+		// up the samples for these cases
+		if (dimm_count == 1 || num_ranks == 1)
+			rl_samples = rl_samples * 2 + 1;
+	}
+
+	rl_compute = c_cfg->rlevel_compute;
+	rl_ctl.cn78xx.offset_en = c_cfg->offset_en;
+	rl_ctl.cn78xx.offset    = spd_rdimm
+		? c_cfg->offset_rdimm
+		: c_cfg->offset_udimm;
+
+	int value = 1; // should ALWAYS be set
+
+	s = lookup_env(priv, "ddr_rlevel_delay_unload");
+	if (s)
+		value = !!simple_strtoul(s, NULL, 0);
+	rl_ctl.cn78xx.delay_unload_0 = value;
+	rl_ctl.cn78xx.delay_unload_1 = value;
+	rl_ctl.cn78xx.delay_unload_2 = value;
+	rl_ctl.cn78xx.delay_unload_3 = value;
+
+	// use OR_DIS=1 to try for better results
+	rl_ctl.cn78xx.or_dis = 1;
+
+	/*
+	 * If we will be switching to 32bit mode level based on only
+	 * four bits because there are only 4 ECC bits.
+	 */
+	rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F;
+
+	// allow overrides
+	s = lookup_env(priv, "ddr_rlevel_ctl_or_dis");
+	if (s)
+		rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_ctl_bitmask");
+	if (s)
+		rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0);
+
+	rl_comp_offs = spd_rdimm
+		? c_cfg->rlevel_comp_offset_rdimm
+		: c_cfg->rlevel_comp_offset_udimm;
+	s = lookup_env(priv, "ddr_rlevel_comp_offset");
+	if (s)
+		rl_comp_offs = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_offset");
+	if (s)
+		rl_ctl.cn78xx.offset   = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_offset_en");
+	if (s)
+		rl_ctl.cn78xx.offset_en   = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_ctl");
+	if (s)
+		rl_ctl.u64   = simple_strtoul(s, NULL, 0);
+
+	lmc_wr(priv,
+	       CVMX_LMCX_RLEVEL_CTL(if_num),
+	       rl_ctl.u64);
+
+	// do this here so we can look at final RLEVEL_CTL[offset] setting...
+	s = lookup_env(priv, "ddr_enable_rldelay_bump");
+	if (s) {
+		// also use as mask bits
+		enable_rldelay_bump = strtoul(s, NULL, 0);
+	}
+
+	if (enable_rldelay_bump != 0)
+		rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1;
+
+	s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num);
+	if (s)
+		rl_dbg_loops = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rtt_nom_auto");
+	if (s)
+		ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_average");
+	if (s)
+		rl_samples = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_compute");
+	if (s)
+		rl_compute = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_rlevel_printall");
+	if (s)
+		rl_print = simple_strtoul(s, NULL, 0);
+
+	debug("RLEVEL_CTL                                    : 0x%016llx\n",
+	      rl_ctl.u64);
+	debug("RLEVEL_OFFSET                                 : %6d\n",
+	      rl_ctl.cn78xx.offset);
+	debug("RLEVEL_OFFSET_EN                              : %6d\n",
+	      rl_ctl.cn78xx.offset_en);
+
+	/*
+	 * The purpose for the indexed table is to sort the settings
+	 * by the ohm value to simplify the testing when incrementing
+	 * through the settings.  (index => ohms) 1=120, 2=60, 3=40,
+	 * 4=30, 5=20
+	 */
+	min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ?
+		1 : c_cfg->min_rtt_nom_idx;
+	max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ?
+		5 : c_cfg->max_rtt_nom_idx;
+
+	min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl;
+	max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl;
+
+	s = lookup_env(priv, "ddr_min_rodt_ctl");
+	if (s)
+		min_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_max_rodt_ctl");
+	if (s)
+		max_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_min_rtt_nom_idx");
+	if (s)
+		min_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_max_rtt_nom_idx");
+	if (s)
+		max_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+	if (c_cfg->rl_tbl) {
+		/* Check for hard-coded read-leveling settings */
+		get_dimm_part_number(part_number, &dimm_config_table[0],
+				     0, ddr_type);
+		for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+			if (!(rank_mask & (1 << rankx)))
+				continue;
+
+			rl_rank.u64 = lmc_rd(priv,
+					     CVMX_LMCX_RLEVEL_RANKX(rankx,
+								    if_num));
+
+			i = 0;
+			while (c_cfg->rl_tbl[i].part) {
+				debug("DIMM part number:\"%s\", SPD: \"%s\"\n",
+				      c_cfg->rl_tbl[i].part, part_number);
+				if ((strcmp(part_number,
+					    c_cfg->rl_tbl[i].part) == 0) &&
+				    (abs(c_cfg->rl_tbl[i].speed -
+					 2 * ddr_hertz / (1000 * 1000)) < 10)) {
+					debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n",
+					      part_number);
+					rl_rank.u64 =
+						c_cfg->rl_tbl[i].rl_rank[if_num][rankx];
+					lmc_wr(priv,
+					       CVMX_LMCX_RLEVEL_RANKX(rankx,
+								      if_num),
+					       rl_rank.u64);
+					rl_rank.u64 =
+						lmc_rd(priv,
+						       CVMX_LMCX_RLEVEL_RANKX(rankx,
+									      if_num));
+					display_rl(if_num, rl_rank, rankx);
+					/* Disable h/w read-leveling */
+					rl_dbg_loops = 0;
+					break;
+				}
+				++i;
+			}
+		}
+	}
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+	max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment;
+	s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment");
+	if (s)
+		max_adj_rl_del_inc = strtoul(s, NULL, 0);
+
+	while (rl_dbg_loops--) {
+		union cvmx_lmcx_modereg_params1 mp1;
+		union cvmx_lmcx_comp_ctl2 cc2;
+
+		/* Initialize the error scoreboard */
+		memset(rl_score, 0, sizeof(rl_score));
+
+		cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+		saved_ddr__ptune = cc2.cn78xx.ddr__ptune;
+		saved_ddr__ntune = cc2.cn78xx.ddr__ntune;
+
+		/* Disable dynamic compensation settings */
+		if (rl_comp_offs != 0) {
+			cc2.cn78xx.ptune = saved_ddr__ptune;
+			cc2.cn78xx.ntune = saved_ddr__ntune;
+
+			/*
+			 * Round up the ptune calculation to bias the odd
+			 * cases toward ptune
+			 */
+			cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2);
+			cc2.cn78xx.ntune -= rl_comp_offs / 2;
+
+			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+			saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+			/* Disable ZQCS while in bypass. */
+			ctl.s.int_zqcs_dis = 1;
+			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+			cc2.cn78xx.byp = 1; /* Enable bypass mode */
+			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+			lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+			/* Read again */
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+			      cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+		}
+
+		mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+		     ++rtt_idx) {
+			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+			/*
+			 * When the read ODT mask is zero the dyn_rtt_nom_mask
+			 * is zero than RTT_NOM will not be changing during
+			 * read-leveling.  Since the value is fixed we only need
+			 * to test it once.
+			 */
+			if (dyn_rtt_nom_mask == 0) {
+				// flag not to print NOM ohms
+				print_nom_ohms = -1;
+			} else {
+				if (dyn_rtt_nom_mask & 1)
+					mp1.s.rtt_nom_00 = rtt_nom;
+				if (dyn_rtt_nom_mask & 2)
+					mp1.s.rtt_nom_01 = rtt_nom;
+				if (dyn_rtt_nom_mask & 4)
+					mp1.s.rtt_nom_10 = rtt_nom;
+				if (dyn_rtt_nom_mask & 8)
+					mp1.s.rtt_nom_11 = rtt_nom;
+				// FIXME? rank 0 ohms always?
+				print_nom_ohms =
+					imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00];
+			}
+
+			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+			       mp1.u64);
+
+			if (print_nom_ohms >= 0 && rl_print > 1) {
+				debug("\n");
+				debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+				      mp1.s.rtt_nom_11,
+				      mp1.s.rtt_nom_10,
+				      mp1.s.rtt_nom_01,
+				      mp1.s.rtt_nom_00);
+			}
+
+			ddr_init_seq(priv, rank_mask, if_num);
+
+			// Try RANK outside RODT to rearrange the output...
+			for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+				if (!(rank_mask & (1 << rankx)))
+					continue;
+
+				for (rodt_ctl = max_rodt_ctl;
+				     rodt_ctl >= min_rodt_ctl; --rodt_ctl)
+					rodt_loop(priv, rankx, rl_score);
+			}
+		}
+
+		/* Re-enable dynamic compensation settings. */
+		if (rl_comp_offs != 0) {
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+			cc2.cn78xx.ptune = 0;
+			cc2.cn78xx.ntune = 0;
+			cc2.cn78xx.byp = 0; /* Disable bypass mode */
+			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+			/* Read once */
+			lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+			/* Read again */
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+			      cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+
+			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+			/* Restore original setting */
+			ctl.s.int_zqcs_dis = saved_int_zqcs_dis;
+			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+		}
+
+		int override_compensation = 0;
+
+		s = lookup_env(priv, "ddr__ptune");
+		if (s)
+			saved_ddr__ptune = strtoul(s, NULL, 0);
+
+		s = lookup_env(priv, "ddr__ntune");
+		if (s) {
+			saved_ddr__ntune = strtoul(s, NULL, 0);
+			override_compensation = 1;
+		}
+
+		if (override_compensation) {
+			cc2.cn78xx.ptune = saved_ddr__ptune;
+			cc2.cn78xx.ntune = saved_ddr__ntune;
+
+			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+			saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+			/* Disable ZQCS while in bypass. */
+			ctl.s.int_zqcs_dis = 1;
+			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+			cc2.cn78xx.byp = 1; /* Enable bypass mode */
+			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+			/* Read again */
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+			      cc2.cn78xx.ptune, cc2.cn78xx.ntune);
+		}
+
+		/* Evaluation block */
+		/* Still at initial value? */
+		int best_rodt_score = DEFAULT_BEST_RANK_SCORE;
+		int auto_rodt_ctl = 0;
+		int auto_rtt_nom  = 0;
+		int rodt_score;
+
+		rodt_row_skip_mask = 0;
+
+		// just add specific RODT rows to the skip mask for DDR4
+		// at this time...
+		if (ddr_type == DDR4_DRAM) {
+			// skip RODT row 34 ohms for all DDR4 types
+			rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm);
+			// skip RODT row 40 ohms for all DDR4 types
+			rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm);
+#if ADD_48_OHM_SKIP
+			// skip RODT row 48 ohms for all DDR4 types
+			rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_48_ohm);
+#endif /* ADD_48OHM_SKIP */
+#if NOSKIP_40_48_OHM
+			// For now, do not skip RODT row 40 or 48 ohm when
+			// ddr_hertz is above 1075 MHz
+			if (ddr_hertz > 1075000000) {
+				// noskip RODT row 40 ohms
+				rodt_row_skip_mask &=
+					~(1 << ddr4_rodt_ctl_40_ohm);
+				// noskip RODT row 48 ohms
+				rodt_row_skip_mask &=
+					~(1 << ddr4_rodt_ctl_48_ohm);
+			}
+#endif /* NOSKIP_40_48_OHM */
+#if NOSKIP_48_STACKED
+			// For now, do not skip RODT row 48 ohm for 2Rx4
+			// stacked die DIMMs
+			if (is_stacked_die && num_ranks == 2 &&
+			    dram_width == 4) {
+				// noskip RODT row 48 ohms
+				rodt_row_skip_mask &=
+					~(1 << ddr4_rodt_ctl_48_ohm);
+			}
+#endif /* NOSKIP_48_STACKED */
+#if NOSKIP_FOR_MINI
+			// for now, leave all rows eligible when we have
+			// mini-DIMMs...
+			if (spd_dimm_type == 5 || spd_dimm_type == 6)
+				rodt_row_skip_mask = 0;
+#endif /* NOSKIP_FOR_MINI */
+#if NOSKIP_FOR_2S_1R
+			// for now, leave all rows eligible when we have
+			// a 2-slot 1-rank config
+			if (dimm_count == 2 && num_ranks == 1)
+				rodt_row_skip_mask = 0;
+#endif /* NOSKIP_FOR_2S_1R */
+
+			debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
+			for (rtt_idx = min_rtt_nom_idx;
+			     rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+				rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+				for (rodt_ctl = max_rodt_ctl;
+				     rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+					rodt_score = 0;
+					for (rankx = 0; rankx < dimm_count * 4;
+					     rankx++) {
+						if (!(rank_mask & (1 << rankx)))
+							continue;
+
+						debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
+						      rtt_nom, rodt_ctl, rankx,
+						      rl_score[rtt_nom][rodt_ctl][rankx].score);
+						rodt_score +=
+							rl_score[rtt_nom][rodt_ctl][rankx].score;
+					}
+					// FIXME: do we need to skip RODT rows
+					// here, like we do below in the
+					// by-RANK settings?
+
+					/*
+					 * When using automatic ODT settings use
+					 * the ODT settings associated with the
+					 * best score for all of the tested ODT
+					 * combinations.
+					 */
+
+					if (rodt_score < best_rodt_score ||
+					    (rodt_score == best_rodt_score &&
+					     (imp_val->rodt_ohms[rodt_ctl] >
+					      imp_val->rodt_ohms[auto_rodt_ctl]))) {
+						debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n",
+						      rodt_ctl,
+						      imp_val->rodt_ohms[rodt_ctl],
+						      rodt_score,
+						      best_rodt_score);
+						best_rodt_score = rodt_score;
+						auto_rodt_ctl   = rodt_ctl;
+						auto_rtt_nom    = rtt_nom;
+					}
+				}
+			}
+
+			mp1.u64 = lmc_rd(priv,
+					 CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+			if (ddr_rtt_nom_auto) {
+				/* Store the automatically set RTT_NOM value */
+				if (dyn_rtt_nom_mask & 1)
+					mp1.s.rtt_nom_00 = auto_rtt_nom;
+				if (dyn_rtt_nom_mask & 2)
+					mp1.s.rtt_nom_01 = auto_rtt_nom;
+				if (dyn_rtt_nom_mask & 4)
+					mp1.s.rtt_nom_10 = auto_rtt_nom;
+				if (dyn_rtt_nom_mask & 8)
+					mp1.s.rtt_nom_11 = auto_rtt_nom;
+			} else {
+				/*
+				 * restore the manual settings to the register
+				 */
+				mp1.s.rtt_nom_00 = default_rtt_nom[0];
+				mp1.s.rtt_nom_01 = default_rtt_nom[1];
+				mp1.s.rtt_nom_10 = default_rtt_nom[2];
+				mp1.s.rtt_nom_11 = default_rtt_nom[3];
+			}
+
+			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+			       mp1.u64);
+			debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+			      mp1.s.rtt_nom_11,
+			      mp1.s.rtt_nom_10,
+			      mp1.s.rtt_nom_01,
+			      mp1.s.rtt_nom_00);
+
+			debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+			      extr_wr(mp1.u64, 3),
+			      extr_wr(mp1.u64, 2),
+			      extr_wr(mp1.u64, 1),
+			      extr_wr(mp1.u64, 0));
+
+			debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+			      imp_val->dic_ohms[mp1.s.dic_11],
+			      imp_val->dic_ohms[mp1.s.dic_10],
+			      imp_val->dic_ohms[mp1.s.dic_01],
+			      imp_val->dic_ohms[mp1.s.dic_00],
+			      mp1.s.dic_11,
+			      mp1.s.dic_10,
+			      mp1.s.dic_01,
+			      mp1.s.dic_00);
+
+			if (ddr_type == DDR4_DRAM) {
+				union cvmx_lmcx_modereg_params2 mp2;
+				/*
+				 * We must read the CSR, and not depend on
+				 * odt_config[odt_idx].odt_mask2, since we could
+				 * have overridden values with envvars.
+				 * NOTE: this corrects the printout, since the
+				 * CSR is not written with the old values...
+				 */
+				mp2.u64 = lmc_rd(priv,
+						 CVMX_LMCX_MODEREG_PARAMS2(if_num));
+
+				debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+				      mp2.s.rtt_park_11,
+				      mp2.s.rtt_park_10,
+				      mp2.s.rtt_park_01,
+				      mp2.s.rtt_park_00);
+
+				debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
+				      "VREF_RANGE",
+				      mp2.s.vref_range_11,
+				      mp2.s.vref_range_10,
+				      mp2.s.vref_range_01,
+				      mp2.s.vref_range_00);
+
+				debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
+				      "VREF_VALUE",
+				      mp2.s.vref_value_11,
+				      mp2.s.vref_value_10,
+				      mp2.s.vref_value_01,
+				      mp2.s.vref_value_00);
+			}
+
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+			if (ddr_rodt_ctl_auto) {
+				cc2.cn78xx.rodt_ctl = auto_rodt_ctl;
+			} else {
+				// back to the original setting
+				cc2.cn78xx.rodt_ctl = default_rodt_ctl;
+			}
+			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+			debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+			      cc2.cn78xx.rodt_ctl,
+			      imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+			/*
+			 * Use the delays associated with the best score for
+			 * each individual rank
+			 */
+			debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n");
+
+			// this is the the RANK MAJOR LOOP
+			for (rankx = 0; rankx < dimm_count * 4; rankx++)
+				rank_major_loop(priv, rankx, rl_score);
+		}  /* Evaluation block */
+	} /* while(rl_dbg_loops--) */
+
+	ctl.cn78xx.ddr2t = save_ddr2t;
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+	ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	/* Display final 2T value */
+	debug("DDR2T                                         : %6d\n",
+	      ctl.cn78xx.ddr2t);
+
+	ddr_init_seq(priv, rank_mask, if_num);
+
+	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+		u64 value;
+		int parameter_set = 0;
+
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+								  if_num));
+
+		for (i = 0; i < 9; ++i) {
+			s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d",
+				       if_num, rankx, i);
+			if (s) {
+				parameter_set |= 1;
+				value = simple_strtoul(s, NULL, 0);
+
+				upd_rl_rank(&rl_rank, i, value);
+			}
+		}
+
+		s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx);
+		if (s) {
+			parameter_set |= 1;
+			value = simple_strtoull(s, NULL, 0);
+			rl_rank.u64 = value;
+		}
+
+		if (parameter_set) {
+			lmc_wr(priv,
+			       CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+			       rl_rank.u64);
+			rl_rank.u64 = lmc_rd(priv,
+					     CVMX_LMCX_RLEVEL_RANKX(rankx,
+								    if_num));
+			display_rl(if_num, rl_rank, rankx);
+		}
+	}
+}
+
+int init_octeon3_ddr3_interface(struct ddr_priv *priv,
+				struct ddr_conf *_ddr_conf, u32 _ddr_hertz,
+				u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num,
+				u32 _if_mask)
+{
+	union cvmx_lmcx_control ctrl;
+	int ret;
+	char *s;
+	int i;
+
+	if_num = _if_num;
+	ddr_hertz = _ddr_hertz;
+	ddr_conf = _ddr_conf;
+	if_mask = _if_mask;
+	odt_1rank_config = ddr_conf->odt_1rank_config;
+	odt_2rank_config = ddr_conf->odt_2rank_config;
+	odt_4rank_config = ddr_conf->odt_4rank_config;
+	dimm_config_table = ddr_conf->dimm_config_table;
+	c_cfg = &ddr_conf->custom_lmc_config;
+
+	/*
+	 * Compute clock rates to the nearest picosecond.
+	 */
+	tclk_psecs = hertz_to_psecs(ddr_hertz);	/* Clock in psecs */
+	eclk_psecs = hertz_to_psecs(cpu_hertz);	/* Clock in psecs */
+
+	dimm_count = 0;
+	/* Accumulate and report all the errors before giving up */
+	fatal_error = 0;
+
+	/* Flag that indicates safe DDR settings should be used */
+	safe_ddr_flag = 0;
+	if_64b = 1;		/* Octeon II Default: 64bit interface width */
+	mem_size_mbytes = 0;
+	bank_bits = 0;
+	column_bits_start = 1;
+	use_ecc = 1;
+	min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
+	spd_package = 0;
+	spd_rawcard = 0;
+	spd_rawcard_aorb = 0;
+	spd_rdimm_registers = 0;
+	is_stacked_die = 0;
+	is_3ds_dimm = 0;	// 3DS
+	lranks_per_prank = 1;	// 3DS: logical ranks per package rank
+	lranks_bits = 0;	// 3DS: logical ranks bits
+	die_capacity = 0;	// in Mbits; only used for 3DS
+
+	wl_mask_err = 0;
+	dyn_rtt_nom_mask = 0;
+	ddr_disable_chip_reset = 1;
+	match_wl_rtt_nom = 0;
+
+	internal_retries = 0;
+
+	disable_deskew_training = 0;
+	restart_if_dsk_incomplete = 0;
+	last_lane = ((if_64b) ? 8 : 4) + use_ecc;
+
+	disable_sequential_delay_check = 0;
+	wl_print = WLEVEL_PRINTALL_DEFAULT;
+
+#if ALLOW_BY_RANK_INIT
+	enable_by_rank_init = 1;	// FIXME: default by-rank ON
+	saved_rank_mask = 0;
+#endif /* ALLOW_BY_RANK_INIT */
+
+	node = 0;
+
+#if SWL_TRY_HWL_ALT
+	memset(hwl_alts, 0, sizeof(hwl_alts));
+#endif
+
+	/*
+	 * Initialize these to shut up the compiler. They are configured
+	 * and used only for DDR4
+	 */
+	ddr4_trrd_lmin = 6000;
+	ddr4_tccd_lmin = 6000;
+
+	debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n",
+	      node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid());
+
+	if (dimm_config_table[0].spd_addrs[0] == 0 &&
+	    !dimm_config_table[0].spd_ptrs[0]) {
+		printf("ERROR: No dimms specified in the dimm_config_table.\n");
+		return -1;
+	}
+
+	// allow some overrides to be done
+
+	// this one controls several things related to DIMM geometry: HWL and RL
+	disable_sequential_delay_check = c_cfg->disable_sequential_delay_check;
+	s = lookup_env(priv, "ddr_disable_sequential_delay_check");
+	if (s)
+		disable_sequential_delay_check = strtoul(s, NULL, 0);
+
+	// this one controls whether chip RESET is done, or LMC init restarted
+	// from step 6.9.6
+	s = lookup_env(priv, "ddr_disable_chip_reset");
+	if (s)
+		ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
+
+	// this one controls whether Deskew Training is performed
+	s = lookup_env(priv, "ddr_disable_deskew_training");
+	if (s)
+		disable_deskew_training = !!strtoul(s, NULL, 0);
+
+	if (ddr_verbose(priv)) {
+		printf("DDR SPD Table:");
+		for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+			if (dimm_config_table[didx].spd_addrs[0] == 0)
+				break;
+
+			printf(" --ddr%dspd=0x%02x", if_num,
+			       dimm_config_table[didx].spd_addrs[0]);
+			if (dimm_config_table[didx].spd_addrs[1] != 0)
+				printf(",0x%02x",
+				       dimm_config_table[didx].spd_addrs[1]);
+		}
+		printf("\n");
+	}
+
+	/*
+	 * Walk the DRAM Socket Configuration Table to see what is installed.
+	 */
+	for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+		/* Check for lower DIMM socket populated */
+		if (validate_dimm(priv, &dimm_config_table[didx], 0)) {
+			if (ddr_verbose(priv))
+				report_dimm(&dimm_config_table[didx], 0,
+					    dimm_count, if_num);
+			++dimm_count;
+		} else {
+			break;
+		}		/* Finished when there is no lower DIMM */
+	}
+
+	initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz,
+			     ddr_ref_hertz, if_num, if_mask);
+
+	if (!odt_1rank_config)
+		odt_1rank_config = disable_odt_config;
+	if (!odt_2rank_config)
+		odt_2rank_config = disable_odt_config;
+	if (!odt_4rank_config)
+		odt_4rank_config = disable_odt_config;
+
+	s = env_get("ddr_safe");
+	if (s) {
+		safe_ddr_flag = !!simple_strtoul(s, NULL, 0);
+		printf("Parameter found in environment. ddr_safe = %d\n",
+		       safe_ddr_flag);
+	}
+
+	if (dimm_count == 0) {
+		printf("ERROR: DIMM 0 not detected.\n");
+		return (-1);
+	}
+
+	if (c_cfg->mode32b)
+		if_64b = 0;
+
+	s = lookup_env(priv, "if_64b");
+	if (s)
+		if_64b = !!simple_strtoul(s, NULL, 0);
+
+	if (if_64b == 1) {
+		if (octeon_is_cpuid(OCTEON_CN70XX)) {
+			printf("64-bit interface width is not supported for this Octeon model\n");
+			++fatal_error;
+		}
+	}
+
+	/* ddr_type only indicates DDR4 or DDR3 */
+	ddr_type = (read_spd(&dimm_config_table[0], 0,
+			     DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3;
+	debug("DRAM Device Type: DDR%d\n", ddr_type);
+
+	if (ddr_type == DDR4_DRAM) {
+		int spd_module_type;
+		int asymmetric;
+		const char *signal_load[4] = { "", "MLS", "3DS", "RSV" };
+
+		imp_val = &ddr4_impedence_val;
+
+		spd_addr =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR4_SPD_ADDRESSING_ROW_COL_BITS);
+		spd_org =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR4_SPD_MODULE_ORGANIZATION);
+		spd_banks =
+		    0xFF & read_spd(&dimm_config_table[0], 0,
+				    DDR4_SPD_DENSITY_BANKS);
+
+		bank_bits =
+		    (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
+		/* Controller can only address 4 bits. */
+		bank_bits = min((int)bank_bits, 4);
+
+		spd_package =
+		    0XFF & read_spd(&dimm_config_table[0], 0,
+				    DDR4_SPD_PACKAGE_TYPE);
+		if (spd_package & 0x80) {	// non-monolithic device
+			is_stacked_die = ((spd_package & 0x73) == 0x11);
+			debug("DDR4: Package Type 0x%02x (%s), %d die\n",
+			      spd_package, signal_load[(spd_package & 3)],
+			      ((spd_package >> 4) & 7) + 1);
+			is_3ds_dimm = ((spd_package & 3) == 2);	// is it 3DS?
+			if (is_3ds_dimm) {	// is it 3DS?
+				lranks_per_prank = ((spd_package >> 4) & 7) + 1;
+				// FIXME: should make sure it is only 2H or 4H
+				// or 8H?
+				lranks_bits = lranks_per_prank >> 1;
+				if (lranks_bits == 4)
+					lranks_bits = 3;
+			}
+		} else if (spd_package != 0) {
+			// FIXME: print non-zero monolithic device definition
+			debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
+			      ((spd_package >> 4) & 7) + 1, (spd_package & 3));
+		}
+
+		asymmetric = (spd_org >> 6) & 1;
+		if (asymmetric) {
+			int spd_secondary_pkg =
+			    read_spd(&dimm_config_table[0], 0,
+				     DDR4_SPD_SECONDARY_PACKAGE_TYPE);
+			debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n",
+			      spd_secondary_pkg);
+		} else {
+			u64 bus_width =
+				8 << (0x07 &
+				read_spd(&dimm_config_table[0], 0,
+					 DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
+			u64 ddr_width = 4 << ((spd_org >> 0) & 0x7);
+			u64 module_cap;
+			int shift = (spd_banks & 0x0F);
+
+			die_capacity = (shift < 8) ? (256UL << shift) :
+				((12UL << (shift & 1)) << 10);
+			debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
+			      (die_capacity > 512) ? (die_capacity >> 10) :
+			      die_capacity, (die_capacity > 512) ? 'G' : 'M');
+			module_cap = ((u64)die_capacity << 20) / 8UL *
+				bus_width / ddr_width *
+				(1UL + ((spd_org >> 3) & 0x7));
+
+			// is it 3DS?
+			if (is_3ds_dimm) {
+				module_cap *= (u64)(((spd_package >> 4) & 7) +
+						    1);
+			}
+			debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
+			      module_cap >> 30);
+		}
+
+		spd_rawcard =
+		    0xFF & read_spd(&dimm_config_table[0], 0,
+				    DDR4_SPD_REFERENCE_RAW_CARD);
+		debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard);
+
+		spd_module_type =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR4_SPD_KEY_BYTE_MODULE_TYPE);
+		if (spd_module_type & 0x80) {	// HYBRID module
+			debug("DDR4: HYBRID module, type %s\n",
+			      ((spd_module_type & 0x70) ==
+			       0x10) ? "NVDIMM" : "UNKNOWN");
+		}
+		spd_thermal_sensor =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR4_SPD_MODULE_THERMAL_SENSOR);
+		spd_dimm_type = spd_module_type & 0x0F;
+		spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+			(spd_dimm_type == 8);
+		if (spd_rdimm) {
+			u16 spd_mfgr_id, spd_register_rev, spd_mod_attr;
+			static const u16 manu_ids[4] = {
+				0xb380, 0x3286, 0x9780, 0xb304
+			};
+			static const char *manu_names[4] = {
+				"XXX", "XXXXXXX", "XX", "XXXXX"
+			};
+			int mc;
+
+			spd_mfgr_id =
+			    (0xFFU &
+			     read_spd(&dimm_config_table[0], 0,
+				      DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+			    ((0xFFU &
+			      read_spd(&dimm_config_table[0], 0,
+				       DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB))
+			     << 8);
+			spd_register_rev =
+			    0xFFU & read_spd(&dimm_config_table[0], 0,
+					     DDR4_SPD_REGISTER_REVISION_NUMBER);
+			for (mc = 0; mc < 4; mc++)
+				if (manu_ids[mc] == spd_mfgr_id)
+					break;
+
+			debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n",
+			      (mc >= 4) ? "UNKNOWN" : manu_names[mc],
+			      spd_register_rev);
+
+			// RAWCARD A or B must be bit 7=0 and bits 4-0
+			// either 00000(A) or 00001(B)
+			spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1);
+			// RDIMM Module Attributes
+			spd_mod_attr =
+			    0xFFU & read_spd(&dimm_config_table[0], 0,
+					DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE);
+			spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+			debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n",
+			      spd_mod_attr, (spd_mod_attr >> 4) + 1,
+			      ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+			      spd_rdimm_registers);
+		}
+		dimm_type_name = ddr4_dimm_types[spd_dimm_type];
+	} else {		/* if (ddr_type == DDR4_DRAM) */
+		const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" };
+
+		imp_val = &ddr3_impedence_val;
+
+		spd_addr =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_ADDRESSING_ROW_COL_BITS);
+		spd_org =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_MODULE_ORGANIZATION);
+		spd_banks =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_DENSITY_BANKS) & 0xff;
+
+		bank_bits = 3 + ((spd_banks >> 4) & 0x7);
+		/* Controller can only address 3 bits. */
+		bank_bits = min((int)bank_bits, 3);
+		spd_dimm_type =
+		    0x0f & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_KEY_BYTE_MODULE_TYPE);
+		spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+			(spd_dimm_type == 9);
+
+		spd_package =
+		    0xFF & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_SDRAM_DEVICE_TYPE);
+		if (spd_package & 0x80) {	// non-standard device
+			debug("DDR3: Device Type 0x%02x (%s), %d die\n",
+			      spd_package, signal_load[(spd_package & 3)],
+			      ((1 << ((spd_package >> 4) & 7)) >> 1));
+		} else if (spd_package != 0) {
+			// FIXME: print non-zero monolithic device definition
+			debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n",
+			      ((1 << (spd_package >> 4) & 7) >> 1),
+			      (spd_package & 3));
+		}
+
+		spd_rawcard =
+		    0xFF & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_REFERENCE_RAW_CARD);
+		debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard);
+		spd_thermal_sensor =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_MODULE_THERMAL_SENSOR);
+
+		if (spd_rdimm) {
+			int spd_mfgr_id, spd_register_rev, spd_mod_attr;
+
+			spd_mfgr_id =
+			    (0xFFU &
+			     read_spd(&dimm_config_table[0], 0,
+				      DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+			    ((0xFFU &
+			      read_spd(&dimm_config_table[0], 0,
+				       DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB))
+			     << 8);
+			spd_register_rev =
+			    0xFFU & read_spd(&dimm_config_table[0], 0,
+					     DDR3_SPD_REGISTER_REVISION_NUMBER);
+			debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n",
+			      spd_mfgr_id, spd_register_rev);
+			// Module Attributes
+			spd_mod_attr =
+			    0xFFU & read_spd(&dimm_config_table[0], 0,
+					     DDR3_SPD_ADDRESS_MAPPING);
+			spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+			debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n",
+			      spd_mod_attr,
+			      ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+			      spd_rdimm_registers);
+		}
+		dimm_type_name = ddr3_dimm_types[spd_dimm_type];
+	}
+
+	if (spd_thermal_sensor & 0x80) {
+		debug("DDR%d: SPD: Thermal Sensor PRESENT\n",
+		      (ddr_type == DDR4_DRAM) ? 4 : 3);
+	}
+
+	debug("spd_addr        : %#06x\n", spd_addr);
+	debug("spd_org         : %#06x\n", spd_org);
+	debug("spd_banks       : %#06x\n", spd_banks);
+
+	row_bits = 12 + ((spd_addr >> 3) & 0x7);
+	col_bits = 9 + ((spd_addr >> 0) & 0x7);
+
+	num_ranks = 1 + ((spd_org >> 3) & 0x7);
+	dram_width = 4 << ((spd_org >> 0) & 0x7);
+	num_banks = 1 << bank_bits;
+
+	s = lookup_env(priv, "ddr_num_ranks");
+	if (s)
+		num_ranks = simple_strtoul(s, NULL, 0);
+
+#if ALLOW_BY_RANK_INIT
+	s = lookup_env(priv, "ddr_enable_by_rank_init");
+	if (s)
+		enable_by_rank_init = !!simple_strtoul(s, NULL, 0);
+
+	// FIXME: for now, we can only handle a DDR4 2rank-1slot config
+	// FIXME: also, by-rank init does not work correctly if 32-bit mode...
+	if (enable_by_rank_init && (ddr_type != DDR4_DRAM ||
+				    dimm_count != 1 || if_64b != 1 ||
+				    num_ranks != 2))
+		enable_by_rank_init = 0;
+
+	if (enable_by_rank_init) {
+		struct dimm_odt_config *odt_config;
+		union cvmx_lmcx_modereg_params1 mp1;
+		union cvmx_lmcx_modereg_params2 modereg_params2;
+		int by_rank_rodt, by_rank_wr, by_rank_park;
+
+		// Do ODT settings changes which work best for 2R-1S configs
+		debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n");
+
+		// setup for modifying config table values - 2 ranks and 1 DIMM
+		odt_config =
+		    (struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0];
+
+		// original was 80, first try was 60
+		by_rank_rodt = ddr4_rodt_ctl_48_ohm;
+		s = lookup_env(priv, "ddr_by_rank_rodt");
+		if (s)
+			by_rank_rodt = strtoul(s, NULL, 0);
+
+		odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt;
+
+		// this is for MODEREG_PARAMS1 fields
+		// fetch the original settings
+		mp1.u64 = odt_config->modereg_params1.u64;
+
+		by_rank_wr = ddr4_rttwr_80ohm;	// originals were 240
+		s = lookup_env(priv, "ddr_by_rank_wr");
+		if (s)
+			by_rank_wr = simple_strtoul(s, NULL, 0);
+
+		// change specific settings here...
+		insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr);
+		insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr);
+
+		// save final settings
+		odt_config->modereg_params1.u64 = mp1.u64;
+
+		// this is for MODEREG_PARAMS2 fields
+		// fetch the original settings
+		modereg_params2.u64 = odt_config->modereg_params2.u64;
+
+		by_rank_park = ddr4_rttpark_none;	// originals were 120
+		s = lookup_env(priv, "ddr_by_rank_park");
+		if (s)
+			by_rank_park = simple_strtoul(s, NULL, 0);
+
+		// change specific settings here...
+		modereg_params2.s.rtt_park_00 = by_rank_park;
+		modereg_params2.s.rtt_park_01 = by_rank_park;
+
+		// save final settings
+		odt_config->modereg_params2.u64 = modereg_params2.u64;
+	}
+#endif /* ALLOW_BY_RANK_INIT */
+
+	/*
+	 * FIX
+	 * Check that values are within some theoretical limits.
+	 * col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) =
+	 *   14 - 3 - 4 = 7
+	 * col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) =
+	 *   18 - 2 - 3 = 13
+	 */
+	if (col_bits > 13 || col_bits < 7) {
+		printf("Unsupported number of Col Bits: %d\n", col_bits);
+		++fatal_error;
+	}
+
+	/*
+	 * FIX
+	 * Check that values are within some theoretical limits.
+	 * row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits =
+	 *   26 - 18 - 1 = 7
+	 * row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits =
+	 *   33 - 14 - 1 = 18
+	 */
+	if (row_bits > 18 || row_bits < 7) {
+		printf("Unsupported number of Row Bits: %d\n", row_bits);
+		++fatal_error;
+	}
+
+	s = lookup_env(priv, "ddr_rdimm_ena");
+	if (s)
+		spd_rdimm = !!simple_strtoul(s, NULL, 0);
+
+	wl_loops = WLEVEL_LOOPS_DEFAULT;
+	// accept generic or interface-specific override
+	s = lookup_env(priv, "ddr_wlevel_loops");
+	if (!s)
+		s = lookup_env(priv, "ddr%d_wlevel_loops", if_num);
+
+	if (s)
+		wl_loops = strtoul(s, NULL, 0);
+
+	s = lookup_env(priv, "ddr_ranks");
+	if (s)
+		num_ranks = simple_strtoul(s, NULL, 0);
+
+	bunk_enable = (num_ranks > 1);
+
+	if (octeon_is_cpuid(OCTEON_CN7XXX))
+		column_bits_start = 3;
+	else
+		printf("ERROR: Unsupported Octeon model: 0x%x\n",
+		       read_c0_prid());
+
+	row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b);
+	debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n",
+	      row_lsb);
+
+	pbank_lsb = row_lsb + row_bits + bunk_enable;
+	debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
+
+	if (lranks_per_prank > 1) {
+		pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
+		debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
+		      row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
+	}
+
+	mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
+	if (num_ranks == 4) {
+		/*
+		 * Quad rank dimm capacity is equivalent to two dual-rank
+		 * dimms.
+		 */
+		mem_size_mbytes *= 2;
+	}
+
+	/*
+	 * Mask with 1 bits set for for each active rank, allowing 2 bits
+	 * per dimm. This makes later calculations simpler, as a variety
+	 * of CSRs use this layout. This init needs to be updated for dual
+	 * configs (ie non-identical DIMMs).
+	 *
+	 * Bit 0 = dimm0, rank 0
+	 * Bit 1 = dimm0, rank 1
+	 * Bit 2 = dimm1, rank 0
+	 * Bit 3 = dimm1, rank 1
+	 * ...
+	 */
+	rank_mask = 0x1;
+	if (num_ranks > 1)
+		rank_mask = 0x3;
+	if (num_ranks > 2)
+		rank_mask = 0xf;
+
+	for (i = 1; i < dimm_count; i++)
+		rank_mask |= ((rank_mask & 0x3) << (2 * i));
+
+	/*
+	 * If we are booting from RAM, the DRAM controller is
+	 * already set up.  Just return the memory size
+	 */
+	if (priv->flags & FLAG_RAM_RESIDENT) {
+		debug("Ram Boot: Skipping LMC config\n");
+		return mem_size_mbytes;
+	}
+
+	if (ddr_type == DDR4_DRAM) {
+		spd_ecc =
+		    !!(read_spd
+		       (&dimm_config_table[0], 0,
+			DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8);
+	} else {
+		spd_ecc =
+		    !!(read_spd
+		       (&dimm_config_table[0], 0,
+			DDR3_SPD_MEMORY_BUS_WIDTH) & 8);
+	}
+
+	char rank_spec[8];
+
+	printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package);
+	debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n",
+	      dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
+	      rank_spec,
+	      (spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits);
+
+	if (ddr_type == DDR4_DRAM) {
+		spd_cas_latency =
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
+		spd_cas_latency |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
+		spd_cas_latency |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
+		spd_cas_latency |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
+	} else {
+		spd_cas_latency =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_CAS_LATENCIES_LSB);
+		spd_cas_latency |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
+	}
+	debug("spd_cas_latency : %#06x\n", spd_cas_latency);
+
+	if (ddr_type == DDR4_DRAM) {
+		/*
+		 * No other values for DDR4 MTB and FTB are specified at the
+		 * current time so don't bother reading them. Can't speculate
+		 * how new values will be represented.
+		 */
+		int spdmtb = 125;
+		int spdftb = 1;
+
+		taamin = spdmtb * read_spd(&dimm_config_table[0], 0,
+					   DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) +
+			 spdftb * (signed char)read_spd(&dimm_config_table[0],
+			 0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
+
+		ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
+
+		ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
+
+		ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
+
+		ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
+
+		ddr4_trasmin = spdmtb *
+			(((read_spd
+			   (&dimm_config_table[0], 0,
+			    DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
+			 (read_spd
+			  (&dimm_config_table[0], 0,
+			   DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
+
+		ddr4_trcmin = spdmtb *
+			((((read_spd
+			    (&dimm_config_table[0], 0,
+			     DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) <<
+			  8) + (read_spd
+				(&dimm_config_table[0], 0,
+				 DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) &
+				0xff))
+			+ spdftb * (signed char)read_spd(&dimm_config_table[0],
+							 0,
+			DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
+
+		ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) <<
+			8) + (read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
+
+		ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) <<
+			8) + (read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
+
+		ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) <<
+			8) + (read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
+
+		ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) <<
+			8) + (read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
+
+		ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
+
+		ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
+
+		ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) +
+			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
+
+		debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb);
+		debug("%-45s : %6d ps\n", "Fine Timebase   (FTB)", spdftb);
+
+		debug("%-45s : %6d ps (%ld MT/s)\n",
+		      "SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin,
+		      pretty_psecs_to_mts(ddr4_tckavgmin));
+		debug("%-45s : %6d ps\n",
+		      "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax);
+		debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)",
+		      taamin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Active to Precharge Delay (tRASmin)",
+		      ddr4_trasmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Active to Active/Refr. Delay (tRCmin)",
+		      ddr4_trcmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Refresh Recovery Delay (tRFC1min)",
+		      ddr4_trfc1min);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Refresh Recovery Delay (tRFC2min)",
+		      ddr4_trfc2min);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Refresh Recovery Delay (tRFC4min)",
+		      ddr4_trfc4min);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Four Activate Window Time (tFAWmin)",
+		      ddr4_tfawmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin);
+		debug("%-45s : %6d ps\n",
+		      "Minimum CAS to CAS Delay Time (tCCD_Lmin)",
+		      ddr4_tccd_lmin);
+
+#define DDR4_TWR 15000
+#define DDR4_TWTR_S 2500
+
+		tckmin = ddr4_tckavgmin;
+		twr = DDR4_TWR;
+		trcd = ddr4_trdcmin;
+		trrd = ddr4_trrd_smin;
+		trp = ddr4_trpmin;
+		tras = ddr4_trasmin;
+		trc = ddr4_trcmin;
+		trfc = ddr4_trfc1min;
+		twtr = DDR4_TWTR_S;
+		tfaw = ddr4_tfawmin;
+
+		if (spd_rdimm) {
+			spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+			DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) &
+			0x1;
+		} else {
+			spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+				DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
+		}
+		debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+	} else {
+		spd_mtb_dividend =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
+		spd_mtb_divisor =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
+		spd_tck_min =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
+		spd_taa_min =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
+
+		spd_twr =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
+		spd_trcd =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
+		spd_trrd =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
+		spd_trp =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
+		spd_tras =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
+		spd_tras |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8);
+		spd_trc =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
+		spd_trc |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4);
+		spd_trfc =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
+		spd_trfc |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) <<
+		     8);
+		spd_twtr =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
+		spd_trtp =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+			DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
+		spd_tfaw =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
+		spd_tfaw |=
+		    ((0xff &
+		      read_spd(&dimm_config_table[0], 0,
+			       DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8);
+		spd_addr_mirror =
+		    0xff & read_spd(&dimm_config_table[0], 0,
+				    DDR3_SPD_ADDRESS_MAPPING) & 0x1;
+		/* Only address mirror unbuffered dimms.  */
+		spd_addr_mirror = spd_addr_mirror && !spd_rdimm;
+		ftb_dividend =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
+		ftb_divisor =
+		    read_spd(&dimm_config_table[0], 0,
+			     DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
+		/* Make sure that it is not 0 */
+		ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor;
+
+		debug("spd_twr         : %#06x\n", spd_twr);
+		debug("spd_trcd        : %#06x\n", spd_trcd);
+		debug("spd_trrd        : %#06x\n", spd_trrd);
+		debug("spd_trp         : %#06x\n", spd_trp);
+		debug("spd_tras        : %#06x\n", spd_tras);
+		debug("spd_trc         : %#06x\n", spd_trc);
+		debug("spd_trfc        : %#06x\n", spd_trfc);
+		debug("spd_twtr        : %#06x\n", spd_twtr);
+		debug("spd_trtp        : %#06x\n", spd_trtp);
+		debug("spd_tfaw        : %#06x\n", spd_tfaw);
+		debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+
+		mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
+		taamin = mtb_psec * spd_taa_min;
+		taamin += ftb_dividend *
+			(signed char)read_spd(&dimm_config_table[0],
+				0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) /
+			ftb_divisor;
+		tckmin = mtb_psec * spd_tck_min;
+		tckmin += ftb_dividend *
+			(signed char)read_spd(&dimm_config_table[0],
+				0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) /
+			ftb_divisor;
+
+		twr = spd_twr * mtb_psec;
+		trcd = spd_trcd * mtb_psec;
+		trrd = spd_trrd * mtb_psec;
+		trp = spd_trp * mtb_psec;
+		tras = spd_tras * mtb_psec;
+		trc = spd_trc * mtb_psec;
+		trfc = spd_trfc * mtb_psec;
+		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) {
+			// default to this - because it works...
+			int new_trfc = 260000;
+
+			s = env_get("ddr_trfc");
+			if (s) {
+				new_trfc = simple_strtoul(s, NULL, 0);
+				printf("Parameter found in environment. ddr_trfc = %d\n",
+				       new_trfc);
+				if (new_trfc < 160000 || new_trfc > 260000) {
+					// back to default if out of range
+					new_trfc = 260000;
+				}
+			}
+			debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n",
+			      node, if_num, trfc, new_trfc);
+			trfc = new_trfc;
+		}
+
+		twtr = spd_twtr * mtb_psec;
+		trtp = spd_trtp * mtb_psec;
+		tfaw = spd_tfaw * mtb_psec;
+
+		debug("Medium Timebase (MTB)                         : %6d ps\n",
+		      mtb_psec);
+		debug("Minimum Cycle Time (tckmin)                   : %6d ps (%ld MT/s)\n",
+		      tckmin, pretty_psecs_to_mts(tckmin));
+		debug("Minimum CAS Latency Time (taamin)             : %6d ps\n",
+		      taamin);
+		debug("Write Recovery Time (tWR)                     : %6d ps\n",
+		      twr);
+		debug("Minimum RAS to CAS delay (tRCD)               : %6d ps\n",
+		      trcd);
+		debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n",
+		      trrd);
+		debug("Minimum Row Precharge Delay (tRP)             : %6d ps\n",
+		      trp);
+		debug("Minimum Active to Precharge (tRAS)            : %6d ps\n",
+		      tras);
+		debug("Minimum Active to Active/Refresh Delay (tRC)  : %6d ps\n",
+		      trc);
+		debug("Minimum Refresh Recovery Delay (tRFC)         : %6d ps\n",
+		      trfc);
+		debug("Internal write to read command delay (tWTR)   : %6d ps\n",
+		      twtr);
+		debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n",
+		      trtp);
+		debug("Minimum Four Activate Window Delay (tFAW)     : %6d ps\n",
+		      tfaw);
+	}
+
+	/*
+	 * When the cycle time is within 1 psec of the minimum accept it
+	 * as a slight rounding error and adjust it to exactly the minimum
+	 * cycle time. This avoids an unnecessary warning.
+	 */
+	if (abs(tclk_psecs - tckmin) < 2)
+		tclk_psecs = tckmin;
+
+	if (tclk_psecs < (u64)tckmin) {
+		printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n",
+		       tclk_psecs, (ulong)tckmin);
+	}
+
+	debug("DDR Clock Rate (tCLK)                         : %6ld ps\n",
+	      tclk_psecs);
+	debug("Core Clock Rate (eCLK)                        : %6ld ps\n",
+	      eclk_psecs);
+
+	s = env_get("ddr_use_ecc");
+	if (s) {
+		use_ecc = !!simple_strtoul(s, NULL, 0);
+		printf("Parameter found in environment. ddr_use_ecc = %d\n",
+		       use_ecc);
+	}
+	use_ecc = use_ecc && spd_ecc;
+
+	if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff)
+	    : (use_ecc ? 0x01f : 0x0f);
+
+	debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n",
+	      if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask);
+
+	debug("\n------ Board Custom Configuration Settings ------\n");
+	debug("%-45s : %d\n", "MIN_RTT_NOM_IDX   ", c_cfg->min_rtt_nom_idx);
+	debug("%-45s : %d\n", "MAX_RTT_NOM_IDX   ", c_cfg->max_rtt_nom_idx);
+	debug("%-45s : %d\n", "MIN_RODT_CTL      ", c_cfg->min_rodt_ctl);
+	debug("%-45s : %d\n", "MAX_RODT_CTL      ", c_cfg->max_rodt_ctl);
+	debug("%-45s : %d\n", "MIN_CAS_LATENCY   ", c_cfg->min_cas_latency);
+	debug("%-45s : %d\n", "OFFSET_EN         ", c_cfg->offset_en);
+	debug("%-45s : %d\n", "OFFSET_UDIMM      ", c_cfg->offset_udimm);
+	debug("%-45s : %d\n", "OFFSET_RDIMM      ", c_cfg->offset_rdimm);
+	debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO  ", c_cfg->ddr_rtt_nom_auto);
+	debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto);
+	if (spd_rdimm)
+		debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+		      c_cfg->rlevel_comp_offset_rdimm);
+	else
+		debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+		      c_cfg->rlevel_comp_offset_udimm);
+	debug("%-45s : %d\n", "RLEVEL_COMPUTE    ", c_cfg->rlevel_compute);
+	debug("%-45s : %d\n", "DDR2T_UDIMM       ", c_cfg->ddr2t_udimm);
+	debug("%-45s : %d\n", "DDR2T_RDIMM       ", c_cfg->ddr2t_rdimm);
+	debug("%-45s : %d\n", "FPRCH2            ", c_cfg->fprch2);
+	debug("%-45s : %d\n", "PTUNE_OFFSET      ", c_cfg->ptune_offset);
+	debug("%-45s : %d\n", "NTUNE_OFFSET      ", c_cfg->ntune_offset);
+	debug("-------------------------------------------------\n");
+
+	cl = divide_roundup(taamin, tclk_psecs);
+
+	debug("Desired CAS Latency                           : %6d\n", cl);
+
+	min_cas_latency = c_cfg->min_cas_latency;
+
+	s = lookup_env(priv, "ddr_min_cas_latency");
+	if (s)
+		min_cas_latency = simple_strtoul(s, NULL, 0);
+
+	debug("CAS Latencies supported in DIMM               :");
+	base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4;
+	for (i = 0; i < 32; ++i) {
+		if ((spd_cas_latency >> i) & 1) {
+			debug(" %d", i + base_cl);
+			max_cas_latency = i + base_cl;
+			if (min_cas_latency == 0)
+				min_cas_latency = i + base_cl;
+		}
+	}
+	debug("\n");
+
+	/*
+	 * Use relaxed timing when running slower than the minimum
+	 * supported speed.  Adjust timing to match the smallest supported
+	 * CAS Latency.
+	 */
+	if (min_cas_latency > cl) {
+		ulong adjusted_tclk = taamin / min_cas_latency;
+
+		cl = min_cas_latency;
+		debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n",
+		      tclk_psecs, adjusted_tclk);
+		tclk_psecs = adjusted_tclk;
+	}
+
+	s = env_get("ddr_cas_latency");
+	if (s) {
+		override_cas_latency = simple_strtoul(s, NULL, 0);
+		printf("Parameter found in environment. ddr_cas_latency = %d\n",
+		       override_cas_latency);
+	}
+
+	/* Make sure that the selected cas latency is legal */
+	for (i = (cl - base_cl); i < 32; ++i) {
+		if ((spd_cas_latency >> i) & 1) {
+			cl = i + base_cl;
+			break;
+		}
+	}
+
+	if (max_cas_latency < cl)
+		cl = max_cas_latency;
+
+	if (override_cas_latency != 0)
+		cl = override_cas_latency;
+
+	debug("CAS Latency                                   : %6d\n", cl);
+
+	if ((cl * tckmin) > 20000) {
+		debug("(CLactual * tckmin) = %d exceeds 20 ns\n",
+		      (cl * tckmin));
+	}
+
+	if (tclk_psecs < (ulong)tckmin) {
+		printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n",
+		       tclk_psecs, (ulong)tckmin);
+	}
+
+	if (num_banks != 4 && num_banks != 8 && num_banks != 16) {
+		printf("Unsupported number of banks %d. Must be 4 or 8.\n",
+		       num_banks);
+		++fatal_error;
+	}
+
+	if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) {
+		printf("Unsupported number of ranks: %d\n", num_ranks);
+		++fatal_error;
+	}
+
+	if (octeon_is_cpuid(OCTEON_CN78XX) ||
+	    octeon_is_cpuid(OCTEON_CN73XX) ||
+	    octeon_is_cpuid(OCTEON_CNF75XX)) {
+		if (dram_width != 8 && dram_width != 16 && dram_width != 4) {
+			printf("Unsupported SDRAM Width, %d.  Must be 4, 8 or 16.\n",
+			       dram_width);
+			++fatal_error;
+		}
+	} else if (dram_width != 8 && dram_width != 16) {
+		printf("Unsupported SDRAM Width, %d.  Must be 8 or 16.\n",
+		       dram_width);
+		++fatal_error;
+	}
+
+	/*
+	 ** Bail out here if things are not copasetic.
+	 */
+	if (fatal_error)
+		return (-1);
+
+	/*
+	 * 4.8.4 LMC RESET Initialization
+	 *
+	 * The purpose of this step is to assert/deassert the RESET# pin at the
+	 * DDR3/DDR4 parts.
+	 *
+	 * This LMC RESET step is done for all enabled LMCs.
+	 */
+	perform_lmc_reset(priv, node, if_num);
+
+	// Make sure scrambling is disabled during init...
+	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+	ctrl.s.scramble_ena = 0;
+	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0);
+	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0);
+	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+		lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0);
+
+	odt_idx = min(dimm_count - 1, 3);
+
+	switch (num_ranks) {
+	case 1:
+		odt_config = odt_1rank_config;
+		break;
+	case 2:
+		odt_config = odt_2rank_config;
+		break;
+	case 4:
+		odt_config = odt_4rank_config;
+		break;
+	default:
+		odt_config = disable_odt_config;
+		printf("Unsupported number of ranks: %d\n", num_ranks);
+		++fatal_error;
+	}
+
+	/*
+	 * 4.8.5 Early LMC Initialization
+	 *
+	 * All of DDR PLL, LMC CK, and LMC DRESET initializations must be
+	 * completed prior to starting this LMC initialization sequence.
+	 *
+	 * Perform the following five substeps for early LMC initialization:
+	 *
+	 * 1. Software must ensure there are no pending DRAM transactions.
+	 *
+	 * 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
+	 *    LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
+	 *    LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
+	 *    LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
+	 *    LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
+	 *    appropriate values. All sections in this chapter can be used to
+	 *    derive proper register settings.
+	 */
+
+	/* LMC(0)_CONFIG */
+	lmc_config(priv);
+
+	/* LMC(0)_CONTROL */
+	lmc_control(priv);
+
+	/* LMC(0)_TIMING_PARAMS0 */
+	lmc_timing_params0(priv);
+
+	/* LMC(0)_TIMING_PARAMS1 */
+	lmc_timing_params1(priv);
+
+	/* LMC(0)_TIMING_PARAMS2 */
+	lmc_timing_params2(priv);
+
+	/* LMC(0)_MODEREG_PARAMS0 */
+	lmc_modereg_params0(priv);
+
+	/* LMC(0)_MODEREG_PARAMS1 */
+	lmc_modereg_params1(priv);
+
+	/* LMC(0)_MODEREG_PARAMS2 */
+	lmc_modereg_params2(priv);
+
+	/* LMC(0)_MODEREG_PARAMS3 */
+	lmc_modereg_params3(priv);
+
+	/* LMC(0)_NXM */
+	lmc_nxm(priv);
+
+	/* LMC(0)_WODT_MASK */
+	lmc_wodt_mask(priv);
+
+	/* LMC(0)_RODT_MASK */
+	lmc_rodt_mask(priv);
+
+	/* LMC(0)_COMP_CTL2 */
+	lmc_comp_ctl2(priv);
+
+	/* LMC(0)_PHY_CTL */
+	lmc_phy_ctl(priv);
+
+	/* LMC(0)_EXT_CONFIG */
+	lmc_ext_config(priv);
+
+	/* LMC(0)_EXT_CONFIG2 */
+	lmc_ext_config2(priv);
+
+	/* LMC(0)_DIMM0/1_PARAMS */
+	lmc_dimm01_params(priv);
+
+	ret = lmc_rank_init(priv);
+	if (ret < 0)
+		return 0;	/* 0 indicates problem */
+
+	lmc_config_2(priv);
+
+	lmc_write_leveling(priv);
+
+	lmc_read_leveling(priv);
+
+	lmc_workaround(priv);
+
+	ret = lmc_sw_write_leveling(priv);
+	if (ret < 0)
+		return 0;	/* 0 indicates problem */
+
+	// this sometimes causes stack overflow crashes..
+	// display only for DDR4 RDIMMs.
+	if (ddr_type == DDR4_DRAM && spd_rdimm) {
+		int i;
+
+		for (i = 0; i < 3; i += 2)	// just pages 0 and 2 for now..
+			display_mpr_page(priv, rank_mask, if_num, i);
+	}
+
+	lmc_dll(priv);
+
+	lmc_workaround_2(priv);
+
+	lmc_final(priv);
+
+	lmc_scrambling(priv);
+
+	return mem_size_mbytes;
+}
+
+/////    HW-assist byte DLL offset tuning   //////
+
+static int cvmx_dram_get_num_lmc(struct ddr_priv *priv)
+{
+	union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+
+	if (octeon_is_cpuid(OCTEON_CN70XX))
+		return 1;
+
+	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) {
+		// sample LMC1
+		lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1));
+		if (lmcx_dll_ctl2.cn78xx.intf_en)
+			return 2;
+		else
+			return 1;
+	}
+
+	// for CN78XX, LMCs are always active in pairs, and always LMC0/1
+	// so, we sample LMC2 to see if 2 and 3 are active
+	lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2));
+	if (lmcx_dll_ctl2.cn78xx.intf_en)
+		return 4;
+	else
+		return 2;
+}
+
+// got to do these here, even though already defined in BDK
+
+// all DDR3, and DDR4 x16 today, use only 3 bank bits;
+// DDR4 x4 and x8 always have 4 bank bits
+// NOTE: this will change in the future, when DDR4 x16 devices can
+// come with 16 banks!! FIXME!!
+static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc)
+{
+	union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+	union cvmx_lmcx_config lmcx_config;
+	union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl;
+	int bank_width;
+
+	// can always read this
+	lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+
+	if (lmcx_dll_ctl2.cn78xx.dreset)	// check LMCn
+		return 0;
+
+	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+	lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc));
+
+	bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) &&
+		      (lmcx_config.s.bg2_enable)) ? 4 : 3;
+
+	return bank_width;
+}
+
+#define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
+#define ADDRESS_HOLE 0x10000000ULL
+
+static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address,
+					   int *node, int *lmc, int *dimm,
+					   int *prank, int *lrank, int *bank,
+					   int *row, int *col)
+{
+	int bank_lsb, xbits;
+	union cvmx_l2c_ctl l2c_ctl;
+	union cvmx_lmcx_config lmcx_config;
+	union cvmx_lmcx_control lmcx_control;
+	union cvmx_lmcx_ext_config ext_config;
+	int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+	int bank_width;
+	int dimm_lsb;
+	int dimm_width;
+	int prank_lsb, lrank_lsb;
+	int prank_width, lrank_width;
+	int row_lsb;
+	int row_width;
+	int col_hi_lsb;
+	int col_hi_width;
+	int col_hi;
+
+	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+		bitno = 18;
+
+	*node = EXTRACT(address, 40, 2);	/* Address bits [41:40] */
+
+	address &= (1ULL << 40) - 1;	// lop off any node bits or above
+	if (address >= ADDRESS_HOLE)	// adjust down if at HOLE or above
+		address -= ADDRESS_HOLE;
+
+	/* Determine the LMC controllers */
+	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+
+	/* xbits depends on number of LMCs */
+	xbits = cvmx_dram_get_num_lmc(priv) >> 1;	// 4->2, 2->1, 1->0
+	bank_lsb = 7 + xbits;
+
+	/* LMC number is probably aliased */
+	if (l2c_ctl.s.disidxalias) {
+		*lmc = EXTRACT(address, 7, xbits);
+	}  else {
+		*lmc = EXTRACT(address, 7, xbits) ^
+			EXTRACT(address, bitno, xbits) ^
+			EXTRACT(address, 12, xbits);
+	}
+
+	/* Figure out the bank field width */
+	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc));
+	ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc));
+	bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc);
+
+	/* Extract additional info from the LMC_CONFIG CSR */
+	dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits;
+	dimm_width = 40 - dimm_lsb;
+	prank_lsb = dimm_lsb - lmcx_config.s.rank_ena;
+	prank_width = dimm_lsb - prank_lsb;
+	lrank_lsb = prank_lsb - ext_config.s.dimm0_cid;
+	lrank_width = prank_lsb - lrank_lsb;
+	row_lsb = 14 + lmcx_config.s.row_lsb + xbits;
+	row_width = lrank_lsb - row_lsb;
+	col_hi_lsb = bank_lsb + bank_width;
+	col_hi_width = row_lsb - col_hi_lsb;
+
+	/* Extract the parts of the address */
+	*dimm = EXTRACT(address, dimm_lsb, dimm_width);
+	*prank = EXTRACT(address, prank_lsb, prank_width);
+	*lrank = EXTRACT(address, lrank_lsb, lrank_width);
+	*row = EXTRACT(address, row_lsb, row_width);
+
+	/* bank calculation may be aliased... */
+	lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc));
+	if (lmcx_control.s.xor_bank) {
+		*bank = EXTRACT(address, bank_lsb, bank_width) ^
+			EXTRACT(address, 12 + xbits, bank_width);
+	} else {
+		*bank = EXTRACT(address, bank_lsb, bank_width);
+	}
+
+	/* LMC number already extracted */
+	col_hi = EXTRACT(address, col_hi_lsb, col_hi_width);
+	*col = EXTRACT(address, 3, 4) | (col_hi << 4);
+	/* Bus byte is address bits [2:0]. Unused here */
+}
+
+// end of added workarounds
+
+// NOTE: "mode" argument:
+//         DBTRAIN_TEST: for testing using GP patterns, includes ECC
+//         DBTRAIN_DBI:  for DBI deskew training behavior (uses GP patterns)
+//         DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC
+// NOTE: trust the caller to specify the correct/supported mode
+//
+static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p,
+			     int mode, u64 *xor_data)
+{
+	u64 p1;
+	u64 k;
+	int errors = 0;
+
+	u64 mpr_data0, mpr_data1;
+	u64 bad_bits[2] = { 0, 0 };
+
+	int node_address, lmc, dimm;
+	int prank, lrank;
+	int bank, row, col;
+	int save_or_dis;
+	int byte;
+	int ba_loop, ba_bits;
+
+	union cvmx_lmcx_rlevel_ctl rlevel_ctl;
+	union cvmx_lmcx_dbtrain_ctl dbtrain_ctl;
+	union cvmx_lmcx_phy_ctl phy_ctl;
+
+	int biter_errs;
+
+	// FIXME: K iterations set to 4 for now.
+	// FIXME: decrement to increase interations.
+	// FIXME: must be no less than 22 to stay above an LMC hash field.
+	int kshift = 27;
+
+	const char *s;
+	int node = 0;
+
+	// allow override default setting for kshift
+	s = env_get("ddr_tune_set_kshift");
+	if (s) {
+		int temp = simple_strtoul(s, NULL, 0);
+
+		if (temp < 22 || temp > 28) {
+			debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n",
+			      node, if_num, temp, kshift);
+		} else {
+			debug("N%d.LMC%d: overriding kshift (%d) to %d\n",
+			      node, if_num, kshift, temp);
+			kshift = temp;
+		}
+	}
+
+	/*
+	 * 1) Make sure that RLEVEL_CTL[OR_DIS] = 0.
+	 */
+	rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+	save_or_dis = rlevel_ctl.s.or_dis;
+	/* or_dis must be disabled for this sequence */
+	rlevel_ctl.s.or_dis = 0;
+	lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+	/*
+	 * NOTE: this step done in the calling routine(s)...
+	 * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+	 * of choice.
+	 * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower
+	 * (rising edge) 64 bits of data.
+	 * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper
+	 * (falling edge) 64 bits of data.
+	 * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower
+	 * (rising edge <7:0>) and upper (falling edge <15:8>) ECC data.
+	 */
+
+	// final address must include LMC and node
+	p |= (if_num << 7);	/* Map address into proper interface */
+	p |= (u64)node << CVMX_NODE_MEM_SHIFT;	// map to node
+
+	/*
+	 * Add base offset to both test regions to not clobber u-boot stuff
+	 * when running from L2 for NAND boot.
+	 */
+	p += 0x20000000;	// offset to 512MB, ie above THE HOLE!!!
+	p |= 1ull << 63;	// needed for OCTEON
+
+	errors = 0;
+
+	cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm,
+				       &prank, &lrank, &bank, &row, &col);
+	debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n",
+	      __func__, p, node_address, lmc, dimm, prank, lrank, bank,
+	      row, col);
+
+	// only check once per call, and ignore if no match...
+	if ((int)node != node_address) {
+		printf("ERROR: Node address mismatch\n");
+		return 0;
+	}
+	if (lmc != if_num) {
+		printf("ERROR: LMC address mismatch\n");
+		return 0;
+	}
+
+	/*
+	 * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as
+	 * it’s a one-shot operation). This is to get into the habit of
+	 * resetting PHY’s SILO to the original 0 location.
+	 */
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+	phy_ctl.s.phy_reset = 1;
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+	/*
+	 * Walk through a range of addresses avoiding bits that alias
+	 * interfaces on the CN88XX.
+	 */
+
+	// FIXME: want to try to keep the K increment from affecting the
+	// LMC via hash, so keep it above bit 21 we also want to keep k
+	// less than the base offset of bit 29 (512MB)
+
+	for (k = 0; k < (1UL << 29); k += (1UL << kshift)) {
+		// FIXME: the sequence will interate over 1/2 cacheline
+		// FIXME: for each unit specified in "read_cmd_count",
+		// FIXME: so, we setup each sequence to do the max cachelines
+		// it can
+
+		p1 = p + k;
+
+		cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc,
+					       &dimm, &prank, &lrank, &bank,
+					       &row, &col);
+
+		/*
+		 * 2) Setup the fields of the CSR DBTRAIN_CTL as follows:
+		 * a. COL, ROW, BA, BG, PRANK points to the starting point
+		 * of the address.
+		 * You can just set them to all 0.
+		 * b. RW_TRAIN – set this to 1.
+		 * c. TCCD_L – set this to 0.
+		 * d. READ_CMD_COUNT – instruct the sequence to the how many
+		 * writes/reads.
+		 * It is 5 bits field, so set to 31 of maximum # of r/w.
+		 */
+		dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num));
+		dbtrain_ctl.s.column_a = col;
+		dbtrain_ctl.s.row_a = row;
+		dbtrain_ctl.s.bg = (bank >> 2) & 3;
+		dbtrain_ctl.s.prank = (dimm * 2) + prank;	// FIXME?
+		dbtrain_ctl.s.lrank = lrank;	// FIXME?
+		dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI);
+		dbtrain_ctl.s.write_ena = 1;
+		dbtrain_ctl.s.read_cmd_count = 31;	// max count pass 1.x
+		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+		    octeon_is_cpuid(OCTEON_CNF75XX)) {
+			// max count on chips that support it
+			dbtrain_ctl.s.cmd_count_ext = 3;
+		} else {
+			// max count pass 1.x
+			dbtrain_ctl.s.cmd_count_ext = 0;
+		}
+
+		dbtrain_ctl.s.rw_train = 1;
+		dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI);
+		// LFSR should only be on when chip supports it...
+		dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0;
+
+		biter_errs = 0;
+
+		// for each address, iterate over the 4 "banks" in the BA
+		for (ba_loop = 0, ba_bits = bank & 3;
+		     ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) {
+			dbtrain_ctl.s.ba = ba_bits;
+			lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num),
+			       dbtrain_ctl.u64);
+
+			/*
+			 * We will use the RW_TRAINING sequence (14) for
+			 * this task.
+			 *
+			 * 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14,
+			 *    SEQ_CTL[INIT_START] = 1).
+			 * 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion.
+			 */
+			oct3_ddr3_seq(priv, prank, if_num, 14);
+
+			/*
+			 * 6) Read MPR_DATA0 and MPR_DATA1 for results.
+			 * a. MPR_DATA0[MPR_DATA<63:0>] – comparison results
+			 *    for DQ63:DQ0. (1 means MATCH, 0 means FAIL).
+			 * b. MPR_DATA1[MPR_DATA<7:0>] – comparison results
+			 *    for ECC bit7:0.
+			 */
+			mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+			mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num));
+
+			/*
+			 * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically
+			 * clears this as it’s a one-shot operation).
+			 * This is to get into the habit of resetting PHY’s
+			 * SILO to the original 0 location.
+			 */
+			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+			phy_ctl.s.phy_reset = 1;
+			lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+			// bypass any error checking or updating when DBI mode
+			if (mode == DBTRAIN_DBI)
+				continue;
+
+			// data bytes
+			if (~mpr_data0) {
+				for (byte = 0; byte < 8; byte++) {
+					if ((~mpr_data0 >> (8 * byte)) & 0xffUL)
+						biter_errs |= (1 << byte);
+				}
+				// accumulate bad bits
+				bad_bits[0] |= ~mpr_data0;
+			}
+
+			// include ECC byte errors
+			if (~mpr_data1 & 0xffUL) {
+				biter_errs |= (1 << 8);
+				bad_bits[1] |= ~mpr_data1 & 0xffUL;
+			}
+		}
+
+		errors |= biter_errs;
+	}			/* end for (k=...) */
+
+	rlevel_ctl.s.or_dis = save_or_dis;
+	lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+	// send the bad bits back...
+	if (mode != DBTRAIN_DBI && xor_data) {
+		xor_data[0] = bad_bits[0];
+		xor_data[1] = bad_bits[1];
+	}
+
+	return errors;
+}
+
+// setup default for byte test pattern array
+// take these from the HRM section 6.9.13
+static const u64 byte_pattern_0[] = {
+	0xFFAAFFFFFF55FFFFULL,	// GP0
+	0x55555555AAAAAAAAULL,	// GP1
+	0xAA55AAAAULL,		// GP2
+};
+
+static const u64 byte_pattern_1[] = {
+	0xFBF7EFDFBF7FFEFDULL,	// GP0
+	0x0F1E3C78F0E1C387ULL,	// GP1
+	0xF0E1BF7FULL,		// GP2
+};
+
+// this is from Andrew via LFSR with PRBS=0xFFFFAAAA
+static const u64 byte_pattern_2[] = {
+	0xEE55AADDEE55AADDULL,	// GP0
+	0x55AADDEE55AADDEEULL,	// GP1
+	0x55EEULL,		// GP2
+};
+
+// this is from Mike via LFSR with PRBS=0x4A519909
+static const u64 byte_pattern_3[] = {
+	0x0088CCEE0088CCEEULL,	// GP0
+	0xBB552211BB552211ULL,	// GP1
+	0xBB00ULL,		// GP2
+};
+
+static const u64 *byte_patterns[4] = {
+	byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3
+};
+
+static const u32 lfsr_patterns[4] = {
+	0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL
+};
+
+#define NUM_BYTE_PATTERNS 4
+
+#define DEFAULT_BYTE_BURSTS 32	// compromise between time and rigor
+
+static void setup_hw_pattern(struct ddr_priv *priv, int lmc,
+			     const u64 *pattern_p)
+{
+	/*
+	 * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+	 * of choice.
+	 * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower
+	 *    (rising edge) 64 bits of data.
+	 * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper
+	 *    (falling edge) 64 bits of data.
+	 * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower
+	 *    (rising edge <7:0>) and upper
+	 * (falling edge <15:8>) ECC data.
+	 */
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
+}
+
+static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data)
+{
+	union cvmx_lmcx_char_ctl char_ctl;
+	u32 prbs;
+	const char *s;
+
+	s = env_get("ddr_lfsr_prbs");
+	if (s)
+		prbs = simple_strtoul(s, NULL, 0);
+	else
+		prbs = data;
+
+	/*
+	 * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+	 * here data comes from the LFSR generating a PRBS pattern
+	 * CHAR_CTL.EN = 0
+	 * CHAR_CTL.SEL = 0; // for PRBS
+	 * CHAR_CTL.DR = 1;
+	 * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+	 * CHAR_CTL.SKEW_ON = 1;
+	 */
+	char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc));
+	char_ctl.s.en = 0;
+	char_ctl.s.sel = 0;
+	char_ctl.s.dr = 1;
+	char_ctl.s.prbs = prbs;
+	char_ctl.s.skew_on = 1;
+	lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64);
+}
+
+static int choose_best_hw_patterns(int lmc, int mode)
+{
+	int new_mode = mode;
+	const char *s;
+
+	switch (mode) {
+	case DBTRAIN_TEST:	// always choose LFSR if chip supports it
+		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+			int lfsr_enable = 1;
+
+			s = env_get("ddr_allow_lfsr");
+			if (s) {
+				// override?
+				lfsr_enable = !!strtoul(s, NULL, 0);
+			}
+
+			if (lfsr_enable)
+				new_mode = DBTRAIN_LFSR;
+		}
+		break;
+
+	case DBTRAIN_DBI:	// possibly can allow LFSR use?
+		break;
+
+	case DBTRAIN_LFSR:	// forced already
+		if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+			debug("ERROR: illegal HW assist mode %d\n", mode);
+			new_mode = DBTRAIN_TEST;
+		}
+		break;
+
+	default:
+		debug("ERROR: unknown HW assist mode %d\n", mode);
+	}
+
+	if (new_mode != mode)
+		debug("%s: changing mode %d to %d\n", __func__, mode, new_mode);
+
+	return new_mode;
+}
+
+int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+			 int mode, u64 *xor_data)
+{
+	int pattern;
+	const u64 *pattern_p;
+	int errs, errors = 0;
+
+	// FIXME? always choose LFSR if chip supports it???
+	mode = choose_best_hw_patterns(lmc, mode);
+
+	for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+		if (mode == DBTRAIN_LFSR) {
+			setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+		} else {
+			pattern_p = byte_patterns[pattern];
+			setup_hw_pattern(priv, lmc, pattern_p);
+		}
+		errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data);
+
+		debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n",
+		      __func__, pattern, phys_addr, errs);
+
+		errors |= errs;
+	}
+
+	return errors;
+}
+
+static void hw_assist_test_dll_offset(struct ddr_priv *priv,
+				      int dll_offset_mode, int lmc,
+				      int bytelane,
+				      int if_64b,
+				      u64 dram_tune_rank_offset,
+				      int dram_tune_byte_bursts)
+{
+	int byte_offset, new_best_offset[9];
+	int rank_delay_start[4][9];
+	int rank_delay_count[4][9];
+	int rank_delay_best_start[4][9];
+	int rank_delay_best_count[4][9];
+	int errors[4], off_errors, tot_errors;
+	int rank_mask, rankx, active_ranks;
+	int pattern;
+	const u64 *pattern_p;
+	int byte;
+	char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
+	int pat_best_offset[9];
+	u64 phys_addr;
+	int pat_beg, pat_end;
+	int rank_beg, rank_end;
+	int byte_lo, byte_hi;
+	union cvmx_lmcx_config lmcx_config;
+	u64 hw_rank_offset;
+	int num_lmcs = cvmx_dram_get_num_lmc(priv);
+	// FIXME? always choose LFSR if chip supports it???
+	int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST);
+	int node = 0;
+
+	if (bytelane == 0x0A) {	// all bytelanes
+		byte_lo = 0;
+		byte_hi = 8;
+	} else {		// just 1
+		byte_lo = bytelane;
+		byte_hi = bytelane;
+	}
+
+	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+	rank_mask = lmcx_config.s.init_status;
+
+	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+	hw_rank_offset =
+	    1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena +
+		     (num_lmcs / 2));
+
+	debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n",
+	      node, __func__, lmc, (unsigned long long)hw_rank_offset);
+
+	// start of pattern loop
+	// we do the set of tests for each pattern supplied...
+
+	memset(new_best_offset, 0, sizeof(new_best_offset));
+	for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+		memset(pat_best_offset, 0, sizeof(pat_best_offset));
+
+		if (mode == DBTRAIN_TEST) {
+			pattern_p = byte_patterns[pattern];
+			setup_hw_pattern(priv, lmc, pattern_p);
+		} else {
+			setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+		}
+
+		// now loop through all legal values for the DLL byte offset...
+
+#define BYTE_OFFSET_INCR 3	// FIXME: make this tunable?
+
+		tot_errors = 0;
+
+		memset(rank_delay_count, 0, sizeof(rank_delay_count));
+		memset(rank_delay_start, 0, sizeof(rank_delay_start));
+		memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
+		memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));
+
+		for (byte_offset = -63; byte_offset < 64;
+		     byte_offset += BYTE_OFFSET_INCR) {
+			// do the setup on the active LMC
+			// set the bytelanes DLL offsets
+			change_dll_offset_enable(priv, lmc, 0);
+			// FIXME? bytelane?
+			load_dll_offset(priv, lmc, dll_offset_mode,
+					byte_offset, bytelane);
+			change_dll_offset_enable(priv, lmc, 1);
+
+			//bdk_watchdog_poke();
+
+			// run the test on each rank
+			// only 1 call per rank should be enough, let the
+			// bursts, loops, etc, control the load...
+
+			// errors for this byte_offset, all ranks
+			off_errors = 0;
+
+			active_ranks = 0;
+
+			for (rankx = 0; rankx < 4; rankx++) {
+				if (!(rank_mask & (1 << rankx)))
+					continue;
+
+				phys_addr = hw_rank_offset * active_ranks;
+				// FIXME: now done by test_dram_byte_hw()
+				//phys_addr |= (lmc << 7);
+				//phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT;
+
+				active_ranks++;
+
+				// NOTE: return is a now a bitmask of the
+				// erroring bytelanes.
+				errors[rankx] =
+				    test_dram_byte_hw(priv, lmc, phys_addr,
+						      mode, NULL);
+
+				// process any errors in the bytelane(s) that
+				// are being tested
+				for (byte = byte_lo; byte <= byte_hi; byte++) {
+					// check errors
+					// yes, an error in the byte lane in
+					// this rank
+					if (errors[rankx] & (1 << byte)) {
+						off_errors |= (1 << byte);
+
+						debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n",
+						      node, lmc, rankx, byte,
+						      mode_str, byte_offset,
+						      phys_addr);
+
+						// had started run
+						if (rank_delay_count
+						    [rankx][byte] > 0) {
+							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
+							      node, lmc, rankx,
+							      byte, mode_str,
+							      byte_offset);
+							// stop now
+							rank_delay_count
+								[rankx][byte] =
+								0;
+						}
+						// FIXME: else had not started
+						// run - nothing else to do?
+					} else {
+						// no error in the byte lane
+						// first success, set run start
+						if (rank_delay_count[rankx]
+						    [byte] == 0) {
+							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
+							      node, lmc, rankx,
+							      byte, mode_str,
+							      byte_offset);
+							rank_delay_start[rankx]
+								[byte] =
+								byte_offset;
+						}
+						// bump run length
+						rank_delay_count[rankx][byte]
+							+= BYTE_OFFSET_INCR;
+
+						// is this now the biggest
+						// window?
+						if (rank_delay_count[rankx]
+						    [byte] >
+						    rank_delay_best_count[rankx]
+						    [byte]) {
+							rank_delay_best_count
+							    [rankx][byte] =
+							    rank_delay_count
+							    [rankx][byte];
+							rank_delay_best_start
+							    [rankx][byte] =
+							    rank_delay_start
+							    [rankx][byte];
+							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
+							      node, lmc, rankx,
+							      byte, mode_str,
+							      byte_offset,
+							      rank_delay_best_start
+							      [rankx][byte],
+							      rank_delay_best_count
+							      [rankx][byte]);
+						}
+					}
+				}
+			} /* for (rankx = 0; rankx < 4; rankx++) */
+
+			tot_errors |= off_errors;
+		}
+
+		// set the bytelanes DLL offsets all back to 0
+		change_dll_offset_enable(priv, lmc, 0);
+		load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane);
+		change_dll_offset_enable(priv, lmc, 1);
+
+		// now choose the best byte_offsets for this pattern
+		// according to the best windows of the tested ranks
+		// calculate offset by constructing an average window
+		// from the rank windows
+		for (byte = byte_lo; byte <= byte_hi; byte++) {
+			pat_beg = -999;
+			pat_end = 999;
+
+			for (rankx = 0; rankx < 4; rankx++) {
+				if (!(rank_mask & (1 << rankx)))
+					continue;
+
+				rank_beg = rank_delay_best_start[rankx][byte];
+				pat_beg = max(pat_beg, rank_beg);
+				rank_end = rank_beg +
+					rank_delay_best_count[rankx][byte] -
+					BYTE_OFFSET_INCR;
+				pat_end = min(pat_end, rank_end);
+
+				debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test:  Rank Window %3d:%3d\n",
+				      node, lmc, rankx, byte, mode_str,
+				      rank_beg, rank_end);
+
+			}	/* for (rankx = 0; rankx < 4; rankx++) */
+
+			pat_best_offset[byte] = (pat_end + pat_beg) / 2;
+
+			// sum the pattern averages
+			new_best_offset[byte] += pat_best_offset[byte];
+		}
+
+		// now print them on 1 line, descending order...
+		debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :",
+		      node, lmc, mode_str, pattern);
+		for (byte = byte_hi; byte >= byte_lo; --byte)
+			debug(" %4d", pat_best_offset[byte]);
+		debug("\n");
+	}
+	// end of pattern loop
+
+	debug("N%d.LMC%d: HW DLL %s Offset Average  : ", node, lmc, mode_str);
+
+	// print in decending byte index order
+	for (byte = byte_hi; byte >= byte_lo; --byte) {
+		// create the new average NINT
+		new_best_offset[byte] = divide_nint(new_best_offset[byte],
+						    NUM_BYTE_PATTERNS);
+
+		// print the best offsets from all patterns
+
+		// print just the offset of all the bytes
+		if (bytelane == 0x0A)
+			debug("%4d ", new_best_offset[byte]);
+		else		// print the bytelanes also
+			debug("(byte %d) %4d ", byte, new_best_offset[byte]);
+
+		// done with testing, load up the best offsets we found...
+		// disable offsets while we load...
+		change_dll_offset_enable(priv, lmc, 0);
+		load_dll_offset(priv, lmc, dll_offset_mode,
+				new_best_offset[byte], byte);
+		// re-enable the offsets now that we are done loading
+		change_dll_offset_enable(priv, lmc, 1);
+	}
+
+	debug("\n");
+}
+
+/*
+ * Automatically adjust the DLL offset for the selected bytelane using
+ * hardware-assist
+ */
+static int perform_HW_dll_offset_tuning(struct ddr_priv *priv,
+					int dll_offset_mode, int bytelane)
+{
+	int if_64b;
+	int save_ecc_ena[4];
+	union cvmx_lmcx_config lmc_config;
+	int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv);
+	const char *s;
+	int loops = 1, loop;
+	int by;
+	u64 dram_tune_rank_offset;
+	int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
+	int node = 0;
+
+	// see if we want to do the tuning more than once per LMC...
+	s = env_get("ddr_tune_ecc_loops");
+	if (s)
+		loops = strtoul(s, NULL, 0);
+
+	// allow override of the test repeats (bursts)
+	s = env_get("ddr_tune_byte_bursts");
+	if (s)
+		dram_tune_byte_bursts = strtoul(s, NULL, 10);
+
+	// print current working values
+	debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
+	      node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS);
+
+	// FIXME? get flag from LMC0 only
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));
+	if_64b = !lmc_config.s.mode32b;
+
+	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+	dram_tune_rank_offset =
+	    1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena +
+		     (num_lmcs / 2));
+
+	// do once for each active LMC
+
+	for (lmc = 0; lmc < num_lmcs; lmc++) {
+		debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n",
+		      node, lmc, bytelane);
+
+		/* Enable ECC for the HW tests */
+		// NOTE: we do enable ECC, but the HW tests used will not
+		// generate "visible" errors
+		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+		save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
+		lmc_config.s.ecc_ena = 1;
+		lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+		// testing is done on a single LMC at a time
+		// FIXME: for now, loop here to show what happens multiple times
+		for (loop = 0; loop < loops; loop++) {
+			/* Perform DLL offset tuning */
+			hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc,
+						  bytelane,
+						  if_64b, dram_tune_rank_offset,
+						  dram_tune_byte_bursts);
+		}
+
+		// perform cleanup on active LMC
+		debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n",
+		      node, lmc, bytelane);
+
+		/* Restore ECC for DRAM tests */
+		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+		lmc_config.s.ecc_ena = save_ecc_ena[lmc];
+		lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+		// finally, see if there are any read offset overrides
+		// after tuning
+		for (by = 0; by < 9; by++) {
+			s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by);
+			if (s) {
+				int dllro = strtoul(s, NULL, 10);
+
+				change_dll_offset_enable(priv, lmc, 0);
+				load_dll_offset(priv, lmc, 2, dllro, by);
+				change_dll_offset_enable(priv, lmc, 1);
+			}
+		}
+
+	}			/* for (lmc = 0; lmc < num_lmcs; lmc++) */
+
+	// finish up...
+
+	return 0;
+
+}				/* perform_HW_dll_offset_tuning */
+
+// this routine simply makes the calls to the tuning routine and returns
+// any errors
+static int cvmx_tune_node(struct ddr_priv *priv)
+{
+	int errs, tot_errs;
+	int do_dllwo = 0;	// default to NO
+	const char *str;
+	int node = 0;
+
+	// Automatically tune the data and ECC byte DLL read offsets
+	debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node);
+	errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */);
+	debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n",
+	      node, errs);
+	tot_errs = errs;
+
+	// disabled by default for now, does not seem to be needed?
+	// Automatically tune the data and ECC byte DLL write offsets
+	// allow override of default setting
+	str = env_get("ddr_tune_write_offsets");
+	if (str)
+		do_dllwo = !!strtoul(str, NULL, 0);
+	if (do_dllwo) {
+		debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node);
+		errs =
+		    perform_HW_dll_offset_tuning(priv, 1,
+						 0x0A /* all bytelanes */);
+		debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n",
+		      node, errs);
+		tot_errs += errs;
+	}
+
+	return tot_errs;
+}
+
+// this routine makes the calls to the tuning routines when criteria are met
+// intended to be called for automated tuning, to apply filtering...
+
+#define IS_DDR4  1
+#define IS_DDR3  0
+#define IS_RDIMM 1
+#define IS_UDIMM 0
+#define IS_1SLOT 1
+#define IS_2SLOT 0
+
+// FIXME: DDR3 is not tuned
+static const u32 ddr_speed_filter[2][2][2] = {
+	[IS_DDR4] = {
+		     [IS_RDIMM] = {
+				   [IS_1SLOT] = 940,
+				   [IS_2SLOT] = 800},
+		     [IS_UDIMM] = {
+				   [IS_1SLOT] = 1050,
+				   [IS_2SLOT] = 940},
+		      },
+	[IS_DDR3] = {
+		     [IS_RDIMM] = {
+				   [IS_1SLOT] = 0,	// disabled
+				   [IS_2SLOT] = 0	// disabled
+				   },
+		     [IS_UDIMM] = {
+				   [IS_1SLOT] = 0,	// disabled
+				   [IS_2SLOT] = 0	// disabled
+				}
+		}
+};
+
+void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed)
+{
+	const char *s;
+	union cvmx_lmcx_config lmc_config;
+	union cvmx_lmcx_control lmc_control;
+	union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl;
+	int is_ddr4;
+	int is_rdimm;
+	int is_1slot;
+	int do_tune = 0;
+	u32 ddr_min_speed;
+	int node = 0;
+
+	// scale it down from Hz to MHz
+	ddr_speed = divide_nint(ddr_speed, 1000000);
+
+	// FIXME: allow an override here so that all configs can be tuned
+	// or none
+	// If the envvar is defined, always either force it or avoid it
+	// accordingly
+	s = env_get("ddr_tune_all_configs");
+	if (s) {
+		do_tune = !!strtoul(s, NULL, 0);
+		printf("N%d: DRAM auto-tuning %s.\n", node,
+		       (do_tune) ? "forced" : "disabled");
+		if (do_tune)
+			cvmx_tune_node(priv);
+
+		return;
+	}
+
+	// filter the tuning calls here...
+	// determine if we should/can run automatically for this configuration
+	//
+	// FIXME: tune only when the configuration indicates it will help:
+	//    DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed
+	//
+	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));	// sample LMC0
+	lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0));	// sample LMC0
+	// sample LMC0
+	lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+	is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0);
+	is_rdimm = (lmc_control.s.rdimm_ena != 0);
+	// HACK, should do better
+	is_1slot = (lmc_config.s.init_status < 4);
+
+	ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot];
+	do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed));
+
+	debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n",
+	      node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U',
+	      (is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not");
+
+	// call the tuning routine, filtering is done...
+	if (do_tune)
+		cvmx_tune_node(priv);
+}
+
+/*
+ * first pattern example:
+ * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE0.DATA == 16'h0000;
+ */
+
+static const u64 dbi_pattern[3] = {
+	0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL };
+
+// Perform switchover to DBI
+static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc)
+{
+	union cvmx_lmcx_modereg_params0 modereg_params0;
+	union cvmx_lmcx_modereg_params3 modereg_params3;
+	union cvmx_lmcx_phy_ctl phy_ctl;
+	union cvmx_lmcx_config lmcx_config;
+	union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
+	int rank_mask, rankx, active_ranks;
+	u64 phys_addr, rank_offset;
+	int num_lmcs, errors;
+	int dbi_settings[9], byte, unlocked, retries;
+	int ecc_ena;
+	int rank_max = 1;	// FIXME: make this 4 to try all the ranks
+	int node = 0;
+
+	ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+	rank_mask = lmcx_config.s.init_status;
+	ecc_ena = lmcx_config.s.ecc_ena;
+
+	// FIXME: must filter out any non-supported configs
+	//        ie, no DDR3, no x4 devices
+	if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) {
+		debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n",
+		      node, lmc);
+		return;
+	}
+
+	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+	num_lmcs = cvmx_dram_get_num_lmc(priv);
+	rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb -
+			       lmcx_config.s.rank_ena + (num_lmcs / 2));
+
+	debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n",
+	      node, lmc, rank_mask, (unsigned long long)rank_offset);
+
+	/*
+	 * 1. conduct the current init sequence as usual all the way
+	 * after software write leveling.
+	 */
+
+	read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+	display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+				 " INIT");
+
+	/*
+	 * 2. set DBI related CSRs as below and issue MR write.
+	 * MODEREG_PARAMS3.WR_DBI=1
+	 * MODEREG_PARAMS3.RD_DBI=1
+	 * PHY_CTL.DBI_MODE_ENA=1
+	 */
+	modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc));
+
+	modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc));
+	modereg_params3.s.wr_dbi = 1;
+	modereg_params3.s.rd_dbi = 1;
+	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64);
+
+	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc));
+	phy_ctl.s.dbi_mode_ena = 1;
+	lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64);
+
+	/*
+	 * there are two options for data to send.  Lets start with (1)
+	 * and could move to (2) in the future:
+	 *
+	 * 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where
+	 * this does not exist) set data directly in these reigsters.
+	 * this will yield a clk/2 pattern:
+	 * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+	 * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+	 * GENERAL_PURPOSE0.DATA == 16'h0000;
+	 * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+	 * here data comes from the LFSR generating a PRBS pattern
+	 * CHAR_CTL.EN = 0
+	 * CHAR_CTL.SEL = 0; // for PRBS
+	 * CHAR_CTL.DR = 1;
+	 * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+	 * CHAR_CTL.SKEW_ON = 1;
+	 */
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]);
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]);
+	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]);
+
+	/*
+	 * 3. adjust cas_latency (only necessary if RD_DBI is set).
+	 * here is my code for doing this:
+	 *
+	 * if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin
+	 * case (csr_model.MODEREG_PARAMS0.CL.value)
+	 * 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2;
+	 * // CL 9-13 -> 11-15
+	 * 5: begin
+	 * // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+	 * if((csr_model.MODEREG_PARAMS0.CWL.value==1 ||
+	 * csr_model.MODEREG_PARAMS0.CWL.value==3))
+	 * csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16
+	 * else
+	 * csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17
+	 * end
+	 * 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18
+	 * 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19
+	 * 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21
+	 * default:
+	 * `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1,
+	 * I am not sure what to do.",
+	 * mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value))
+	 * endcase
+	 * end
+	 */
+
+	if (modereg_params3.s.rd_dbi == 1) {
+		int old_cl, new_cl, old_cwl;
+
+		old_cl = modereg_params0.s.cl;
+		old_cwl = modereg_params0.s.cwl;
+
+		switch (old_cl) {
+		case 0:
+		case 1:
+		case 2:
+		case 3:
+		case 4:
+			new_cl = old_cl + 2;
+			break;	// 9-13->11-15
+			// CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+		case 5:
+			new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13;
+			break;
+		case 6:
+			new_cl = 8;
+			break;	// 15->18
+		case 7:
+			new_cl = 14;
+			break;	// 16->19
+		case 8:
+			new_cl = 15;
+			break;	// 18->21
+		default:
+			printf("ERROR: Bad CL value (%d) for DBI switchover.\n",
+			       old_cl);
+			// FIXME: need to error exit here...
+			old_cl = -1;
+			new_cl = -1;
+			break;
+		}
+		debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n",
+		      node, lmc, old_cl, old_cwl, new_cl);
+		modereg_params0.s.cl = new_cl;
+		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc),
+		       modereg_params0.u64);
+	}
+
+	/*
+	 * 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence
+	 * SEQ_CTL[SEQ_SEL] = MRW.
+	 */
+	// Use the default values, from the CSRs fields
+	// also, do B-sides for RDIMMs...
+
+	for (rankx = 0; rankx < 4; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		// for RDIMMs, B-side writes should get done automatically
+		// when the A-side is written
+		ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+			 0 /*MRreg */, 0 /*A-side */);	/* MR0 */
+		ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+			 5 /*MRreg */, 0 /*A-side */);	/* MR5 */
+	}
+
+	/*
+	 * 5. conduct DBI bit deskew training via the General Purpose
+	 * R/W sequence (dbtrain). may need to run this over and over to get
+	 * a lock (I need up to 5 in simulation):
+	 * SEQ_CTL[SEQ_SEL] = RW_TRAINING (15)
+	 * DBTRAIN_CTL.CMD_COUNT_EXT = all 1's
+	 * DBTRAIN_CTL.READ_CMD_COUNT = all 1's
+	 * DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L]
+	 * DBTRAIN_CTL.RW_TRAIN = 1
+	 * DBTRAIN_CTL.READ_DQ_COUNT = dont care
+	 * DBTRAIN_CTL.WRITE_ENA = 1;
+	 * DBTRAIN_CTL.ACTIVATE = 1;
+	 * DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a
+	 * valid address
+	 */
+
+	// NOW - do the training
+	debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc);
+
+	active_ranks = 0;
+	for (rankx = 0; rankx < rank_max; rankx++) {
+		if (!(rank_mask & (1 << rankx)))
+			continue;
+
+		phys_addr = rank_offset * active_ranks;
+		// FIXME: now done by test_dram_byte_hw()
+
+		active_ranks++;
+
+		retries = 0;
+
+restart_training:
+
+		// NOTE: return is a bitmask of the erroring bytelanes -
+		// we only print it
+		errors =
+		    test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL);
+
+		debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n",
+		      node, lmc, rankx, (unsigned long long)phys_addr, errors);
+
+		// NEXT - check for locking
+		unlocked = 0;
+		read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+		for (byte = 0; byte < (8 + ecc_ena); byte++)
+			unlocked += (dbi_settings[byte] & 1) ^ 1;
+
+		// FIXME: print out the DBI settings array after each rank?
+		if (rank_max > 1)	// only when doing more than 1 rank
+			display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena,
+						 dbi_settings, " RANK");
+
+		if (unlocked > 0) {
+			debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n",
+			      node, lmc, unlocked);
+			retries++;
+			if (retries < 10) {
+				goto restart_training;
+			} else {
+				debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n",
+				      node, lmc, retries);
+			}
+		}
+	}			/* for (rankx = 0; rankx < 4; rankx++) */
+
+	// print out the final DBI settings array
+	display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+				 "FINAL");
+}
+
+void cvmx_dbi_switchover(struct ddr_priv *priv)
+{
+	int lmc;
+	int num_lmcs = cvmx_dram_get_num_lmc(priv);
+
+	for (lmc = 0; lmc < num_lmcs; lmc++)
+		cvmx_dbi_switchover_interface(priv, lmc);
+}
-- 
2.28.0



More information about the U-Boot mailing list