[PATCH v2 6/9] ram: octeon: Add MIPS Octeon3 DDR4 support (part 2/3)
Stefan Roese
sr at denx.de
Mon Aug 17 14:12:18 CEST 2020
From: Aaron Williams <awilliams at marvell.com>
This Octeon 3 DDR driver is ported from the 2013 Cavium / Marvell U-Boot
repository. It currently supports DDR4 on Octeon 3. It can be later
extended to support also DDR3 and Octeon 2 platforms.
Part 2 includes the very complex Octeon 3 DDR4 configuration
Signed-off-by: Aaron Williams <awilliams at marvell.com>
Signed-off-by: Stefan Roese <sr at denx.de>
---
(no changes since v1)
drivers/ram/octeon/octeon3_lmc.c | 11484 +++++++++++++++++++++++++++++
1 file changed, 11484 insertions(+)
create mode 100644 drivers/ram/octeon/octeon3_lmc.c
diff --git a/drivers/ram/octeon/octeon3_lmc.c b/drivers/ram/octeon/octeon3_lmc.c
new file mode 100644
index 0000000000..21e331897b
--- /dev/null
+++ b/drivers/ram/octeon/octeon3_lmc.c
@@ -0,0 +1,11484 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020 Marvell International Ltd.
+ *
+ * https://spdx.org/licenses
+ */
+
+#include <command.h>
+#include <dm.h>
+#include <hang.h>
+#include <i2c.h>
+#include <ram.h>
+#include <time.h>
+
+#include <linux/bitops.h>
+#include <linux/io.h>
+
+#include <mach/octeon_ddr.h>
+
+/* Random number generator stuff */
+
+#define CVMX_RNM_CTL_STATUS 0x0001180040000000
+#define CVMX_OCT_DID_RNG 8ULL
+
+static u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
+{
+ return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
+}
+
+static u64 cvmx_rng_get_random64(void)
+{
+ return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0));
+}
+
+static void cvmx_rng_enable(void)
+{
+ u64 val;
+
+ val = csr_rd(CVMX_RNM_CTL_STATUS);
+ val |= BIT(0) | BIT(1);
+ csr_wr(CVMX_RNM_CTL_STATUS, val);
+}
+
+#define CAVIUM_ONLY
+
+// FIXME: set to 1 for development-level messages, 0 for production
+#define RLEVEL_PRINTALL_DEFAULT 1
+#define WLEVEL_PRINTALL_DEFAULT 1
+
+#define ALLOW_BY_RANK_INIT 1
+#define USE_ORIG_TEST_DRAM_BYTE 0
+
+#define RLEXTRAS_PATCH 1 // write to unused RL rank entries
+#define WLEXTRAS_PATCH 1 // write to unused WL rank entries
+#define ADD_48_OHM_SKIP 0
+#define NOSKIP_40_48_OHM 1
+#define NOSKIP_48_STACKED 1
+#define NOSKIP_FOR_MINI 1
+#define NOSKIP_FOR_2S_1R 1
+
+// define how many HW RL samples per rank to take
+// multiple samples will allow looking for the best sample score
+//
+#define RLEVEL_SAMPLES_DEFAULT 3
+
+#define FAILSAFE_CHECK 1
+
+#define PERFECT_BITMASK_COUNTING 1
+#define PRINT_PERFECT_COUNTS PERFECT_BITMASK_COUNTING && 1
+
+#define DISABLE_SW_WL_PASS_2 1
+#define SW_WL_CHECK_PATCH 1
+#define HW_WL_MAJORITY 1
+// try HW WL base alternate if available when SW WL fails
+#define SWL_TRY_HWL_ALT HW_WL_MAJORITY && 1
+// define how many HW WL samples to take for majority voting
+// MUST BE odd!!
+// assume there should only be 2 possible values that will show up,
+// so treat ties as a problem!!!
+// NOTE: do not change this without checking the code!!!
+#define WLEVEL_LOOPS_DEFAULT 5
+
+#define SWL_WITH_HW_ALTS_CHOOSE_SW 0 // FIXME: allow override?
+
+#define SW_WLEVEL_HW_DEFAULT 1
+// collect and print LMC utilization using SWL software algorithm
+#define ENABLE_SW_WLEVEL_UTILIZATION 1
+
+#define COUNT_RL_CANDIDATES 1
+
+#define DDR3_DAC_OVERRIDE 1
+
+#define DEFAULT_BEST_RANK_SCORE 9999999
+#define MAX_RANK_SCORE_LIMIT 99 // FIXME?
+
+#define ENABLE_COMPUTED_VREF_ADJUSTMENT 1
+
+#undef ENABLE_SLOT_CTL_ACCESS
+
+#undef DEBUG_PERFORM_DDR3_SEQUENCE
+#define ddr_seq_print(format, ...) do {} while (0)
+
+struct wlevel_bitcnt {
+ int bitcnt[4];
+};
+
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+ int ecc_ena, int *settings, char *title);
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+ int dac_value, int byte);
+
+// "mode" arg
+#define DBTRAIN_TEST 0
+#define DBTRAIN_DBI 1
+#define DBTRAIN_LFSR 2
+
+static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+ int mode, u64 *xor_data);
+
+#define LMC_DDR3_RESET_ASSERT 0
+#define LMC_DDR3_RESET_DEASSERT 1
+
+static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset)
+{
+ union cvmx_lmcx_reset_ctl reset_ctl;
+
+ /*
+ * 4. Deassert DDRn_RESET_L pin by writing
+ * LMC(0..3)_RESET_CTL[DDR3RST] = 1
+ * without modifying any other LMC(0..3)_RESET_CTL fields.
+ * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+ * 6. Wait a minimum of 500us. This guarantees the necessary T = 500us
+ * delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE*
+ * assertion.
+ */
+ debug("LMC%d %s DDR_RESET_L\n", if_num,
+ (reset ==
+ LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting");
+
+ reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+ reset_ctl.cn78xx.ddr3rst = reset;
+ lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64);
+
+ lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+ udelay(500);
+}
+
+static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num)
+{
+ /*
+ * 5.9.6 LMC RESET Initialization
+ *
+ * The purpose of this step is to assert/deassert the RESET# pin at the
+ * DDR3/DDR4 parts.
+ *
+ * This LMC RESET step is done for all enabled LMCs.
+ *
+ * It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts
+ * are in self refresh and are currently preserving their
+ * contents. (Software can determine this via
+ * LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of
+ * this section assumes that the DRAM contents need not be preserved.
+ *
+ * The remainder of this section assumes that the CN78XX DDRn_RESET_L
+ * pin is attached to the RESET# pin of the attached DDR3/DDR4 parts,
+ * as will be appropriate in many systems.
+ *
+ * (In other systems, such as ones that can preserve DDR3/DDR4 part
+ * contents while CN78XX is powered down, it will not be appropriate to
+ * directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the
+ * DDR3/DDR4 parts, and this section may not apply.)
+ *
+ * The remainder of this section describes the sequence for LMCn.
+ *
+ * Perform the following six substeps for LMC reset initialization:
+ *
+ * 1. If not done already, assert DDRn_RESET_L pin by writing
+ * LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other
+ * LMC(0..3)_RESET_CTL fields.
+ */
+
+ if (!ddr_memory_preserved(priv)) {
+ /*
+ * 2. Read LMC(0..3)_RESET_CTL and wait for the result.
+ */
+
+ lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+ /*
+ * 3. Wait until RESET# assertion-time requirement from JEDEC
+ * DDR3/DDR4 specification is satisfied (200 us during a
+ * power-on ramp, 100ns when power is already stable).
+ */
+
+ udelay(200);
+
+ /*
+ * 4. Deassert DDRn_RESET_L pin by writing
+ * LMC(0..3)_RESET_CTL[DDR3RST] = 1
+ * without modifying any other LMC(0..3)_RESET_CTL fields.
+ * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+ * 6. Wait a minimum of 500us. This guarantees the necessary
+ * T = 500us delay between DDRn_RESET_L deassertion and
+ * DDRn_DIMM*_CKE* assertion.
+ */
+ cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+
+ /* Toggle Reset Again */
+ /* That is, assert, then de-assert, one more time */
+ cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT);
+ cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+ }
+}
+
+void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
+ int sequence)
+{
+ /*
+ * 3. Without changing any other fields in LMC(0)_CONFIG, write
+ * LMC(0)_CONFIG[RANKMASK] then write both
+ * LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
+ * operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
+ * the ranks that will participate in the sequence.
+ *
+ * The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
+ * selfrefresh exit, depending on whether the DRAM parts are in
+ * self-refresh and whether their contents should be preserved. While
+ * LMC performs these sequences, it will not perform any other DDR3
+ * transactions. When the sequence is complete, hardware sets the
+ * LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
+ * initialized.
+ *
+ * If power-up/init is selected immediately following a DRESET
+ * assertion, LMC executes the sequence described in the "Reset and
+ * Initialization Procedure" section of the JEDEC DDR3
+ * specification. This includes activating CKE, writing all four DDR3
+ * mode registers on all selected ranks, and issuing the required
+ * ZQCL
+ * command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
+ * with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
+ * LMC writes the JEDEC standard SSTE32882 control words selected by
+ * LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
+ * the first DDR3 mode register write operation.
+ * LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
+ * corresponding DIMM is not present.
+ *
+ * If self-refresh exit is selected, LMC executes the required SRX
+ * command followed by a refresh and ZQ calibration. Section 4.5
+ * describes behavior of a REF + ZQCS. LMC does not write the DDR3
+ * mode registers as part of this sequence, and the mode register
+ * parameters must match at self-refresh entry and exit times.
+ *
+ * 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE]
+ * to be set.
+ *
+ * 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
+ * been initialized.
+ */
+
+ union cvmx_lmcx_seq_ctl seq_ctl;
+ union cvmx_lmcx_config lmc_config;
+ int timeout;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ lmc_config.s.rankmask = rank_mask;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+ seq_ctl.u64 = 0;
+
+ seq_ctl.s.init_start = 1;
+ seq_ctl.s.seq_sel = sequence;
+
+ ddr_seq_print
+ ("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n",
+ rank_mask, sequence, sequence_str[sequence]);
+
+ if (seq_ctl.s.seq_sel == 3)
+ debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num,
+ rank_mask);
+
+ lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64);
+ lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+
+ timeout = 100;
+ do {
+ udelay(100); /* Wait a while */
+ seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+ if (--timeout == 0) {
+ printf("Sequence %d timed out\n", sequence);
+ break;
+ }
+ } while (seq_ctl.s.seq_complete != 1);
+
+ ddr_seq_print(" LMC sequence=%x: Completed.\n", sequence);
+}
+
+#if USE_ORIG_TEST_DRAM_BYTE
+
+#define DO_LIKE_RANDOM_XOR 1
+
+static int test_dram_byte64(struct ddr_priv *priv, int if_num, u64 p,
+ u64 bitmask, u64 *xor_data)
+{
+ u64 p1, p2, d1, d2;
+ u64 v, v1;
+ u64 p2offset = 0x4000000;
+ u64 datamask;
+ u64 xor;
+ int i, j, k;
+ int errors = 0;
+ int index;
+ int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+#if DO_LIKE_RANDOM_XOR
+ u64 pattern1 = cvmx_rng_get_random64();
+ u64 this_pattern;
+#endif
+ u64 bad_bits[2] = { 0, 0 };
+ int node = 0;
+
+ if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+ bitno = 18;
+
+ // When doing in parallel, the caller must provide full 8-byte bitmask.
+ // Byte lanes may be clear in the mask to indicate no testing on that
+ // lane.
+ datamask = bitmask;
+
+ // final address must include LMC and node
+ p |= (if_num << 7); /* Map address into proper interface */
+ p |= (u64)node << CVMX_NODE_MEM_SHIFT; // map to node
+ p |= 1ull << 63;
+
+ /* Add offset to both test regions to not clobber boot stuff
+ * when running from L2.
+ */
+ p += 0x4000000;
+
+ debug("N%d.LMC%d: %s: phys_addr=0x%lx/0x%lx (0x%lx)\n",
+ node, if_num, __func__, p, p + p2offset, 1ULL << bitno);
+
+ /*
+ * The loop ranges and increments walk through a range of addresses
+ * avoiding bits that alias to different memory interfaces (LMCs)
+ * on the CN88XX; ie we want to limit activity to a single memory
+ * channel.
+ */
+
+ /* Store something into each location first */
+ // NOTE: the ordering of loops is purposeful
+ for (i = 0; i < (1 << 7); i += 8) {
+ for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+ for (j = 0; j < (1 << 12); j += (1 << 9)) {
+ index = i + j + k;
+ p1 = p + index;
+ p2 = p1 + p2offset;
+
+#if DO_LIKE_RANDOM_XOR
+ v = pattern1 * p1;
+ v1 = v; // write the same thing to both areas
+#else
+ v = 0ULL;
+ v1 = v;
+#endif
+ cvmx_write64_uint64(p1, v);
+ cvmx_write64_uint64(p2, v1);
+
+ /* Write back and invalidate the cache lines
+ *
+ * For OCX we cannot limit the number of L2 ways
+ * so instead we just write back and invalidate
+ * the L2 cache lines. This is not possible
+ * when booting remotely, however so this is
+ * only enabled for U-Boot right now.
+ * Potentially the BDK can also take advantage
+ * of this.
+ */
+ CVMX_CACHE_WBIL2(p1, 0);
+ CVMX_CACHE_WBIL2(p2, 0);
+ }
+ }
+ }
+ CVMX_DCACHE_INVALIDATE;
+
+#if DO_LIKE_RANDOM_XOR
+ this_pattern = cvmx_rng_get_random64();
+#endif
+
+ // modify the contents of each location in some way
+ // NOTE: the ordering of loops is purposeful
+ for (i = 0; i < (1 << 7); i += 8) {
+ for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+ for (j = 0; j < (1 << 12); j += (1 << 9)) {
+ index = i + j + k;
+ p1 = p + index;
+ p2 = p1 + p2offset;
+#if DO_LIKE_RANDOM_XOR
+ v = cvmx_read64_uint64(p1) ^ this_pattern;
+ v1 = cvmx_read64_uint64(p2) ^ this_pattern;
+#else
+ v = test_pattern[index %
+ (sizeof(test_pattern) /
+ sizeof(u64))];
+ v &= datamask;
+ v1 = ~v;
+#endif
+
+ cvmx_write64_uint64(p1, v);
+ cvmx_write64_uint64(p2, v1);
+
+ /*
+ * Write back and invalidate the cache lines
+ *
+ * For OCX we cannot limit the number of L2 ways
+ * so instead we just write back and invalidate
+ * the L2 cache lines. This is not possible
+ * when booting remotely, however so this is
+ * only enabled for U-Boot right now.
+ * Potentially the BDK can also take advantage
+ * of this.
+ */
+ CVMX_CACHE_WBIL2(p1, 0);
+ CVMX_CACHE_WBIL2(p2, 0);
+ }
+ }
+ }
+ CVMX_DCACHE_INVALIDATE;
+
+ // test the contents of each location by predicting what should be there
+ // NOTE: the ordering of loops is purposeful: test full cachelines to
+ // detect an error occurring in any slot thereof
+ for (k = 0; k < (1 << bitno); k += (1 << 14)) {
+ for (j = 0; j < (1 << 12); j += (1 << 9)) {
+ for (i = 0; i < (1 << 7); i += 8) {
+ int bybit = 1;
+ u64 bymsk = 0xffULL; // start in byte lane 0
+
+ index = i + j + k;
+ p1 = p + index;
+ p2 = p1 + p2offset;
+#if DO_LIKE_RANDOM_XOR
+ // FIXME: this should predict what we find...???
+ v = (p1 * pattern1) ^ this_pattern;
+ d1 = cvmx_read64_uint64(p1);
+ d2 = cvmx_read64_uint64(p2);
+#else
+ v = test_pattern[index %
+ (sizeof(test_pattern) /
+ sizeof(u64))];
+ d1 = cvmx_read64_uint64(p1);
+ d2 = ~cvmx_read64_uint64(p2);
+#endif
+
+ // union of error bits only in active byte lanes
+ xor = ((d1 ^ v) | (d2 ^ v)) & datamask;
+
+ if (!xor)
+ continue;
+
+ // accumulate bad bits
+ bad_bits[0] |= xor;
+
+ while (xor != 0) {
+ debug("ERROR: [0x%016llX] [0x%016llX] expected 0x%016llX xor %016llX\n",
+ p1, p2, v, xor);
+ // error(s) in this lane
+ if (xor & bymsk) {
+ // set the byte error bit
+ errors |= bybit;
+ // clear byte lane in error bits
+ xor &= ~bymsk;
+ // clear the byte lane in the
+ // mask
+ datamask &= ~bymsk;
+ // nothing left to do
+ if (datamask == 0) {
+ // completely done when
+ // errors found in all
+ // byte lanes in
+ // datamask
+ goto done_now;
+ }
+ }
+ // move mask into next byte lane
+ bymsk <<= 8;
+ // move bit into next byte position
+ bybit <<= 1;
+ }
+ }
+ }
+ }
+
+done_now:
+ if (xor_data) { // send the bad bits back...
+ xor_data[0] = bad_bits[0];
+ xor_data[1] = bad_bits[1]; // let it be zeroed
+ }
+ return errors;
+}
+
+#else /* USE_ORIG_TEST_DRAM_BYTE */
+
+#define bdk_numa_get_address(n, p) ((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT)
+#define AREA_BASE_OFFSET BIT_ULL(26)
+
+static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p,
+ u64 bitmask, u64 *xor_data)
+{
+ u64 p1, p2, d1, d2;
+ u64 v, v1;
+ u64 p2offset = (1ULL << 26); // offset to area 2
+ u64 datamask;
+ u64 xor;
+ u64 i, j, k;
+ u64 ii;
+ int errors = 0;
+ //u64 index;
+ u64 pattern1 = cvmx_rng_get_random64();
+ u64 pattern2 = 0;
+ u64 bad_bits[2] = { 0, 0 };
+ int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+ union cvmx_l2c_ctl l2c_ctl;
+ int burst;
+ int saved_dissblkdty;
+ int node = 0;
+
+ // Force full cacheline write-backs to boost traffic
+ l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+ saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty;
+ l2c_ctl.cn78xx.dissblkdty = 1;
+ l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+ if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+ kbitno = 18;
+
+ // Byte lanes may be clear in the mask to indicate no testing on that
+ //lane.
+ datamask = bitmask;
+
+ /*
+ * Add offset to both test regions to not clobber boot stuff
+ * when running from L2 for NAND boot.
+ */
+ p += AREA_BASE_OFFSET; // make sure base is out of the way of boot
+
+ // final address must include LMC and node
+ p |= (lmc << 7); /* Map address into proper interface */
+ p = bdk_numa_get_address(node, p); /* Map to node */
+ p |= 1ull << 63;
+
+#define II_INC BIT_ULL(22)
+#define II_MAX BIT_ULL(22)
+#define K_INC BIT_ULL(14)
+#define K_MAX BIT_ULL(kbitno)
+#define J_INC BIT_ULL(9)
+#define J_MAX BIT_ULL(12)
+#define I_INC BIT_ULL(3)
+#define I_MAX BIT_ULL(7)
+
+ debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n",
+ node, lmc, __func__, p, p + p2offset, 1ULL << kbitno);
+
+ // loops are ordered so that only a single 64-bit slot is written to
+ // each cacheline at one time, then the cachelines are forced out;
+ // this should maximize read/write traffic
+
+ // FIXME? extend the range of memory tested!!
+ for (ii = 0; ii < II_MAX; ii += II_INC) {
+ for (i = 0; i < I_MAX; i += I_INC) {
+ for (k = 0; k < K_MAX; k += K_INC) {
+ for (j = 0; j < J_MAX; j += J_INC) {
+ p1 = p + ii + k + j;
+ p2 = p1 + p2offset;
+
+ v = pattern1 * (p1 + i);
+ // write the same thing to both areas
+ v1 = v;
+
+ cvmx_write64_uint64(p1 + i, v);
+ cvmx_write64_uint64(p2 + i, v1);
+
+ CVMX_CACHE_WBIL2(p1, 0);
+ CVMX_CACHE_WBIL2(p2, 0);
+ }
+ }
+ }
+ }
+
+ CVMX_DCACHE_INVALIDATE;
+
+ debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc);
+
+ /* Make a series of passes over the memory areas. */
+
+ for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) {
+ u64 this_pattern = cvmx_rng_get_random64();
+
+ pattern2 ^= this_pattern;
+
+ /*
+ * XOR the data with a random value, applying the change to both
+ * memory areas.
+ */
+
+ // FIXME? extend the range of memory tested!!
+ for (ii = 0; ii < II_MAX; ii += II_INC) {
+ // FIXME: rearranged, did not make much difference?
+ for (i = 0; i < I_MAX; i += I_INC) {
+ for (k = 0; k < K_MAX; k += K_INC) {
+ for (j = 0; j < J_MAX; j += J_INC) {
+ p1 = p + ii + k + j;
+ p2 = p1 + p2offset;
+
+ v = cvmx_read64_uint64(p1 +
+ i) ^
+ this_pattern;
+ v1 = cvmx_read64_uint64(p2 +
+ i) ^
+ this_pattern;
+
+ cvmx_write64_uint64(p1 + i, v);
+ cvmx_write64_uint64(p2 + i, v1);
+
+ CVMX_CACHE_WBIL2(p1, 0);
+ CVMX_CACHE_WBIL2(p2, 0);
+ }
+ }
+ }
+ }
+
+ CVMX_DCACHE_INVALIDATE;
+
+ debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n",
+ node, lmc);
+
+ /*
+ * Look for differences in the areas. If there is a mismatch,
+ * reset both memory locations with the same pattern. Failing
+ * to do so means that on all subsequent passes the pair of
+ * locations remain out of sync giving spurious errors.
+ */
+
+ // FIXME: Change the loop order so that an entire cache line
+ // is compared at one time. This is so that a read
+ // error that occurs *anywhere* on the cacheline will
+ // be caught, rather than comparing only 1 cacheline
+ // slot at a time, where an error on a different
+ // slot will be missed that time around
+ // Does the above make sense?
+
+ // FIXME? extend the range of memory tested!!
+ for (ii = 0; ii < II_MAX; ii += II_INC) {
+ for (k = 0; k < K_MAX; k += K_INC) {
+ for (j = 0; j < J_MAX; j += J_INC) {
+ p1 = p + ii + k + j;
+ p2 = p1 + p2offset;
+
+ // process entire cachelines in the
+ //innermost loop
+ for (i = 0; i < I_MAX; i += I_INC) {
+ int bybit = 1;
+ // start in byte lane 0
+ u64 bymsk = 0xffULL;
+
+ // FIXME: this should predict
+ // what we find...???
+ v = ((p1 + i) * pattern1) ^
+ pattern2;
+ d1 = cvmx_read64_uint64(p1 + i);
+ d2 = cvmx_read64_uint64(p2 + i);
+
+ // union of error bits only in
+ // active byte lanes
+ xor = ((d1 ^ v) | (d2 ^ v)) &
+ datamask;
+
+ if (!xor)
+ continue;
+
+ // accumulate bad bits
+ bad_bits[0] |= xor;
+
+ while (xor != 0) {
+ debug("ERROR(%03d): [0x%016llX] [0x%016llX] expected 0x%016llX d1 %016llX d2 %016llX\n",
+ burst, p1, p2, v,
+ d1, d2);
+ // error(s) in this lane
+ if (xor & bymsk) {
+ // set the byte
+ // error bit
+ errors |= bybit;
+ // clear byte
+ // lane in
+ // error bits
+ xor &= ~bymsk;
+ // clear the
+ // byte lane in
+ // the mask
+ datamask &= ~bymsk;
+#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
+ // nothing
+ // left to do
+ if (datamask == 0) {
+ return errors;
+ }
+#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
+ }
+ // move mask into
+ // next byte lane
+ bymsk <<= 8;
+ // move bit into next
+ // byte position
+ bybit <<= 1;
+ }
+ }
+ CVMX_CACHE_WBIL2(p1, 0);
+ CVMX_CACHE_WBIL2(p2, 0);
+ }
+ }
+ }
+
+ debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n",
+ node, lmc);
+ }
+
+ if (xor_data) { // send the bad bits back...
+ xor_data[0] = bad_bits[0];
+ xor_data[1] = bad_bits[1]; // let it be zeroed
+ }
+
+ // Restore original setting that could enable partial cacheline writes
+ l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+ l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty;
+ l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+ return errors;
+}
+#endif /* USE_ORIG_TEST_DRAM_BYTE */
+
+static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank,
+ int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
+{
+ union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+ lmc_mr_mpr_ctl.u64 = 0;
+ lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
+ lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel;
+ lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank;
+ lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value =
+ (mr_wr_addr == -1) ? 1 : 0;
+ lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1;
+ lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+ /* Mode Register Write */
+ oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+}
+
+#define INV_A0_17(x) ((x) ^ 0x22bf8)
+
+static void set_mpr_mode(struct ddr_priv *priv, int rank_mask,
+ int if_num, int dimm_count, int mpr, int bg1)
+{
+ int rankx;
+
+ debug("All Ranks: Set mpr mode = %x %c-side\n",
+ mpr, (bg1 == 0) ? 'A' : 'B');
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+ if (bg1 == 0) {
+ /* MR3 A-side */
+ ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1);
+ } else {
+ /* MR3 B-side */
+ ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3,
+ bg1);
+ }
+ }
+}
+
+static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num,
+ int rank, int page, int location)
+{
+ union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+ lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num));
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0;
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+ lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+ lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0; /* Read=0, Write=1 */
+ lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+ /* MPR register access sequence */
+ oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+ debug("LMC_MR_MPR_CTL : 0x%016llx\n",
+ lmc_mr_mpr_ctl.u64);
+ debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+ debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+ debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+ debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable)
+{
+ union cvmx_lmcx_control lmc_control;
+ int save_rdimm_mode;
+
+ lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ save_rdimm_mode = lmc_control.s.rdimm_ena;
+ lmc_control.s.rdimm_ena = enable;
+ debug("Setting RDIMM_ENA = %x\n", enable);
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
+
+ return save_rdimm_mode;
+}
+
+static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank,
+ int page, int location, u64 *mpr_data)
+{
+ do_ddr4_mpr_read(priv, if_num, rank, page, location);
+
+ mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+}
+
+/* Display MPR values for Page */
+static void display_mpr_page(struct ddr_priv *priv, int rank_mask,
+ int if_num, int page)
+{
+ int rankx, location;
+ u64 mpr_data[3];
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ",
+ if_num, rankx, page);
+ for (location = 0; location < 4; location++) {
+ ddr4_mpr_read(priv, if_num, rankx, page, location,
+ mpr_data);
+ debug("0x%02llx ", mpr_data[0] & 0xFF);
+ }
+ debug("\n");
+
+ } /* for (rankx = 0; rankx < 4; rankx++) */
+}
+
+static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank,
+ int page, int location, u8 mpr_data)
+{
+ union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+ lmc_mr_mpr_ctl.u64 = 0;
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data;
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+ lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+ lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1; /* Read=0, Write=1 */
+ lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+ /* MPR register access sequence */
+ oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+ debug("LMC_MR_MPR_CTL : 0x%016llx\n",
+ lmc_mr_mpr_ctl.u64);
+ debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+ debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+ debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+ debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n",
+ lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static void set_vref(struct ddr_priv *priv, int if_num, int rank,
+ int range, int value)
+{
+ union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+ union cvmx_lmcx_modereg_params3 lmc_modereg_params3;
+ int mr_wr_addr = 0;
+
+ lmc_mr_mpr_ctl.u64 = 0;
+ lmc_modereg_params3.u64 = lmc_rd(priv,
+ CVMX_LMCX_MODEREG_PARAMS3(if_num));
+
+ /* A12:A10 tCCD_L */
+ mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10;
+ mr_wr_addr |= 1 << 7; /* A7 1 = Enable(Training Mode) */
+ mr_wr_addr |= range << 6; /* A6 vrefDQ Training Range */
+ mr_wr_addr |= value << 0; /* A5:A0 vrefDQ Training Value */
+
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6; /* Write MR6 */
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+ lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+ /* 0x8 = Mode Register Write */
+ oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+ /*
+ * It is vendor specific whether vref_value is captured with A7=1.
+ * A subsequent MRS might be necessary.
+ */
+ oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+ mr_wr_addr &= ~(1 << 7); /* A7 0 = Disable(Training Mode) */
+ lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+ lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+}
+
+static void set_dram_output_inversion(struct ddr_priv *priv, int if_num,
+ int dimm_count, int rank_mask,
+ int inversion)
+{
+ union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl;
+ union cvmx_lmcx_dimmx_params lmc_dimmx_params;
+ union cvmx_lmcx_dimm_ctl lmc_dimm_ctl;
+ int dimm_no;
+
+ /* Don't touch extenced register control words */
+ lmc_ddr4_dimm_ctl.u64 = 0;
+ lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64);
+
+ debug("All DIMMs: Register Control Word RC0 : %x\n",
+ (inversion & 1));
+
+ for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
+ lmc_dimmx_params.u64 =
+ lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num));
+ lmc_dimmx_params.s.rc0 =
+ (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
+
+ lmc_wr(priv,
+ CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num),
+ lmc_dimmx_params.u64);
+ }
+
+ /* LMC0_DIMM_CTL */
+ lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+ lmc_dimm_ctl.s.dimm0_wmask = 0x1;
+ lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
+
+ debug("LMC DIMM_CTL : 0x%016llx\n",
+ lmc_dimm_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64);
+
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); /* Init RCW */
+}
+
+static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask,
+ int if_num, int dimm_count, int pattern,
+ int location_mask)
+{
+ int rankx;
+ int location;
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+ for (location = 0; location < 4; ++location) {
+ if (!(location_mask & (1 << location)))
+ continue;
+
+ ddr4_mpr_write(priv, if_num, rankx,
+ /* page */ 0, /* location */ location,
+ pattern);
+ }
+ }
+}
+
+static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask,
+ int if_num, int dimm_count)
+{
+ int save_ref_zqcs_int;
+ union cvmx_lmcx_config lmc_config;
+
+ /*
+ * Okay, here is the latest sequence. This should work for all
+ * chips and passes (78,88,73,etc). This sequence should be run
+ * immediately after DRAM INIT. The basic idea is to write the
+ * same pattern into each of the 4 MPR locations in the DRAM, so
+ * that the same value is returned when doing MPR reads regardless
+ * of the inversion state. My advice is to put this into a
+ * function, change_rdimm_mpr_pattern or something like that, so
+ * that it can be called multiple times, as I think David wants a
+ * clock-like pattern for OFFSET training, but does not want a
+ * clock pattern for Bit-Deskew. You should then be able to call
+ * this at any point in the init sequence (after DRAM init) to
+ * change the pattern to a new value.
+ * Mike
+ *
+ * A correction: PHY doesn't need any pattern during offset
+ * training, but needs clock like pattern for internal vref and
+ * bit-dskew training. So for that reason, these steps below have
+ * to be conducted before those trainings to pre-condition
+ * the pattern. David
+ *
+ * Note: Step 3, 4, 8 and 9 have to be done through RDIMM
+ * sequence. If you issue MRW sequence to do RCW write (in o78 pass
+ * 1 at least), LMC will still do two commands because
+ * CONTROL[RDIMM_ENA] is still set high. We don't want it to have
+ * any unintentional mode register write so it's best to do what
+ * Mike is doing here.
+ * Andrew
+ */
+
+ /* 1) Disable refresh (REF_ZQCS_INT = 0) */
+
+ debug("1) Disable refresh (REF_ZQCS_INT = 0)\n");
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+ lmc_config.cn78xx.ref_zqcs_int = 0;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+ /*
+ * 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
+ * with MODEREG_PARAMS0[MPRLOC]=0,
+ * MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
+ * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+ */
+
+ debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
+
+ /* A-side */
+ set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0);
+ /* B-side */
+ set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1);
+
+ /*
+ * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
+ * the value you would like directly into
+ * MR_MPR_CTL[MR_WR_ADDR]
+ */
+
+ /*
+ * 3) Disable RCD Parity (if previously enabled) - parity does not
+ * work if inversion disabled
+ */
+
+ debug("3) Disable RCD Parity\n");
+
+ /*
+ * 4) Disable Inversion in the RCD.
+ * a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
+ * may be easier to use the MRW sequence (seq_sel=8). Just set
+ * MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
+ * MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg
+ */
+
+ debug("4) Disable Inversion in the RCD.\n");
+
+ set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1);
+
+ /*
+ * 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
+ * non-inverted.
+ */
+
+ debug("5) Disable CONTROL[RDIMM_ENA]\n");
+
+ set_rdimm_mode(priv, if_num, 0);
+
+ /*
+ * 6) Write all 4 MPR registers with the desired pattern (have to
+ * do this for all enabled ranks)
+ * a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
+ * MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern
+ */
+
+ debug("6) Write all 4 MPR page 0 Training Patterns\n");
+
+ write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8);
+
+ /* 7) Re-enable RDIMM_ENA */
+
+ debug("7) Re-enable RDIMM_ENA\n");
+
+ set_rdimm_mode(priv, if_num, 1);
+
+ /* 8) Re-enable RDIMM inversion */
+
+ debug("8) Re-enable RDIMM inversion\n");
+
+ set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0);
+
+ /* 9) Re-enable RDIMM parity (if desired) */
+
+ debug("9) Re-enable RDIMM parity (if desired)\n");
+
+ /*
+ * 10)Take B-side devices out of MPR mode (Run MRW sequence
+ * (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
+ * MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
+ * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+ */
+
+ debug("10)Take B-side devices out of MPR mode\n");
+
+ set_mpr_mode(priv, rank_mask, if_num, dimm_count,
+ /* mpr */ 0, /* bg1 */ 1);
+
+ /*
+ * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
+ * set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR]
+ */
+
+ /* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
+
+ debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+}
+
+static int validate_hwl_seq(int *wl, int *seq)
+{
+ // sequence index, step through the sequence array
+ int seqx;
+ int bitnum;
+
+ seqx = 0;
+
+ while (seq[seqx + 1] >= 0) { // stop on next seq entry == -1
+ // but now, check current versus next
+ bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]];
+ // magic validity number (see matrix above)
+ if (!((1 << bitnum) & 0xBDE7))
+ return 1;
+ seqx++;
+ }
+
+ return 0;
+}
+
+static int validate_hw_wl_settings(int if_num,
+ union cvmx_lmcx_wlevel_rankx
+ *lmc_wlevel_rank, int is_rdimm, int ecc_ena)
+{
+ int wl[9], byte, errors;
+
+ // arrange the sequences so
+ // index 0 has byte 0, etc, ECC in middle
+ int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 };
+ // index 0 is ECC, then go down
+ int rseq1[] = { 8, 3, 2, 1, 0, -1 };
+ // index 0 has byte 4, then go up
+ int rseq2[] = { 4, 5, 6, 7, -1 };
+ // index 0 has byte 0, etc, no ECC
+ int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 };
+ // index 0 is byte 3, then go down, no ECC
+ int rseq1no[] = { 3, 2, 1, 0, -1 };
+
+ // in the CSR, bytes 0-7 are always data, byte 8 is ECC
+ for (byte = 0; byte < (8 + ecc_ena); byte++) {
+ // preprocess :-)
+ wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >>
+ 1) & 3;
+ }
+
+ errors = 0;
+ if (is_rdimm) { // RDIMM order
+ errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
+ errors += validate_hwl_seq(wl, rseq2);
+ } else { // UDIMM order
+ errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno);
+ }
+
+ return errors;
+}
+
+static unsigned int extr_wr(u64 u, int x)
+{
+ return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) |
+ ((u >> (51 + x - 2)) & 0x4ULL));
+}
+
+static void insrt_wr(u64 *up, int x, int v)
+{
+ u64 u = *up;
+
+ u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x)));
+ *up = (u | ((v & 0x3ULL) << (x * 12 + 5)) |
+ ((v & 0x4ULL) << (51 + x - 2)));
+}
+
+/* Read out Deskew Settings for DDR */
+
+struct deskew_bytes {
+ u16 bits[8];
+};
+
+struct deskew_data {
+ struct deskew_bytes bytes[9];
+};
+
+struct dac_data {
+ int bytes[9];
+};
+
+// T88 pass 1, skip 4=DAC
+static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
+// T88 Pass 2, skip 4=DAC and 5=DBI
+static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 };
+
+static void get_deskew_settings(struct ddr_priv *priv, int if_num,
+ struct deskew_data *dskdat)
+{
+ union cvmx_lmcx_phy_ctl phy_ctl;
+ union cvmx_lmcx_config lmc_config;
+ int bit_index;
+ int byte_lane, byte_limit;
+ // NOTE: these are for pass 2.x
+ int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X);
+ const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+ memset(dskdat, 0, sizeof(*dskdat));
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ phy_ctl.s.dsk_dbg_byte_sel = byte_lane; // set byte lane
+
+ for (bit_index = 0; bit_index < 8; ++bit_index) {
+ // set bit number and start read sequence
+ phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index];
+ phy_ctl.s.dsk_dbg_rd_start = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ // poll for read sequence to complete
+ do {
+ phy_ctl.u64 =
+ lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+ // record the data
+ dskdat->bytes[byte_lane].bits[bit_index] =
+ phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
+ }
+ }
+}
+
+static void display_deskew_settings(struct ddr_priv *priv, int if_num,
+ struct deskew_data *dskdat,
+ int print_enable)
+{
+ int byte_lane;
+ int bit_num;
+ u16 flags, deskew;
+ union cvmx_lmcx_config lmc_config;
+ int byte_limit;
+ const char *fc = " ?-=+*#&";
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+ if (print_enable) {
+ debug("N0.LMC%d: Deskew Data: Bit => :",
+ if_num);
+ for (bit_num = 7; bit_num >= 0; --bit_num)
+ debug(" %3d ", bit_num);
+ debug("\n");
+ }
+
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ if (print_enable)
+ debug("N0.LMC%d: Bit Deskew Byte %d %s :",
+ if_num, byte_lane,
+ (print_enable >= 3) ? "FINAL" : " ");
+
+ for (bit_num = 7; bit_num >= 0; --bit_num) {
+ flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
+ deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
+
+ if (print_enable)
+ debug(" %3d %c", deskew, fc[flags ^ 1]);
+
+ } /* for (bit_num = 7; bit_num >= 0; --bit_num) */
+
+ if (print_enable)
+ debug("\n");
+ }
+}
+
+#if ALLOW_BY_RANK_INIT
+static void override_deskew_settings(struct ddr_priv *priv, int if_num,
+ struct deskew_data *dskdat)
+{
+ union cvmx_lmcx_phy_ctl phy_ctl;
+ union cvmx_lmcx_config lmc_config;
+
+ int bit, byte_lane, byte_limit;
+ u64 csr_data;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+ phy_ctl.s.phy_reset = 0;
+ phy_ctl.s.dsk_dbg_num_bits_sel = 1;
+ phy_ctl.s.dsk_dbg_offset = 0;
+ phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+ phy_ctl.s.dsk_dbg_wr_mode = 1;
+ phy_ctl.s.dsk_dbg_load_dis = 0;
+ phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+ phy_ctl.s.phy_dsk_reset = 0;
+
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+ lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ csr_data = 0;
+ // FIXME: can we ignore DBI?
+ for (bit = 0; bit < 8; ++bit) {
+ // fetch input and adjust
+ u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) &
+ 0x7F;
+
+ /*
+ * lmc_general_purpose0.data[6:0] // DQ0
+ * lmc_general_purpose0.data[13:7] // DQ1
+ * lmc_general_purpose0.data[20:14] // DQ2
+ * lmc_general_purpose0.data[27:21] // DQ3
+ * lmc_general_purpose0.data[34:28] // DQ4
+ * lmc_general_purpose0.data[41:35] // DQ5
+ * lmc_general_purpose0.data[48:42] // DQ6
+ * lmc_general_purpose0.data[55:49] // DQ7
+ * lmc_general_purpose0.data[62:56] // DBI
+ */
+ csr_data |= (bits << (7 * bit));
+
+ } /* for (bit = 0; bit < 8; ++bit) */
+
+ // update GP0 with the bit data for this byte lane
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data);
+ lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num));
+
+ // start the deskew load sequence
+ phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+ phy_ctl.s.dsk_dbg_rd_start = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ // poll for read sequence to complete
+ do {
+ udelay(100);
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+ }
+
+ // tell phy to use the new settings
+ phy_ctl.s.dsk_dbg_overwrt_ena = 1;
+ phy_ctl.s.dsk_dbg_rd_start = 0;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ phy_ctl.s.dsk_dbg_wr_mode = 0;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void process_by_rank_dac(struct ddr_priv *priv, int if_num,
+ int rank_mask, struct dac_data *dacdat)
+{
+ union cvmx_lmcx_config lmc_config;
+ int rankx, byte_lane;
+ int byte_limit;
+ int rank_count;
+ struct dac_data dacsum;
+ int lane_probs;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+ memset((void *)&dacsum, 0, sizeof(dacsum));
+ rank_count = 0;
+ lane_probs = 0;
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+ rank_count++;
+
+ display_dac_dbi_settings(if_num, /*dac */ 1,
+ lmc_config.s.ecc_ena,
+ &dacdat[rankx].bytes[0],
+ "By-Ranks VREF");
+ // sum
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ if (rank_count == 2) {
+ int ranks_diff =
+ abs((dacsum.bytes[byte_lane] -
+ dacdat[rankx].bytes[byte_lane]));
+
+ // FIXME: is 19 a good number?
+ if (ranks_diff > 19)
+ lane_probs |= (1 << byte_lane);
+ }
+ dacsum.bytes[byte_lane] +=
+ dacdat[rankx].bytes[byte_lane];
+ }
+ }
+
+ // average
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++)
+ dacsum.bytes[byte_lane] /= rank_count; // FIXME: nint?
+
+ display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena,
+ &dacsum.bytes[0], "All-Rank VREF");
+
+ if (lane_probs) {
+ debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n",
+ if_num, lane_probs);
+ }
+
+ // finally, write the averaged DAC values
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ load_dac_override(priv, if_num, dacsum.bytes[byte_lane],
+ byte_lane);
+ }
+}
+
+static void process_by_rank_dsk(struct ddr_priv *priv, int if_num,
+ int rank_mask, struct deskew_data *dskdat)
+{
+ union cvmx_lmcx_config lmc_config;
+ int rankx, lane, bit;
+ int byte_limit;
+ struct deskew_data dsksum, dskcnt;
+ u16 deskew;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+ memset((void *)&dsksum, 0, sizeof(dsksum));
+ memset((void *)&dskcnt, 0, sizeof(dskcnt));
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ // sum ranks
+ for (lane = 0; lane < byte_limit; lane++) {
+ for (bit = 0; bit < 8; ++bit) {
+ deskew = dskdat[rankx].bytes[lane].bits[bit];
+ // if flags indicate sat hi or lo, skip it
+ if (deskew & 6)
+ continue;
+
+ // clear flags
+ dsksum.bytes[lane].bits[bit] +=
+ deskew & ~7;
+ // count entries
+ dskcnt.bytes[lane].bits[bit] += 1;
+ }
+ }
+ }
+
+ // average ranks
+ for (lane = 0; lane < byte_limit; lane++) {
+ for (bit = 0; bit < 8; ++bit) {
+ int div = dskcnt.bytes[lane].bits[bit];
+
+ if (div > 0) {
+ dsksum.bytes[lane].bits[bit] /= div;
+ // clear flags
+ dsksum.bytes[lane].bits[bit] &= ~7;
+ // set LOCK
+ dsksum.bytes[lane].bits[bit] |= 1;
+ } else {
+ // FIXME? use reset value?
+ dsksum.bytes[lane].bits[bit] =
+ (64 << 3) | 1;
+ }
+ }
+ }
+
+ // TME for FINAL version
+ display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3);
+
+ // finally, write the averaged DESKEW values
+ override_deskew_settings(priv, if_num, &dsksum);
+}
+#endif /* ALLOW_BY_RANK_INIT */
+
+struct deskew_counts {
+ int saturated; // number saturated
+ int unlocked; // number unlocked
+ int nibrng_errs; // nibble range errors
+ int nibunl_errs; // nibble unlocked errors
+ int bitval_errs; // bit value errors
+};
+
+#define MIN_BITVAL 17
+#define MAX_BITVAL 110
+
+static void validate_deskew_training(struct ddr_priv *priv, int rank_mask,
+ int if_num, struct deskew_counts *counts,
+ int print_flags)
+{
+ int byte_lane, bit_index, nib_num;
+ int nibrng_errs, nibunl_errs, bitval_errs;
+ union cvmx_lmcx_config lmc_config;
+ s16 nib_min[2], nib_max[2], nib_unl[2];
+ int byte_limit;
+ int print_enable = print_flags & 1;
+ struct deskew_data dskdat;
+ s16 flags, deskew;
+ const char *fc = " ?-=+*#&";
+ int bit_last;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+ memset(counts, 0, sizeof(struct deskew_counts));
+
+ get_deskew_settings(priv, if_num, &dskdat);
+
+ if (print_enable) {
+ debug("N0.LMC%d: Deskew Settings: Bit => :",
+ if_num);
+ for (bit_index = 7; bit_index >= 0; --bit_index)
+ debug(" %3d ", bit_index);
+ debug("\n");
+ }
+
+ for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+ if (print_enable)
+ debug("N0.LMC%d: Bit Deskew Byte %d %s :",
+ if_num, byte_lane,
+ (print_flags & 2) ? "FINAL" : " ");
+
+ nib_min[0] = 127;
+ nib_min[1] = 127;
+ nib_max[0] = 0;
+ nib_max[1] = 0;
+ nib_unl[0] = 0;
+ nib_unl[1] = 0;
+
+ if (lmc_config.s.mode32b == 1 && byte_lane == 4) {
+ bit_last = 3;
+ if (print_enable)
+ debug(" ");
+ } else {
+ bit_last = 7;
+ }
+
+ for (bit_index = bit_last; bit_index >= 0; --bit_index) {
+ nib_num = (bit_index > 3) ? 1 : 0;
+
+ flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
+ deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
+
+ counts->saturated += !!(flags & 6);
+
+ // Do range calc even when locked; it could happen
+ // that a bit is still unlocked after final retry,
+ // and we want to have an external retry if a RANGE
+ // error is present at exit...
+ nib_min[nib_num] = min(nib_min[nib_num], deskew);
+ nib_max[nib_num] = max(nib_max[nib_num], deskew);
+
+ if (!(flags & 1)) { // only when not locked
+ counts->unlocked += 1;
+ nib_unl[nib_num] += 1;
+ }
+
+ if (print_enable)
+ debug(" %3d %c", deskew, fc[flags ^ 1]);
+ }
+
+ /*
+ * Now look for nibble errors
+ *
+ * For bit 55, it looks like a bit deskew problem. When the
+ * upper nibble of byte 6 needs to go to saturation, bit 7
+ * of byte 6 locks prematurely at 64. For DIMMs with raw
+ * card A and B, can we reset the deskew training when we
+ * encounter this case? The reset criteria should be looking
+ * at one nibble at a time for raw card A and B; if the
+ * bit-deskew setting within a nibble is different by > 33,
+ * we'll issue a reset to the bit deskew training.
+ *
+ * LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
+ */
+ // upper nibble range, then lower nibble range
+ nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
+ nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
+
+ // check for nibble all unlocked
+ nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
+
+ // check for bit value errors, ie < 17 or > 110
+ // FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
+ bitval_errs = ((nib_max[1] > MAX_BITVAL) ||
+ (nib_max[0] > MAX_BITVAL)) ? 1 : 0;
+ bitval_errs |= ((nib_min[1] < MIN_BITVAL) ||
+ (nib_min[0] < MIN_BITVAL)) ? 1 : 0;
+
+ if ((nibrng_errs != 0 || nibunl_errs != 0 ||
+ bitval_errs != 0) && print_enable) {
+ debug(" %c%c%c",
+ (nibrng_errs) ? 'R' : ' ',
+ (nibunl_errs) ? 'U' : ' ',
+ (bitval_errs) ? 'V' : ' ');
+ }
+
+ if (print_enable)
+ debug("\n");
+
+ counts->nibrng_errs |= (nibrng_errs << byte_lane);
+ counts->nibunl_errs |= (nibunl_errs << byte_lane);
+ counts->bitval_errs |= (bitval_errs << byte_lane);
+ }
+}
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+ int dac_value, int byte)
+{
+ union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+ // single bytelanes incr by 1; A is for ALL
+ int bytex = (byte == 0x0A) ? byte : byte + 1;
+
+ ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+ SET_DDR_DLL_CTL3(byte_sel, bytex);
+ SET_DDR_DLL_CTL3(offset, dac_value >> 1);
+
+ ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ ddr_dll_ctl3.cn73xx.bit_select = 0xC; /* vref bypass setting load */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ ddr_dll_ctl3.cn73xx.bit_select = 0xD; /* vref bypass on. */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); // flush writes
+
+ return (unsigned short)GET_DDR_DLL_CTL3(offset);
+}
+
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+// returns 9 entries (bytelanes 0 through 8) in settings[]
+// returns 0 if OK, -1 if a problem
+static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num,
+ int dac_or_dbi, int *settings)
+{
+ union cvmx_lmcx_phy_ctl phy_ctl;
+ int byte_lane, bit_num;
+ int deskew;
+ int dac_value;
+ int new_deskew_layout = 0;
+
+ new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) ||
+ octeon_is_cpuid(OCTEON_CNF75XX);
+ new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) &&
+ !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X));
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.dsk_dbg_clk_scaler = 3;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ bit_num = (dac_or_dbi) ? 4 : 5;
+ // DBI not available
+ if (bit_num == 5 && !new_deskew_layout)
+ return -1;
+
+ // FIXME: always assume ECC is available
+ for (byte_lane = 8; byte_lane >= 0; --byte_lane) {
+ //set byte lane and bit to read
+ phy_ctl.s.dsk_dbg_bit_sel = bit_num;
+ phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ //start read sequence
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.dsk_dbg_rd_start = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ //poll for read sequence to complete
+ do {
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+ // keep the flag bits where they are for DBI
+ deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */
+ dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
+
+ settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
+ }
+
+ return 0;
+}
+
+// print out the DBI settings array
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+ int ecc_ena, int *settings, char *title)
+{
+ int byte;
+ int flags;
+ int deskew;
+ const char *fc = " ?-=+*#&";
+
+ debug("N0.LMC%d: %s %s Settings %d:0 :",
+ lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena);
+ // FIXME: what about 32-bit mode?
+ for (byte = (7 + ecc_ena); byte >= 0; --byte) {
+ if (dac_or_dbi) { // DAC
+ flags = 1; // say its locked to get blank
+ deskew = settings[byte] & 0xff;
+ } else { // DBI
+ flags = settings[byte] & 7;
+ deskew = (settings[byte] >> 3) & 0x7f;
+ }
+ debug(" %3d %c", deskew, fc[flags ^ 1]);
+ }
+ debug("\n");
+}
+
+// Find a HWL majority
+static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc,
+ int *xc, int *cc)
+{
+ int ix, ic;
+
+ *mx = -1;
+ *mc = 0;
+ *xc = 0;
+ *cc = 0;
+
+ for (ix = 0; ix < 4; ix++) {
+ ic = bc->bitcnt[ix];
+
+ // make a bitmask of the ones with a count
+ if (ic > 0) {
+ *mc |= (1 << ix);
+ *cc += 1; // count how many had non-zero counts
+ }
+
+ // find the majority
+ if (ic > *xc) { // new max?
+ *xc = ic; // yes
+ *mx = ix; // set its index
+ }
+ }
+
+ return (*mx << 1);
+}
+
+// Evaluate the DAC settings array
+static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings)
+{
+ int byte, lane, dac, comp;
+ int last = (if_64b) ? 7 : 3;
+
+ // FIXME: change the check...???
+ // this looks only for sets of DAC values whose max/min differ by a lot
+ // let any EVEN go so long as it is within range...
+ for (byte = (last + ecc_ena); byte >= 0; --byte) {
+ dac = settings[byte] & 0xff;
+
+ for (lane = (last + ecc_ena); lane >= 0; --lane) {
+ comp = settings[lane] & 0xff;
+ if (abs((dac - comp)) > 25)
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+static void perform_offset_training(struct ddr_priv *priv, int rank_mask,
+ int if_num)
+{
+ union cvmx_lmcx_phy_ctl lmc_phy_ctl;
+ u64 orig_phy_ctl;
+ const char *s;
+
+ /*
+ * 4.8.6 LMC Offset Training
+ *
+ * LMC requires input-receiver offset training.
+ *
+ * 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
+ */
+ lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ orig_phy_ctl = lmc_phy_ctl.u64;
+ lmc_phy_ctl.s.dac_on = 1;
+
+ // allow full CSR override
+ s = lookup_env_ull(priv, "ddr_phy_ctl");
+ if (s)
+ lmc_phy_ctl.u64 = strtoull(s, NULL, 0);
+
+ // do not print or write if CSR does not change...
+ if (lmc_phy_ctl.u64 != orig_phy_ctl) {
+ debug("PHY_CTL : 0x%016llx\n",
+ lmc_phy_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64);
+ }
+
+ /*
+ * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
+ * LMC(0)_SEQ_CTL[INIT_START] = 1.
+ *
+ * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+ */
+ /* Start Offset training sequence */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B);
+}
+
+static void perform_internal_vref_training(struct ddr_priv *priv,
+ int rank_mask, int if_num)
+{
+ union cvmx_lmcx_ext_config ext_config;
+ union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+
+ // First, make sure all byte-lanes are out of VREF bypass mode
+ ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+ ddr_dll_ctl3.cn78xx.byte_sel = 0x0A; /* all byte-lanes */
+ ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ ddr_dll_ctl3.cn78xx.bit_select = 0x0E; /* vref bypass off. */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+ /*
+ * 4.8.7 LMC Internal vref Training
+ *
+ * LMC requires input-reference-voltage training.
+ *
+ * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
+ */
+ ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+ ext_config.s.vrefint_seq_deskew = 0;
+
+ ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+ ext_config.s.vrefint_seq_deskew);
+
+ lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+ /*
+ * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
+ * LMC(0)_SEQ_CTL[INIT_START] = 1.
+ *
+ * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+ */
+ /* Start LMC Internal vref Training */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+}
+
+#define dbg_avg(format, ...) // debug(format, ##__VA_ARGS__)
+
+static int process_samples_average(s16 *bytes, int num_samples,
+ int lmc, int lane_no)
+{
+ int i, sadj, sum = 0, ret, asum, trunc;
+ s16 smin = 32767, smax = -32768;
+ int nmin, nmax;
+ //int rng;
+
+ dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
+
+ for (i = 0; i < num_samples; i++) {
+ sum += bytes[i];
+ if (bytes[i] < smin)
+ smin = bytes[i];
+ if (bytes[i] > smax)
+ smax = bytes[i];
+ dbg_avg(" %3d", bytes[i]);
+ }
+
+ nmin = 0;
+ nmax = 0;
+ for (i = 0; i < num_samples; i++) {
+ if (bytes[i] == smin)
+ nmin += 1;
+ if (bytes[i] == smax)
+ nmax += 1;
+ }
+ dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)",
+ smin, nmin, smax, nmax, rng, num_samples);
+
+ asum = sum - smin - smax;
+
+ sadj = divide_nint(asum * 10, (num_samples - 2));
+
+ trunc = asum / (num_samples - 2);
+
+ dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc);
+
+ sadj = divide_nint(sadj, 10);
+ if (trunc & 1)
+ ret = trunc;
+ else if (sadj & 1)
+ ret = sadj;
+ else
+ ret = trunc + 1;
+
+ dbg_avg(" -> %3d\n", ret);
+
+ return ret;
+}
+
+#define DEFAULT_SAT_RETRY_LIMIT 11 // 1 + 10 retries
+
+#define default_lock_retry_limit 20 // 20 retries
+#define deskew_validation_delay 10000 // 10 millisecs
+
+static int perform_deskew_training(struct ddr_priv *priv, int rank_mask,
+ int if_num, int spd_rawcard_aorb)
+{
+ int unsaturated, locked;
+ int sat_retries, sat_retries_limit;
+ int lock_retries, lock_retries_total, lock_retries_limit;
+ int print_first;
+ int print_them_all;
+ struct deskew_counts dsk_counts;
+ union cvmx_lmcx_phy_ctl phy_ctl;
+ char *s;
+ int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+ octeon_is_cpuid(OCTEON_CNF75XX);
+ int disable_bitval_retries = 1; // default to disabled
+
+ debug("N0.LMC%d: Performing Deskew Training.\n", if_num);
+
+ sat_retries = 0;
+ sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT;
+
+ lock_retries_total = 0;
+ unsaturated = 0;
+ print_first = 1; // print the first one
+ // set to true for printing all normal deskew attempts
+ print_them_all = 0;
+
+ // provide override for bitval_errs causing internal VREF retries
+ s = env_get("ddr_disable_bitval_retries");
+ if (s)
+ disable_bitval_retries = !!simple_strtoul(s, NULL, 0);
+
+ lock_retries_limit = default_lock_retry_limit;
+ if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) ||
+ (octeon_is_cpuid(OCTEON_CN73XX)) ||
+ (octeon_is_cpuid(OCTEON_CNF75XX)))
+ lock_retries_limit *= 2; // give new chips twice as many
+
+ do { /* while (sat_retries < sat_retry_limit) */
+ /*
+ * 4.8.8 LMC Deskew Training
+ *
+ * LMC requires input-read-data deskew training.
+ *
+ * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
+ */
+
+ union cvmx_lmcx_ext_config ext_config;
+
+ ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+ ext_config.s.vrefint_seq_deskew = 1;
+
+ ddr_seq_print
+ ("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+ ext_config.s.vrefint_seq_deskew);
+
+ lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+ /*
+ * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
+ * LMC(0)_SEQ_CTL[INIT_START] = 1.
+ *
+ * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+ */
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.phy_dsk_reset = 1; /* RESET Deskew sequence */
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ /* LMC Deskew Training */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+ lock_retries = 0;
+
+perform_deskew_training:
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.phy_dsk_reset = 0; /* Normal Deskew sequence */
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ /* LMC Deskew Training */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+ // Moved this from validate_deskew_training
+ /* Allow deskew results to stabilize before evaluating them. */
+ udelay(deskew_validation_delay);
+
+ // Now go look at lock and saturation status...
+ validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+ print_first);
+ // after printing the first and not doing them all, no more
+ if (print_first && !print_them_all)
+ print_first = 0;
+
+ unsaturated = (dsk_counts.saturated == 0);
+ locked = (dsk_counts.unlocked == 0);
+
+ // only do locking retries if unsaturated or rawcard A or B,
+ // otherwise full SAT retry
+ if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) {
+ if (!locked) { // and not locked
+ lock_retries++;
+ lock_retries_total++;
+ if (lock_retries <= lock_retries_limit) {
+ goto perform_deskew_training;
+ } else {
+ debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n",
+ if_num, lock_retries_limit);
+ }
+ } else {
+ // only print if we did try
+ if (lock_retries_total > 0)
+ debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n",
+ if_num, lock_retries);
+ }
+ } /* if (unsaturated || spd_rawcard_aorb) */
+
+ ++sat_retries;
+
+ /*
+ * At this point, check for a DDR4 RDIMM that will not
+ * benefit from SAT retries; if so, exit
+ */
+ if (spd_rawcard_aorb && !has_no_sat) {
+ debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
+ if_num);
+ break; // no sat or lock retries
+ }
+
+ } while (!unsaturated && (sat_retries < sat_retries_limit));
+
+ debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n",
+ if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ?
+ "Timed Out" : "Completed", sat_retries - 1, lock_retries_total);
+
+ // FIXME? add saturation to reasons for fault return - give it a
+ // chance via Internal VREF
+ // FIXME? add OPTIONAL bit value to reasons for fault return -
+ // give it a chance via Internal VREF
+ if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 ||
+ (dsk_counts.bitval_errs != 0 && !disable_bitval_retries) ||
+ !unsaturated) {
+ debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n",
+ if_num);
+ // FIXME: do we want this output always for errors?
+ validate_deskew_training(priv, rank_mask, if_num,
+ &dsk_counts, 1);
+ return -1; // we did retry locally, they did not help
+ }
+
+ // NOTE: we (currently) always print one last training validation
+ // before starting Read Leveling...
+
+ return 0;
+}
+
+#define SCALING_FACTOR (1000)
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config
+static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl,
+ int rank_count, int dram_connection)
+{
+ u64 reff_s;
+ u64 rser_s = (dram_connection) ? 0 : 15;
+ u64 vdd = 1200;
+ u64 vref;
+ // 99 == HiZ
+ u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+ 1 * 1024 * 1024 : rtt_wr);
+ u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) &&
+ (rtt_wr != 0))) ?
+ 1 * 1024 * 1024 : rtt_park);
+ u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+ int vref_value;
+ u64 rangepc = 6000; // range1 base
+ u64 vrefpc;
+ int vref_range = 0;
+
+ reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s));
+
+ vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) /
+ (rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR;
+
+ vref = (vref * vdd) / 2 / SCALING_FACTOR;
+
+ vrefpc = (vref * 100 * 100) / vdd;
+
+ if (vrefpc < rangepc) { // < range1 base, use range2
+ vref_range = 1 << 6; // set bit A6 for range2
+ rangepc = 4500; // range2 base is 45%
+ }
+
+ vref_value = divide_nint(vrefpc - rangepc, 65);
+ if (vref_value < 0)
+ vref_value = vref_range; // set to base of range
+ else
+ vref_value |= vref_range;
+
+ debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n",
+ rtt_wr, rtt_park, dqx_ctl, rank_count);
+ debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n",
+ rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range,
+ vref_range ? 2 : 1);
+
+ return vref_value;
+}
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs
+static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00,
+ int rtt_park_01,
+ int dqx_ctl, int rtt_nom,
+ int dram_connection)
+{
+ u64 rser = (dram_connection) ? 0 : 15;
+ u64 vdd = 1200;
+ u64 vl, vlp, vcm;
+ u64 rd0, rd1, rpullup;
+ // 99 == HiZ
+ u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+ 1 * 1024 * 1024 : rtt_wr);
+ u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00);
+ u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01);
+ u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+ u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom);
+ int vref_value;
+ u64 rangepc = 6000; // range1 base
+ u64 vrefpc;
+ int vref_range = 0;
+
+ // rd0 = (RTT_NOM (parallel) RTT_WR) + =
+ // ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER
+ rd0 = divide_nint((rtt_nom_s * rtt_wr_s),
+ (rtt_nom_s + rtt_wr_s)) + rser;
+
+ // rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER =
+ // ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER
+ rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s),
+ (rtt_park_00_s + rtt_park_01_s)) + rser;
+
+ // rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1)
+ rpullup = divide_nint((rd0 * rd1), (rd0 + rd1));
+
+ // vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2
+ vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup));
+
+ // vlp = ((RSER / rd0) * (1.2 - vl)) + vl
+ vlp = divide_nint((rser * (vdd - vl)), rd0) + vl;
+
+ // vcm = (vlp + 1.2) / 2
+ vcm = divide_nint((vlp + vdd), 2);
+
+ // vrefpc = (vcm / 1.2) * 100
+ vrefpc = divide_nint((vcm * 100 * 100), vdd);
+
+ if (vrefpc < rangepc) { // < range1 base, use range2
+ vref_range = 1 << 6; // set bit A6 for range2
+ rangepc = 4500; // range2 base is 45%
+ }
+
+ vref_value = divide_nint(vrefpc - rangepc, 65);
+ if (vref_value < 0)
+ vref_value = vref_range; // set to base of range
+ else
+ vref_value |= vref_range;
+
+ debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n",
+ rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value,
+ vref_value);
+
+ return vref_value;
+}
+
+// NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
+static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx,
+ int dimm_count, int rank_count,
+ struct impedence_values *imp_values,
+ int is_stacked_die, int dram_connection)
+{
+ int computed_final_vref_value = 0;
+ int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT;
+ const char *s;
+ int rtt_wr, dqx_ctl, rtt_nom, index;
+ union cvmx_lmcx_modereg_params1 lmc_modereg_params1;
+ union cvmx_lmcx_modereg_params2 lmc_modereg_params2;
+ union cvmx_lmcx_comp_ctl2 comp_ctl2;
+ int rtt_park;
+ int rtt_park_00;
+ int rtt_park_01;
+
+ debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n",
+ if_num, rankx, __func__, dram_connection);
+
+ // allow some overrides...
+ s = env_get("ddr_adjust_computed_vref");
+ if (s) {
+ enable_adjust = !!simple_strtoul(s, NULL, 0);
+ if (!enable_adjust) {
+ debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n",
+ if_num, rankx);
+ }
+ }
+
+ s = env_get("ddr_set_computed_vref");
+ if (s) {
+ int new_vref = simple_strtoul(s, NULL, 0);
+
+ debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n",
+ if_num, rankx, new_vref, new_vref);
+ return new_vref;
+ }
+
+ /*
+ * Calculate an alternative to the measured vref value
+ * but only for configurations we know how to...
+ */
+ // We have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
+ // and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot
+ // configs, and can use the 2-rank 2-slot code for 1-rank DIMMs
+ // in 2-slot configs.
+
+ lmc_modereg_params1.u64 =
+ lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+ lmc_modereg_params2.u64 =
+ lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num));
+ comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
+
+ // WR always comes from the current rank
+ index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03;
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+ index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04;
+ rtt_wr = imp_values->rtt_wr_ohms[index];
+
+ // separate calculations for 1 vs 2 DIMMs per LMC
+ if (dimm_count == 1) {
+ // PARK comes from this rank if 1-rank, otherwise other rank
+ index =
+ (lmc_modereg_params2.u64 >>
+ ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
+ rtt_park = imp_values->rtt_nom_ohms[index];
+ computed_final_vref_value =
+ compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl,
+ rank_count, dram_connection);
+ } else {
+ // get both PARK values from the other DIMM
+ index =
+ (lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) &
+ 0x07;
+ rtt_park_00 = imp_values->rtt_nom_ohms[index];
+ index =
+ (lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) &
+ 0x07;
+ rtt_park_01 = imp_values->rtt_nom_ohms[index];
+ // NOM comes from this rank if 1-rank, otherwise other rank
+ index =
+ (lmc_modereg_params1.u64 >>
+ ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
+ rtt_nom = imp_values->rtt_nom_ohms[index];
+ computed_final_vref_value =
+ compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01,
+ dqx_ctl, rtt_nom, dram_connection);
+ }
+
+ if (enable_adjust) {
+ union cvmx_lmcx_config lmc_config;
+ union cvmx_lmcx_control lmc_control;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+ /*
+ * New computed vref = existing computed vref – X
+ *
+ * The value of X is depending on different conditions.
+ * Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked
+ * die 2Rx4, so I conclude the results into two conditions:
+ *
+ * 1. Stacked Die: 2Rx4
+ * 1-slot: offset = 7. i, e New computed vref = existing
+ * computed vref – 7
+ * 2-slot: offset = 6
+ *
+ * 2. Regular: 2Rx4
+ * 1-slot: offset = 3
+ * 2-slot: offset = 2
+ */
+ // we know we never get called unless DDR4, so test just
+ // the other conditions
+ if (lmc_control.s.rdimm_ena == 1 &&
+ rank_count == 2 && lmc_config.s.mode_x4dev) {
+ // it must first be RDIMM and 2-rank and x4
+ int adj;
+
+ // now do according to stacked die or not...
+ if (is_stacked_die)
+ adj = (dimm_count == 1) ? -7 : -6;
+ else
+ adj = (dimm_count == 1) ? -3 : -2;
+
+ // we must have adjusted it, so print it out if
+ // verbosity is right
+ debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
+ if_num, rankx, computed_final_vref_value,
+ computed_final_vref_value,
+ computed_final_vref_value + adj,
+ computed_final_vref_value + adj);
+ computed_final_vref_value += adj;
+ }
+ }
+
+ return computed_final_vref_value;
+}
+
+static void unpack_rlevel_settings(int if_bytemask, int ecc_ena,
+ struct rlevel_byte_data *rlevel_byte,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank)
+{
+ if ((if_bytemask & 0xff) == 0xff) {
+ if (ecc_ena) {
+ rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7;
+ rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6;
+ rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5;
+ rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4;
+ /* ECC */
+ rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8;
+ } else {
+ rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;
+ rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;
+ rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;
+ rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;
+ }
+ } else {
+ rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8; /* unused */
+ rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7; /* unused */
+ rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6; /* unused */
+ rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5; /* unused */
+ rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4; /* ECC */
+ }
+
+ rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3;
+ rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2;
+ rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1;
+ rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0;
+}
+
+static void pack_rlevel_settings(int if_bytemask, int ecc_ena,
+ struct rlevel_byte_data *rlevel_byte,
+ union cvmx_lmcx_rlevel_rankx
+ *final_rlevel_rank)
+{
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank;
+
+ if ((if_bytemask & 0xff) == 0xff) {
+ if (ecc_ena) {
+ lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay;
+ lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay;
+ lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay;
+ lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay;
+ /* ECC */
+ lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay;
+ } else {
+ lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+ lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+ lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+ lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+ }
+ } else {
+ lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay;
+ lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+ lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+ lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+ lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+ }
+
+ lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay;
+ lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay;
+ lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay;
+ lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay;
+
+ *final_rlevel_rank = lmc_rlevel_rank;
+}
+
+/////////////////// These are the RLEVEL settings display routines
+
+// flags
+#define WITH_NOTHING 0
+#define WITH_SCORE 1
+#define WITH_AVERAGE 2
+#define WITH_FINAL 4
+#define WITH_COMPUTE 8
+
+static void do_display_rl(int if_num,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+ int rank, int flags, int score)
+{
+ char score_buf[16];
+ char *msg_buf;
+ char hex_buf[20];
+
+ if (flags & WITH_SCORE) {
+ snprintf(score_buf, sizeof(score_buf), "(%d)", score);
+ } else {
+ score_buf[0] = ' ';
+ score_buf[1] = 0;
+ }
+
+ if (flags & WITH_AVERAGE) {
+ msg_buf = " DELAY AVERAGES ";
+ } else if (flags & WITH_FINAL) {
+ msg_buf = " FINAL SETTINGS ";
+ } else if (flags & WITH_COMPUTE) {
+ msg_buf = " COMPUTED DELAYS ";
+ } else {
+ snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+ (unsigned long long)lmc_rlevel_rank.u64);
+ msg_buf = hex_buf;
+ }
+
+ debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
+ if_num, rank, lmc_rlevel_rank.s.status, msg_buf,
+ lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7,
+ lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5,
+ lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3,
+ lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1,
+ lmc_rlevel_rank.s.byte0, score_buf);
+}
+
+static void display_rl(int if_num,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank)
+{
+ do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0);
+}
+
+static void display_rl_with_score(int if_num,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+ int rank, int score)
+{
+ do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score);
+}
+
+static void display_rl_with_final(int if_num,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+ int rank)
+{
+ do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0);
+}
+
+static void display_rl_with_computed(int if_num,
+ union cvmx_lmcx_rlevel_rankx
+ lmc_rlevel_rank, int rank, int score)
+{
+ do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score);
+}
+
+// flag values
+#define WITH_RODT_BLANK 0
+#define WITH_RODT_SKIPPING 1
+#define WITH_RODT_BESTROW 2
+#define WITH_RODT_BESTSCORE 3
+// control
+#define SKIP_SKIPPING 1
+
+static const char *with_rodt_canned_msgs[4] = {
+ " ", "SKIPPING ", "BEST ROW ", "BEST SCORE"
+};
+
+static void display_rl_with_rodt(int if_num,
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+ int rank, int score,
+ int nom_ohms, int rodt_ohms, int flag)
+{
+ const char *msg_buf;
+ char set_buf[20];
+
+#if SKIP_SKIPPING
+ if (flag == WITH_RODT_SKIPPING)
+ return;
+#endif
+
+ msg_buf = with_rodt_canned_msgs[flag];
+ if (nom_ohms < 0) {
+ snprintf(set_buf, sizeof(set_buf), " RODT %3d ",
+ rodt_ohms);
+ } else {
+ snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms,
+ rodt_ohms);
+ }
+
+ debug("N0.LMC%d.R%d: Rlevel %s %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
+ if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8,
+ lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6,
+ lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4,
+ lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2,
+ lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score);
+}
+
+static void do_display_wl(int if_num,
+ union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+ int rank, int flags)
+{
+ char *msg_buf;
+ char hex_buf[20];
+
+ if (flags & WITH_FINAL) {
+ msg_buf = " FINAL SETTINGS ";
+ } else {
+ snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+ (unsigned long long)lmc_wlevel_rank.u64);
+ msg_buf = hex_buf;
+ }
+
+ debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+ if_num, rank, lmc_wlevel_rank.s.status, msg_buf,
+ lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7,
+ lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5,
+ lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3,
+ lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1,
+ lmc_wlevel_rank.s.byte0);
+}
+
+static void display_wl(int if_num,
+ union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank)
+{
+ do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING);
+}
+
+static void display_wl_with_final(int if_num,
+ union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+ int rank)
+{
+ do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL);
+}
+
+// pretty-print bitmask adjuster
+static u64 ppbm(u64 bm)
+{
+ if (bm != 0ul) {
+ while ((bm & 0x0fful) == 0ul)
+ bm >>= 4;
+ }
+
+ return bm;
+}
+
+// xlate PACKED index to UNPACKED index to use with rlevel_byte
+#define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4))
+// xlate UNPACKED index to PACKED index to use with rlevel_bitmask
+#define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i))
+
+// flag values
+#define WITH_WL_BITMASKS 0
+#define WITH_RL_BITMASKS 1
+#define WITH_RL_MASK_SCORES 2
+#define WITH_RL_SEQ_SCORES 3
+
+static void do_display_bm(int if_num, int rank, void *bm,
+ int flags, int ecc)
+{
+ if (flags == WITH_WL_BITMASKS) {
+ // wlevel_bitmask array in PACKED index order, so just
+ // print them
+ int *bitmasks = (int *)bm;
+
+ debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
+ if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6],
+ bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2],
+ bitmasks[1], bitmasks[0]
+ );
+ } else if (flags == WITH_RL_BITMASKS) {
+ // rlevel_bitmask array in PACKED index order, so just
+ // print them
+ struct rlevel_bitmask *rlevel_bitmask =
+ (struct rlevel_bitmask *)bm;
+
+ debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks 8:0 : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
+ if_num, rank, ppbm(rlevel_bitmask[8].bm),
+ ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm),
+ ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm),
+ ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm),
+ ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm)
+ );
+ } else if (flags == WITH_RL_MASK_SCORES) {
+ // rlevel_bitmask array in PACKED index order, so just
+ // print them
+ struct rlevel_bitmask *rlevel_bitmask =
+ (struct rlevel_bitmask *)bm;
+
+ debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+ if_num, rank, rlevel_bitmask[8].errs,
+ rlevel_bitmask[7].errs, rlevel_bitmask[6].errs,
+ rlevel_bitmask[5].errs, rlevel_bitmask[4].errs,
+ rlevel_bitmask[3].errs, rlevel_bitmask[2].errs,
+ rlevel_bitmask[1].errs, rlevel_bitmask[0].errs);
+ } else if (flags == WITH_RL_SEQ_SCORES) {
+ // rlevel_byte array in UNPACKED index order, so xlate
+ // and print them
+ struct rlevel_byte_data *rlevel_byte =
+ (struct rlevel_byte_data *)bm;
+
+ debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+ if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs,
+ rlevel_byte[XPU(7, ecc)].sqerrs,
+ rlevel_byte[XPU(6, ecc)].sqerrs,
+ rlevel_byte[XPU(5, ecc)].sqerrs,
+ rlevel_byte[XPU(4, ecc)].sqerrs,
+ rlevel_byte[XPU(3, ecc)].sqerrs,
+ rlevel_byte[XPU(2, ecc)].sqerrs,
+ rlevel_byte[XPU(1, ecc)].sqerrs,
+ rlevel_byte[XPU(0, ecc)].sqerrs);
+ }
+}
+
+static void display_wl_bm(int if_num, int rank, int *bitmasks)
+{
+ do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
+}
+
+static void display_rl_bm(int if_num, int rank,
+ struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+ do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS,
+ ecc_ena);
+}
+
+static void display_rl_bm_scores(int if_num, int rank,
+ struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+ do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES,
+ ecc_ena);
+}
+
+static void display_rl_seq_scores(int if_num, int rank,
+ struct rlevel_byte_data *bytes, int ecc_ena)
+{
+ do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
+}
+
+#define RODT_OHMS_COUNT 8
+#define RTT_NOM_OHMS_COUNT 8
+#define RTT_NOM_TABLE_COUNT 8
+#define RTT_WR_OHMS_COUNT 8
+#define DIC_OHMS_COUNT 3
+#define DRIVE_STRENGTH_COUNT 15
+
+static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = {
+ 0, 40, 60, 80, 120, 240, 34, 48 };
+static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+ 0, 60, 120, 40, 240, 48, 80, 34 };
+static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+ 0, 4, 2, 6, 1, 5, 3, 7 };
+// setting HiZ ohms to 99 for computed vref
+static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = {
+ 0, 120, 240, 99, 80 };
+static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 };
+static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = {
+ 0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 };
+static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = {
+ 0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+struct impedence_values ddr4_impedence_val = {
+ .rodt_ohms = ddr4_rodt_ohms,
+ .rtt_nom_ohms = ddr4_rtt_nom_ohms,
+ .rtt_nom_table = ddr4_rtt_nom_table,
+ .rtt_wr_ohms = ddr4_rtt_wr_ohms,
+ .dic_ohms = ddr4_dic_ohms,
+ .drive_strength = ddr4_drive_strength,
+ .dqx_strength = ddr4_dqx_strength,
+};
+
+static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = {
+ 0, 20, 30, 40, 60, 120, 0, 0 };
+static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+ 0, 60, 120, 40, 20, 30, 0, 0 };
+static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+ 0, 2, 1, 3, 5, 4, 0, 0 };
+static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 };
+static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 };
+static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = {
+ 0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+static struct impedence_values ddr3_impedence_val = {
+ .rodt_ohms = ddr3_rodt_ohms,
+ .rtt_nom_ohms = ddr3_rtt_nom_ohms,
+ .rtt_nom_table = ddr3_rtt_nom_table,
+ .rtt_wr_ohms = ddr3_rtt_wr_ohms,
+ .dic_ohms = ddr3_dic_ohms,
+ .drive_strength = ddr3_drive_strength,
+ .dqx_strength = ddr3_drive_strength,
+};
+
+static u64 hertz_to_psecs(u64 hertz)
+{
+ /* Clock in psecs */
+ return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz);
+}
+
+#define DIVIDEND_SCALE 1000 /* Scale to avoid rounding error. */
+
+static u64 psecs_to_mts(u64 psecs)
+{
+ return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE),
+ psecs), DIVIDEND_SCALE);
+}
+
+#define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m))))
+
+static unsigned long pretty_psecs_to_mts(u64 psecs)
+{
+ u64 ret = 0; // default to error
+
+ if (WITHIN(psecs, 2500, 1))
+ ret = 800;
+ else if (WITHIN(psecs, 1875, 1))
+ ret = 1066;
+ else if (WITHIN(psecs, 1500, 1))
+ ret = 1333;
+ else if (WITHIN(psecs, 1250, 1))
+ ret = 1600;
+ else if (WITHIN(psecs, 1071, 1))
+ ret = 1866;
+ else if (WITHIN(psecs, 937, 1))
+ ret = 2133;
+ else if (WITHIN(psecs, 833, 1))
+ ret = 2400;
+ else if (WITHIN(psecs, 750, 1))
+ ret = 2666;
+ return ret;
+}
+
+static u64 mts_to_hertz(u64 mts)
+{
+ return ((mts * 1000 * 1000) / 2);
+}
+
+static int compute_rc3x(int64_t tclk_psecs)
+{
+ long speed;
+ long tclk_psecs_min, tclk_psecs_max;
+ long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
+ int rc3x;
+
+#define ENCODING_BASE 1240
+
+ data_rate_mhz = psecs_to_mts(tclk_psecs);
+
+ /*
+ * 2400 MT/s is a special case. Using integer arithmetic it rounds
+ * from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
+ * proper setting from the table.
+ */
+ if (tclk_psecs == 833)
+ data_rate_mhz = 2400;
+
+ for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
+ int error = 0;
+
+ /* Clock in psecs */
+ tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00));
+ /* Clock in psecs */
+ tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18));
+
+ data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
+ data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
+
+ /* Force alingment to multiple to avound rounding errors. */
+ data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
+ data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
+
+ error += (speed + 00 != data_rate_mhz_min);
+ error += (speed + 20 != data_rate_mhz_max);
+
+ rc3x = (speed - ENCODING_BASE) / 20;
+
+ if (data_rate_mhz <= (speed + 20))
+ break;
+ }
+
+ return rc3x;
+}
+
+/*
+ * static global variables needed, so that functions (loops) can be
+ * restructured from the main huge function. Its not elegant, but the
+ * only way to break the original functions like init_octeon3_ddr3_interface()
+ * into separate logical smaller functions with less indentation levels.
+ */
+static int if_num __section(".data");
+static u32 if_mask __section(".data");
+static int ddr_hertz __section(".data");
+
+static struct ddr_conf *ddr_conf __section(".data");
+static const struct dimm_odt_config *odt_1rank_config __section(".data");
+static const struct dimm_odt_config *odt_2rank_config __section(".data");
+static const struct dimm_odt_config *odt_4rank_config __section(".data");
+static struct dimm_config *dimm_config_table __section(".data");
+static const struct dimm_odt_config *odt_config __section(".data");
+static const struct ddr3_custom_config *c_cfg __section(".data");
+
+static int odt_idx __section(".data");
+
+static ulong tclk_psecs __section(".data");
+static ulong eclk_psecs __section(".data");
+
+static int row_bits __section(".data");
+static int col_bits __section(".data");
+static int num_banks __section(".data");
+static int num_ranks __section(".data");
+static int dram_width __section(".data");
+static int dimm_count __section(".data");
+/* Accumulate and report all the errors before giving up */
+static int fatal_error __section(".data");
+/* Flag that indicates safe DDR settings should be used */
+static int safe_ddr_flag __section(".data");
+/* Octeon II Default: 64bit interface width */
+static int if_64b __section(".data");
+static int if_bytemask __section(".data");
+static u32 mem_size_mbytes __section(".data");
+static unsigned int didx __section(".data");
+static int bank_bits __section(".data");
+static int bunk_enable __section(".data");
+static int rank_mask __section(".data");
+static int column_bits_start __section(".data");
+static int row_lsb __section(".data");
+static int pbank_lsb __section(".data");
+static int use_ecc __section(".data");
+static int mtb_psec __section(".data");
+static short ftb_dividend __section(".data");
+static short ftb_divisor __section(".data");
+static int taamin __section(".data");
+static int tckmin __section(".data");
+static int cl __section(".data");
+static int min_cas_latency __section(".data");
+static int max_cas_latency __section(".data");
+static int override_cas_latency __section(".data");
+static int ddr_rtt_nom_auto __section(".data");
+static int ddr_rodt_ctl_auto __section(".data");
+
+static int spd_addr __section(".data");
+static int spd_org __section(".data");
+static int spd_banks __section(".data");
+static int spd_rdimm __section(".data");
+static int spd_dimm_type __section(".data");
+static int spd_ecc __section(".data");
+static u32 spd_cas_latency __section(".data");
+static int spd_mtb_dividend __section(".data");
+static int spd_mtb_divisor __section(".data");
+static int spd_tck_min __section(".data");
+static int spd_taa_min __section(".data");
+static int spd_twr __section(".data");
+static int spd_trcd __section(".data");
+static int spd_trrd __section(".data");
+static int spd_trp __section(".data");
+static int spd_tras __section(".data");
+static int spd_trc __section(".data");
+static int spd_trfc __section(".data");
+static int spd_twtr __section(".data");
+static int spd_trtp __section(".data");
+static int spd_tfaw __section(".data");
+static int spd_addr_mirror __section(".data");
+static int spd_package __section(".data");
+static int spd_rawcard __section(".data");
+static int spd_rawcard_aorb __section(".data");
+static int spd_rdimm_registers __section(".data");
+static int spd_thermal_sensor __section(".data");
+
+static int is_stacked_die __section(".data");
+static int is_3ds_dimm __section(".data");
+// 3DS: logical ranks per package rank
+static int lranks_per_prank __section(".data");
+// 3DS: logical ranks bits
+static int lranks_bits __section(".data");
+// in Mbits; only used for 3DS
+static int die_capacity __section(".data");
+
+static enum ddr_type ddr_type __section(".data");
+
+static int twr __section(".data");
+static int trcd __section(".data");
+static int trrd __section(".data");
+static int trp __section(".data");
+static int tras __section(".data");
+static int trc __section(".data");
+static int trfc __section(".data");
+static int twtr __section(".data");
+static int trtp __section(".data");
+static int tfaw __section(".data");
+
+static int ddr4_tckavgmin __section(".data");
+static int ddr4_tckavgmax __section(".data");
+static int ddr4_trdcmin __section(".data");
+static int ddr4_trpmin __section(".data");
+static int ddr4_trasmin __section(".data");
+static int ddr4_trcmin __section(".data");
+static int ddr4_trfc1min __section(".data");
+static int ddr4_trfc2min __section(".data");
+static int ddr4_trfc4min __section(".data");
+static int ddr4_tfawmin __section(".data");
+static int ddr4_trrd_smin __section(".data");
+static int ddr4_trrd_lmin __section(".data");
+static int ddr4_tccd_lmin __section(".data");
+
+static int wl_mask_err __section(".data");
+static int wl_loops __section(".data");
+static int default_rtt_nom[4] __section(".data");
+static int dyn_rtt_nom_mask __section(".data");
+static struct impedence_values *imp_val __section(".data");
+static char default_rodt_ctl __section(".data");
+// default to disabled (ie, try LMC restart, not chip reset)
+static int ddr_disable_chip_reset __section(".data");
+static const char *dimm_type_name __section(".data");
+static int match_wl_rtt_nom __section(".data");
+
+#if SWL_TRY_HWL_ALT
+struct hwl_alt_by_rank {
+ u16 hwl_alt_mask; // mask of bytelanes with alternate
+ u16 hwl_alt_delay[9]; // bytelane alternate avail if mask=1
+};
+
+static struct hwl_alt_by_rank hwl_alts[4] __section(".data");
+#endif /* SWL_TRY_HWL_ALT */
+
+#define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3 // was: 5
+static int internal_retries __section(".data");
+
+static int deskew_training_errors __section(".data");
+static struct deskew_counts deskew_training_results __section(".data");
+static int disable_deskew_training __section(".data");
+static int restart_if_dsk_incomplete __section(".data");
+static int dac_eval_retries __section(".data");
+static int dac_settings[9] __section(".data");
+static int num_samples __section(".data");
+static int sample __section(".data");
+static int lane __section(".data");
+static int last_lane __section(".data");
+static int total_dac_eval_retries __section(".data");
+static int dac_eval_exhausted __section(".data");
+
+#define DEFAULT_DAC_SAMPLES 7 // originally was 5
+#define DAC_RETRIES_LIMIT 2
+
+struct bytelane_sample {
+ s16 bytes[DEFAULT_DAC_SAMPLES];
+};
+
+static struct bytelane_sample lanes[9] __section(".data");
+
+static char disable_sequential_delay_check __section(".data");
+static int wl_print __section(".data");
+
+#if ALLOW_BY_RANK_INIT
+static int enable_by_rank_init __section(".data");
+static int saved_rank_mask __section(".data");
+static int by_rank __section(".data");
+static struct deskew_data rank_dsk[4] __section(".data");
+static struct dac_data rank_dac[4] __section(".data");
+#endif /* ALLOW_BY_RANK_INIT */
+
+// todo: perhaps remove node at some time completely?
+static int node __section(".data");
+static int base_cl __section(".data");
+
+/* Parameters from DDR3 Specifications */
+#define DDR3_TREFI 7800000 /* 7.8 us */
+#define DDR3_ZQCS 80000ull /* 80 ns */
+#define DDR3_ZQCS_INTERNAL 1280000000ull /* 128ms/100 */
+#define DDR3_TCKE 5000 /* 5 ns */
+#define DDR3_TMRD 4 /* 4 nCK */
+#define DDR3_TDLLK 512 /* 512 nCK */
+#define DDR3_TMPRR 1 /* 1 nCK */
+#define DDR3_TWLMRD 40 /* 40 nCK */
+#define DDR3_TWLDQSEN 25 /* 25 nCK */
+
+/* Parameters from DDR4 Specifications */
+#define DDR4_TMRD 8 /* 8 nCK */
+#define DDR4_TDLLK 768 /* 768 nCK */
+
+static void lmc_config(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_config cfg;
+ char *s;
+
+ cfg.u64 = 0;
+
+ cfg.cn78xx.ecc_ena = use_ecc;
+ cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb);
+ cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb);
+
+ cfg.cn78xx.idlepower = 0; /* Disabled */
+
+ s = lookup_env(priv, "ddr_idlepower");
+ if (s)
+ cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0);
+
+ cfg.cn78xx.forcewrite = 0; /* Disabled */
+ /* Include memory reference address in the ECC */
+ cfg.cn78xx.ecc_adr = 1;
+
+ s = lookup_env(priv, "ddr_ecc_adr");
+ if (s)
+ cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0);
+
+ cfg.cn78xx.reset = 0;
+
+ /*
+ * Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
+ * RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
+ * ref_zqcs_int(18:7) to
+ * RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
+ * value should always be greater than 32, to account for
+ * resistor calibration delays.
+ */
+
+ cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f);
+ cfg.cn78xx.ref_zqcs_int |=
+ ((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) /
+ (512 * 128))) & 0xfff) << 7);
+
+ cfg.cn78xx.early_dqx = 1; /* Default to enabled */
+
+ s = lookup_env(priv, "ddr_early_dqx");
+ if (!s)
+ s = lookup_env(priv, "ddr%d_early_dqx", if_num);
+
+ if (s)
+ cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0);
+
+ cfg.cn78xx.sref_with_dll = 0;
+
+ cfg.cn78xx.rank_ena = bunk_enable;
+ cfg.cn78xx.rankmask = rank_mask; /* Set later */
+ cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) &
+ rank_mask;
+ /* Set once and don't change it. */
+ cfg.cn78xx.init_status = rank_mask;
+ cfg.cn78xx.early_unload_d0_r0 = 0;
+ cfg.cn78xx.early_unload_d0_r1 = 0;
+ cfg.cn78xx.early_unload_d1_r0 = 0;
+ cfg.cn78xx.early_unload_d1_r1 = 0;
+ cfg.cn78xx.scrz = 0;
+ if (octeon_is_cpuid(OCTEON_CN70XX))
+ cfg.cn78xx.mode32b = 1; /* Read-only. Always 1. */
+ cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0;
+ cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) &&
+ (dram_width == 16)) ? 0 : 1;
+
+ s = lookup_env_ull(priv, "ddr_config");
+ if (s)
+ cfg.u64 = simple_strtoull(s, NULL, 0);
+ debug("LMC_CONFIG : 0x%016llx\n",
+ cfg.u64);
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+}
+
+static void lmc_control(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_control ctrl;
+ char *s;
+
+ ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ ctrl.s.rdimm_ena = spd_rdimm;
+ ctrl.s.bwcnt = 0; /* Clear counter later */
+ if (spd_rdimm)
+ ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm);
+ else
+ ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm);
+ ctrl.s.pocas = 0;
+ ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2);
+ ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0;
+ ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0;
+ ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0;
+ ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0;
+ ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0;
+ /* discards writes to addresses that don't exist in the DRAM */
+ ctrl.s.nxm_write_en = 0;
+ ctrl.s.max_write_batch = 8;
+ ctrl.s.xor_bank = 1;
+ ctrl.s.auto_dclkdis = 1;
+ ctrl.s.int_zqcs_dis = 0;
+ ctrl.s.ext_zqcs_dis = 0;
+ ctrl.s.bprch = 1;
+ ctrl.s.wodt_bprch = 1;
+ ctrl.s.rodt_bprch = 1;
+
+ s = lookup_env(priv, "ddr_xor_bank");
+ if (s)
+ ctrl.s.xor_bank = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_2t");
+ if (s)
+ ctrl.s.ddr2t = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_fprch2");
+ if (s)
+ ctrl.s.fprch2 = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_bprch");
+ if (s)
+ ctrl.s.bprch = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_wodt_bprch");
+ if (s)
+ ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rodt_bprch");
+ if (s)
+ ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_int_zqcs_dis");
+ if (s)
+ ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_ext_zqcs_dis");
+ if (s)
+ ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env_ull(priv, "ddr_control");
+ if (s)
+ ctrl.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("LMC_CONTROL : 0x%016llx\n",
+ ctrl.u64);
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+static void lmc_timing_params0(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_timing_params0 tp0;
+ unsigned int trp_value;
+ char *s;
+
+ tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num));
+
+ trp_value = divide_roundup(trp, tclk_psecs) - 1;
+ debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
+ trp_value +
+ (unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull),
+ tclk_psecs)) - 4);
+ s = lookup_env_ull(priv, "ddr_use_old_trp");
+ if (s) {
+ if (!!simple_strtoull(s, NULL, 0)) {
+ trp_value +=
+ divide_roundup(max(4ull * tclk_psecs, 7500ull),
+ tclk_psecs) - 4;
+ debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n",
+ trp_value);
+ }
+ }
+
+ tp0.cn78xx.txpr =
+ divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull),
+ 16 * tclk_psecs);
+ tp0.cn78xx.trp = trp_value & 0x1f;
+ tp0.cn78xx.tcksre =
+ divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1;
+
+ if (ddr_type == DDR4_DRAM) {
+ int tzqinit = 4; // Default to 4, for all DDR4 speed bins
+
+ s = lookup_env(priv, "ddr_tzqinit");
+ if (s)
+ tzqinit = simple_strtoul(s, NULL, 0);
+
+ tp0.cn78xx.tzqinit = tzqinit;
+ /* Always 8. */
+ tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs,
+ (16 * tclk_psecs));
+ tp0.cn78xx.tcke =
+ divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE),
+ tclk_psecs) - 1;
+ tp0.cn78xx.tmrd =
+ divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1;
+ tp0.cn78xx.tmod = 25; /* 25 is the max allowed */
+ tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256);
+ } else {
+ tp0.cn78xx.tzqinit =
+ divide_roundup(max(512ull * tclk_psecs, 640000ull),
+ (256 * tclk_psecs));
+ tp0.cn78xx.tzqcs =
+ divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS),
+ (16 * tclk_psecs));
+ tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1;
+ tp0.cn78xx.tmrd =
+ divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1;
+ tp0.cn78xx.tmod =
+ divide_roundup(max(12ull * tclk_psecs, 15000ull),
+ tclk_psecs) - 1;
+ tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256);
+ }
+
+ s = lookup_env_ull(priv, "ddr_timing_params0");
+ if (s)
+ tp0.u64 = simple_strtoull(s, NULL, 0);
+ debug("TIMING_PARAMS0 : 0x%016llx\n",
+ tp0.u64);
+ lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64);
+}
+
+static void lmc_timing_params1(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_timing_params1 tp1;
+ unsigned int txp, temp_trcd, trfc_dlr;
+ char *s;
+
+ tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+
+ /* .cn70xx. */
+ tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1;
+
+ tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1;
+
+ temp_trcd = divide_roundup(trcd, tclk_psecs);
+ if (temp_trcd > 15) {
+ debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n",
+ temp_trcd);
+ }
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) {
+ /*
+ * Let .trcd=0 serve as a flag that the field has
+ * overflowed. Must use Additive Latency mode as a
+ * workaround.
+ */
+ temp_trcd = 0;
+ }
+ tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf;
+ tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1;
+
+ tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1;
+ tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs);
+
+ if (ddr_type == DDR4_DRAM) {
+ /* Workaround bug 24006. Use Trrd_l. */
+ tp1.cn78xx.trrd =
+ divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+ } else {
+ tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2;
+ }
+
+ /*
+ * tXP = max( 3nCK, 7.5 ns) DDR3-800 tCLK = 2500 psec
+ * tXP = max( 3nCK, 7.5 ns) DDR3-1066 tCLK = 1875 psec
+ * tXP = max( 3nCK, 6.0 ns) DDR3-1333 tCLK = 1500 psec
+ * tXP = max( 3nCK, 6.0 ns) DDR3-1600 tCLK = 1250 psec
+ * tXP = max( 3nCK, 6.0 ns) DDR3-1866 tCLK = 1071 psec
+ * tXP = max( 3nCK, 6.0 ns) DDR3-2133 tCLK = 937 psec
+ */
+ txp = (tclk_psecs < 1875) ? 6000 : 7500;
+ txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp),
+ tclk_psecs) - 1;
+ if (txp > 7) {
+ debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n",
+ txp);
+ }
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7)
+ txp = 7; // max it out
+ tp1.cn78xx.txp = (txp >> 0) & 7;
+ tp1.cn78xx.txp_ext = (txp >> 3) & 1;
+
+ tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs,
+ 4 * tclk_psecs);
+ tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs,
+ 4 * tclk_psecs);
+ tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs);
+ tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull),
+ tclk_psecs) - 1;
+
+ if (ddr_type == DDR4_DRAM && is_3ds_dimm) {
+ /*
+ * 4 Gb: tRFC_DLR = 90 ns
+ * 8 Gb: tRFC_DLR = 120 ns
+ * 16 Gb: tRFC_DLR = 190 ns FIXME?
+ */
+ if (die_capacity == 0x1000) // 4 Gbit
+ trfc_dlr = 90;
+ else if (die_capacity == 0x2000) // 8 Gbit
+ trfc_dlr = 120;
+ else if (die_capacity == 0x4000) // 16 Gbit
+ trfc_dlr = 190;
+ else
+ trfc_dlr = 0;
+
+ if (trfc_dlr == 0) {
+ debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
+ node, if_num, die_capacity);
+ } else {
+ tp1.cn78xx.trfc_dlr =
+ divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs);
+ debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
+ node, if_num, tp1.cn78xx.trfc_dlr);
+ }
+ }
+
+ s = lookup_env_ull(priv, "ddr_timing_params1");
+ if (s)
+ tp1.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("TIMING_PARAMS1 : 0x%016llx\n",
+ tp1.u64);
+ lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+}
+
+static void lmc_timing_params2(struct ddr_priv *priv)
+{
+ if (ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_timing_params1 tp1;
+ union cvmx_lmcx_timing_params2 tp2;
+ int temp_trrd_l;
+
+ tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+ tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num));
+ debug("TIMING_PARAMS2 : 0x%016llx\n",
+ tp2.u64);
+
+ temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+ if (temp_trrd_l > 7)
+ debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n",
+ temp_trrd_l);
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7)
+ temp_trrd_l = 7; // max it out
+ tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7;
+ tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1;
+
+ // correct for 1600-2400
+ tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull),
+ tclk_psecs) - 1;
+ tp2.s.t_rw_op_max = 7;
+ tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull),
+ tclk_psecs) - 1;
+
+ debug("TIMING_PARAMS2 : 0x%016llx\n",
+ tp2.u64);
+ lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64);
+
+ /*
+ * Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
+ * for Write-to-Read operations to the same Bank Group
+ */
+ if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) {
+ tp1.cn78xx.twtr = tp2.s.twtr_l - 4;
+ debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n",
+ tp1.cn78xx.twtr, tp2.s.twtr_l);
+ debug("TIMING_PARAMS1 : 0x%016llx\n",
+ tp1.u64);
+ lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+ }
+ }
+}
+
+static void lmc_modereg_params0(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_modereg_params0 mp0;
+ int param;
+ char *s;
+
+ mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+
+ if (ddr_type == DDR4_DRAM) {
+ mp0.s.cwl = 0; /* 1600 (1250ps) */
+ if (tclk_psecs < 1250)
+ mp0.s.cwl = 1; /* 1866 (1072ps) */
+ if (tclk_psecs < 1072)
+ mp0.s.cwl = 2; /* 2133 (938ps) */
+ if (tclk_psecs < 938)
+ mp0.s.cwl = 3; /* 2400 (833ps) */
+ if (tclk_psecs < 833)
+ mp0.s.cwl = 4; /* 2666 (750ps) */
+ if (tclk_psecs < 750)
+ mp0.s.cwl = 5; /* 3200 (625ps) */
+ } else {
+ /*
+ ** CSR CWL CAS write Latency
+ ** === === =================================
+ ** 0 5 ( tCK(avg) >= 2.5 ns)
+ ** 1 6 (2.5 ns > tCK(avg) >= 1.875 ns)
+ ** 2 7 (1.875 ns > tCK(avg) >= 1.5 ns)
+ ** 3 8 (1.5 ns > tCK(avg) >= 1.25 ns)
+ ** 4 9 (1.25 ns > tCK(avg) >= 1.07 ns)
+ ** 5 10 (1.07 ns > tCK(avg) >= 0.935 ns)
+ ** 6 11 (0.935 ns > tCK(avg) >= 0.833 ns)
+ ** 7 12 (0.833 ns > tCK(avg) >= 0.75 ns)
+ */
+
+ mp0.s.cwl = 0;
+ if (tclk_psecs < 2500)
+ mp0.s.cwl = 1;
+ if (tclk_psecs < 1875)
+ mp0.s.cwl = 2;
+ if (tclk_psecs < 1500)
+ mp0.s.cwl = 3;
+ if (tclk_psecs < 1250)
+ mp0.s.cwl = 4;
+ if (tclk_psecs < 1070)
+ mp0.s.cwl = 5;
+ if (tclk_psecs < 935)
+ mp0.s.cwl = 6;
+ if (tclk_psecs < 833)
+ mp0.s.cwl = 7;
+ }
+
+ s = lookup_env(priv, "ddr_cwl");
+ if (s)
+ mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5;
+
+ if (ddr_type == DDR4_DRAM) {
+ debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+ mp0.s.cwl + 9
+ + ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl);
+ } else {
+ debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+ mp0.s.cwl + 5, mp0.s.cwl);
+ }
+
+ mp0.s.mprloc = 0;
+ mp0.s.mpr = 0;
+ mp0.s.dll = (ddr_type == DDR4_DRAM); /* 0 for DDR3 and 1 for DDR4 */
+ mp0.s.al = 0;
+ mp0.s.wlev = 0; /* Read Only */
+ if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM)
+ mp0.s.tdqs = 0;
+ else
+ mp0.s.tdqs = 1;
+ mp0.s.qoff = 0;
+
+ s = lookup_env(priv, "ddr_cl");
+ if (s) {
+ cl = simple_strtoul(s, NULL, 0);
+ debug("CAS Latency : %6d\n",
+ cl);
+ }
+
+ if (ddr_type == DDR4_DRAM) {
+ mp0.s.cl = 0x0;
+ if (cl > 9)
+ mp0.s.cl = 0x1;
+ if (cl > 10)
+ mp0.s.cl = 0x2;
+ if (cl > 11)
+ mp0.s.cl = 0x3;
+ if (cl > 12)
+ mp0.s.cl = 0x4;
+ if (cl > 13)
+ mp0.s.cl = 0x5;
+ if (cl > 14)
+ mp0.s.cl = 0x6;
+ if (cl > 15)
+ mp0.s.cl = 0x7;
+ if (cl > 16)
+ mp0.s.cl = 0x8;
+ if (cl > 18)
+ mp0.s.cl = 0x9;
+ if (cl > 20)
+ mp0.s.cl = 0xA;
+ if (cl > 24)
+ mp0.s.cl = 0xB;
+ } else {
+ mp0.s.cl = 0x2;
+ if (cl > 5)
+ mp0.s.cl = 0x4;
+ if (cl > 6)
+ mp0.s.cl = 0x6;
+ if (cl > 7)
+ mp0.s.cl = 0x8;
+ if (cl > 8)
+ mp0.s.cl = 0xA;
+ if (cl > 9)
+ mp0.s.cl = 0xC;
+ if (cl > 10)
+ mp0.s.cl = 0xE;
+ if (cl > 11)
+ mp0.s.cl = 0x1;
+ if (cl > 12)
+ mp0.s.cl = 0x3;
+ if (cl > 13)
+ mp0.s.cl = 0x5;
+ if (cl > 14)
+ mp0.s.cl = 0x7;
+ if (cl > 15)
+ mp0.s.cl = 0x9;
+ }
+
+ mp0.s.rbt = 0; /* Read Only. */
+ mp0.s.tm = 0;
+ mp0.s.dllr = 0;
+
+ param = divide_roundup(twr, tclk_psecs);
+
+ if (ddr_type == DDR4_DRAM) { /* DDR4 */
+ mp0.s.wrp = 1;
+ if (param > 12)
+ mp0.s.wrp = 2;
+ if (param > 14)
+ mp0.s.wrp = 3;
+ if (param > 16)
+ mp0.s.wrp = 4;
+ if (param > 18)
+ mp0.s.wrp = 5;
+ if (param > 20)
+ mp0.s.wrp = 6;
+ if (param > 24) /* RESERVED in DDR4 spec */
+ mp0.s.wrp = 7;
+ } else { /* DDR3 */
+ mp0.s.wrp = 1;
+ if (param > 5)
+ mp0.s.wrp = 2;
+ if (param > 6)
+ mp0.s.wrp = 3;
+ if (param > 7)
+ mp0.s.wrp = 4;
+ if (param > 8)
+ mp0.s.wrp = 5;
+ if (param > 10)
+ mp0.s.wrp = 6;
+ if (param > 12)
+ mp0.s.wrp = 7;
+ }
+
+ mp0.s.ppd = 0;
+
+ s = lookup_env(priv, "ddr_wrp");
+ if (s)
+ mp0.s.wrp = simple_strtoul(s, NULL, 0);
+
+ debug("%-45s : %d, [0x%x]\n",
+ "Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp);
+
+ s = lookup_env_ull(priv, "ddr_modereg_params0");
+ if (s)
+ mp0.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("MODEREG_PARAMS0 : 0x%016llx\n",
+ mp0.u64);
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+}
+
+static void lmc_modereg_params1(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_modereg_params1 mp1;
+ char *s;
+ int i;
+
+ mp1.u64 = odt_config[odt_idx].modereg_params1.u64;
+
+#ifdef CAVIUM_ONLY
+ /*
+ * Special request: mismatched DIMM support. Slot 0: 2-Rank,
+ * Slot 1: 1-Rank
+ */
+ if (rank_mask == 0x7) { /* 2-Rank, 1-Rank */
+ mp1.s.rtt_nom_00 = 0;
+ mp1.s.rtt_nom_01 = 3; /* rttnom_40ohm */
+ mp1.s.rtt_nom_10 = 3; /* rttnom_40ohm */
+ mp1.s.rtt_nom_11 = 0;
+ dyn_rtt_nom_mask = 0x6;
+ }
+#endif /* CAVIUM_ONLY */
+
+ s = lookup_env(priv, "ddr_rtt_nom_mask");
+ if (s)
+ dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0);
+
+ /*
+ * Save the original rtt_nom settings before sweeping through
+ * settings.
+ */
+ default_rtt_nom[0] = mp1.s.rtt_nom_00;
+ default_rtt_nom[1] = mp1.s.rtt_nom_01;
+ default_rtt_nom[2] = mp1.s.rtt_nom_10;
+ default_rtt_nom[3] = mp1.s.rtt_nom_11;
+
+ ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto;
+
+ for (i = 0; i < 4; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2),
+ !!(i & 1));
+ if (!s)
+ s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num,
+ !!(i & 2), !!(i & 1));
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ mp1.u64 &= ~((u64)0x7 << (i * 12 + 9));
+ mp1.u64 |= ((value & 0x7) << (i * 12 + 9));
+ default_rtt_nom[i] = value;
+ ddr_rtt_nom_auto = 0;
+ }
+ }
+
+ s = lookup_env(priv, "ddr_rtt_nom");
+ if (!s)
+ s = lookup_env(priv, "ddr%d_rtt_nom", if_num);
+ if (s) {
+ u64 value;
+
+ value = simple_strtoul(s, NULL, 0);
+
+ if (dyn_rtt_nom_mask & 1) {
+ default_rtt_nom[0] = value;
+ mp1.s.rtt_nom_00 = value;
+ }
+ if (dyn_rtt_nom_mask & 2) {
+ default_rtt_nom[1] = value;
+ mp1.s.rtt_nom_01 = value;
+ }
+ if (dyn_rtt_nom_mask & 4) {
+ default_rtt_nom[2] = value;
+ mp1.s.rtt_nom_10 = value;
+ }
+ if (dyn_rtt_nom_mask & 8) {
+ default_rtt_nom[3] = value;
+ mp1.s.rtt_nom_11 = value;
+ }
+
+ ddr_rtt_nom_auto = 0;
+ }
+
+ for (i = 0; i < 4; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1));
+ if (!s)
+ s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num,
+ !!(i & 2), !!(i & 1));
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ insrt_wr(&mp1.u64, i, value);
+ }
+ }
+
+ // Make sure 78XX pass 1 has valid RTT_WR settings, because
+ // configuration files may be set-up for later chips, and
+ // 78XX pass 1 supports no RTT_WR extension bits
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ for (i = 0; i < 4; ++i) {
+ // if 80 or undefined
+ if (extr_wr(mp1.u64, i) > 3) {
+ // FIXME? always insert 120
+ insrt_wr(&mp1.u64, i, 1);
+ debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n",
+ !!(i & 2), i & 1);
+ }
+ }
+ }
+
+ s = lookup_env(priv, "ddr_dic");
+ if (s) {
+ u64 value = simple_strtoul(s, NULL, 0);
+
+ for (i = 0; i < 4; ++i) {
+ mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+ mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+ }
+ }
+
+ for (i = 0; i < 4; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1));
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+ mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+ }
+ }
+
+ s = lookup_env_ull(priv, "ddr_modereg_params1");
+ if (s)
+ mp1.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+ mp1.s.rtt_nom_11,
+ mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00);
+
+ debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+ extr_wr(mp1.u64, 3),
+ extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0));
+
+ debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->dic_ohms[mp1.s.dic_11],
+ imp_val->dic_ohms[mp1.s.dic_10],
+ imp_val->dic_ohms[mp1.s.dic_01],
+ imp_val->dic_ohms[mp1.s.dic_00],
+ mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00);
+
+ debug("MODEREG_PARAMS1 : 0x%016llx\n",
+ mp1.u64);
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64);
+}
+
+static void lmc_modereg_params2(struct ddr_priv *priv)
+{
+ char *s;
+ int i;
+
+ if (ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_modereg_params2 mp2;
+
+ mp2.u64 = odt_config[odt_idx].modereg_params2.u64;
+
+ s = lookup_env(priv, "ddr_rtt_park");
+ if (s) {
+ u64 value = simple_strtoul(s, NULL, 0);
+
+ for (i = 0; i < 4; ++i) {
+ mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+ mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+ }
+ }
+
+ for (i = 0; i < 4; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2),
+ !!(i & 1));
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+ mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+ }
+ }
+
+ s = lookup_env_ull(priv, "ddr_modereg_params2");
+ if (s)
+ mp2.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+ mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01,
+ mp2.s.rtt_park_00);
+
+ debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
+ mp2.s.vref_range_11,
+ mp2.s.vref_range_10,
+ mp2.s.vref_range_01, mp2.s.vref_range_00);
+
+ debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
+ mp2.s.vref_value_11,
+ mp2.s.vref_value_10,
+ mp2.s.vref_value_01, mp2.s.vref_value_00);
+
+ debug("MODEREG_PARAMS2 : 0x%016llx\n",
+ mp2.u64);
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64);
+ }
+}
+
+static void lmc_modereg_params3(struct ddr_priv *priv)
+{
+ char *s;
+
+ if (ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_modereg_params3 mp3;
+
+ mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num));
+ /* Disable as workaround to Errata 20547 */
+ mp3.s.rd_dbi = 0;
+ mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs),
+ 5ull) - 4;
+
+ s = lookup_env(priv, "ddr_rd_preamble");
+ if (s)
+ mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0);
+
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ int delay = 0;
+
+ if (lranks_per_prank == 4 && ddr_hertz >= 1000000000)
+ delay = 1;
+
+ mp3.s.xrank_add_tccd_l = delay;
+ mp3.s.xrank_add_tccd_s = delay;
+ }
+
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64);
+ debug("MODEREG_PARAMS3 : 0x%016llx\n",
+ mp3.u64);
+ }
+}
+
+static void lmc_nxm(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_nxm lmc_nxm;
+ int num_bits = row_lsb + row_bits + lranks_bits - 26;
+ char *s;
+
+ lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num));
+
+ /* .cn78xx. */
+ if (rank_mask & 0x1)
+ lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits;
+ if (rank_mask & 0x2)
+ lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits;
+ if (rank_mask & 0x4)
+ lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits;
+ if (rank_mask & 0x8)
+ lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits;
+
+ /* Set the mask for non-existent ranks. */
+ lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff;
+
+ s = lookup_env_ull(priv, "ddr_nxm");
+ if (s)
+ lmc_nxm.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("LMC_NXM : 0x%016llx\n",
+ lmc_nxm.u64);
+ lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64);
+}
+
+static void lmc_wodt_mask(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_wodt_mask wodt_mask;
+ char *s;
+
+ wodt_mask.u64 = odt_config[odt_idx].odt_mask;
+
+ s = lookup_env_ull(priv, "ddr_wodt_mask");
+ if (s)
+ wodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("WODT_MASK : 0x%016llx\n",
+ wodt_mask.u64);
+ lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64);
+}
+
+static void lmc_rodt_mask(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_rodt_mask rodt_mask;
+ int rankx;
+ char *s;
+
+ rodt_mask.u64 = odt_config[odt_idx].rodt_ctl;
+
+ s = lookup_env_ull(priv, "ddr_rodt_mask");
+ if (s)
+ rodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+ debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64);
+ lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64);
+
+ dyn_rtt_nom_mask = 0;
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+ dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff);
+ }
+ if (num_ranks == 4) {
+ /*
+ * Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
+ * ODT1 is wired to the third rank (rank 2). The mask,
+ * dyn_rtt_nom_mask, is used to indicate for which ranks
+ * to sweep RTT_NOM during read-leveling. Shift the bit
+ * from the ODT1 position over to the "ODT2" position so
+ * that the read-leveling analysis comes out right.
+ */
+ int odt1_bit = dyn_rtt_nom_mask & 2;
+
+ dyn_rtt_nom_mask &= ~2;
+ dyn_rtt_nom_mask |= odt1_bit << 1;
+ }
+ debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
+}
+
+static void lmc_comp_ctl2(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_comp_ctl2 cc2;
+ char *s;
+
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+ cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena;
+ /* Default 4=34.3 ohm */
+ cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl;
+ /* Default 4=34.3 ohm */
+ cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl;
+ /* Default 4=34.3 ohm */
+ cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl;
+
+ ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto;
+ s = lookup_env(priv, "ddr_rodt_ctl_auto");
+ if (s)
+ ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0);
+
+ default_rodt_ctl = odt_config[odt_idx].qs_dic;
+ s = lookup_env(priv, "ddr_rodt_ctl");
+ if (!s)
+ s = lookup_env(priv, "ddr%d_rodt_ctl", if_num);
+ if (s) {
+ default_rodt_ctl = simple_strtoul(s, NULL, 0);
+ ddr_rodt_ctl_auto = 0;
+ }
+
+ cc2.cn70xx.rodt_ctl = default_rodt_ctl;
+
+ // if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms,
+ // and DCLK speed is 1 GHz or more...
+ if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm &&
+ ddr_hertz >= 1000000000) {
+ // lowest for DDR4 is 26 ohms
+ cc2.s.ck_ctl = ddr4_driver_26_ohm;
+ debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n",
+ node, if_num, cc2.s.ck_ctl,
+ imp_val->drive_strength[cc2.s.ck_ctl]);
+ }
+
+ // if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms,
+ // if DCLK speed is 1 GHz or more...
+ if (ddr_type == DDR4_DRAM && dimm_count == 2 &&
+ (spd_dimm_type == 2 || spd_dimm_type == 6) &&
+ ddr_hertz >= 1000000000) {
+ // lowest for DDR4 is 26 ohms
+ cc2.cn78xx.control_ctl = ddr4_driver_26_ohm;
+ // lowest for DDR4 is 26 ohms
+ cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm;
+ debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n",
+ node, if_num, ddr4_driver_26_ohm,
+ imp_val->drive_strength[ddr4_driver_26_ohm]);
+ }
+
+ s = lookup_env(priv, "ddr_ck_ctl");
+ if (s)
+ cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_cmd_ctl");
+ if (s)
+ cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_control_ctl");
+ if (s)
+ cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_dqx_ctl");
+ if (s)
+ cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0);
+
+ debug("%-45s : %d, %d ohms\n", "DQX_CTL ", cc2.cn78xx.dqx_ctl,
+ imp_val->drive_strength[cc2.cn78xx.dqx_ctl]);
+ debug("%-45s : %d, %d ohms\n", "CK_CTL ", cc2.cn78xx.ck_ctl,
+ imp_val->drive_strength[cc2.cn78xx.ck_ctl]);
+ debug("%-45s : %d, %d ohms\n", "CMD_CTL ", cc2.cn78xx.cmd_ctl,
+ imp_val->drive_strength[cc2.cn78xx.cmd_ctl]);
+ debug("%-45s : %d, %d ohms\n", "CONTROL_CTL ",
+ cc2.cn78xx.control_ctl,
+ imp_val->drive_strength[cc2.cn78xx.control_ctl]);
+ debug("Read ODT_CTL : 0x%x (%d ohms)\n",
+ cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+ debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64);
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+}
+
+static void lmc_phy_ctl(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_phy_ctl phy_ctl;
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.ts_stagger = 0;
+ // FIXME: are there others TBD?
+ phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+ // C0 is TEN, C1 is A17
+ phy_ctl.s.c0_sel = 2;
+ phy_ctl.s.c1_sel = 2;
+ debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
+ node, if_num, phy_ctl.s.c1_sel);
+ }
+
+ debug("PHY_CTL : 0x%016llx\n",
+ phy_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void lmc_ext_config(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_ext_config ext_cfg;
+ char *s;
+
+ ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+ ext_cfg.s.vrefint_seq_deskew = 0;
+ ext_cfg.s.read_ena_bprch = 1;
+ ext_cfg.s.read_ena_fprch = 1;
+ ext_cfg.s.drive_ena_fprch = 1;
+ ext_cfg.s.drive_ena_bprch = 1;
+ // make sure this is OFF for all current chips
+ ext_cfg.s.invert_data = 0;
+
+ s = lookup_env(priv, "ddr_read_fprch");
+ if (s)
+ ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_read_bprch");
+ if (s)
+ ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_drive_fprch");
+ if (s)
+ ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_drive_bprch");
+ if (s)
+ ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0);
+
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+ ext_cfg.s.dimm0_cid = lranks_bits;
+ ext_cfg.s.dimm1_cid = lranks_bits;
+ debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
+ node, if_num, ext_cfg.s.dimm0_cid);
+ }
+
+ lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+ debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64);
+}
+
+static void lmc_ext_config2(struct ddr_priv *priv)
+{
+ char *s;
+
+ // NOTE: all chips have this register, but not necessarily the
+ // fields we modify...
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+ !octeon_is_cpuid(OCTEON_CN73XX)) {
+ union cvmx_lmcx_ext_config2 ext_cfg2;
+ int value = 1; // default to 1
+
+ ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num));
+
+ s = lookup_env(priv, "ddr_ext2_delay_unload");
+ if (s)
+ value = !!simple_strtoul(s, NULL, 0);
+
+ ext_cfg2.s.delay_unload_r0 = value;
+ ext_cfg2.s.delay_unload_r1 = value;
+ ext_cfg2.s.delay_unload_r2 = value;
+ ext_cfg2.s.delay_unload_r3 = value;
+
+ lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64);
+ debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64);
+ }
+}
+
+static void lmc_dimm01_params_loop(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_dimmx_params dimm_p;
+ int dimmx = didx;
+ char *s;
+ int rc;
+ int i;
+
+ dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num));
+
+ if (ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0;
+ union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1;
+ union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl;
+
+ dimm_p.s.rc0 = 0;
+ dimm_p.s.rc1 = 0;
+ dimm_p.s.rc2 = 0;
+
+ rc = read_spd(&dimm_config_table[didx], 0,
+ DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
+ dimm_p.s.rc3 = (rc >> 4) & 0xf;
+ dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2;
+ dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0;
+
+ rc = read_spd(&dimm_config_table[didx], 0,
+ DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
+ dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2;
+ dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0;
+
+ dimm_p.s.rc6 = 0;
+ dimm_p.s.rc7 = 0;
+ dimm_p.s.rc8 = 0;
+ dimm_p.s.rc9 = 0;
+
+ /*
+ * rc10 DDR4 RDIMM Operating Speed
+ * === ===================================================
+ * 0 tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
+ * 1 1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
+ * 2 1071 psec > tclk_psecs >= 938 psec DDR4-2133 ( 938 ps)
+ * 3 938 psec > tclk_psecs >= 833 psec DDR4-2400 ( 833 ps)
+ * 4 833 psec > tclk_psecs >= 750 psec DDR4-2666 ( 750 ps)
+ * 5 750 psec > tclk_psecs >= 625 psec DDR4-3200 ( 625 ps)
+ */
+ dimm_p.s.rc10 = 0;
+ if (tclk_psecs < 1250)
+ dimm_p.s.rc10 = 1;
+ if (tclk_psecs < 1071)
+ dimm_p.s.rc10 = 2;
+ if (tclk_psecs < 938)
+ dimm_p.s.rc10 = 3;
+ if (tclk_psecs < 833)
+ dimm_p.s.rc10 = 4;
+ if (tclk_psecs < 750)
+ dimm_p.s.rc10 = 5;
+
+ dimm_p.s.rc11 = 0;
+ dimm_p.s.rc12 = 0;
+ /* 0=LRDIMM, 1=RDIMM */
+ dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4;
+ dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ?
+ (spd_addr_mirror << 3) : 0;
+ dimm_p.s.rc14 = 0;
+ dimm_p.s.rc15 = 0; /* 1 nCK latency adder */
+
+ ddr4_p0.u64 = 0;
+
+ ddr4_p0.s.rc8x = 0;
+ ddr4_p0.s.rc7x = 0;
+ ddr4_p0.s.rc6x = 0;
+ ddr4_p0.s.rc5x = 0;
+ ddr4_p0.s.rc4x = 0;
+
+ ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs);
+
+ ddr4_p0.s.rc2x = 0;
+ ddr4_p0.s.rc1x = 0;
+
+ ddr4_p1.u64 = 0;
+
+ ddr4_p1.s.rcbx = 0;
+ ddr4_p1.s.rcax = 0;
+ ddr4_p1.s.rc9x = 0;
+
+ ddr4_ctl.u64 = 0;
+ ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004;
+ ddr4_ctl.cn70xx.ddr4_dimm1_wmask =
+ (dimm_count > 1) ? 0x004 : 0x0000;
+
+ /*
+ * Handle any overrides from envvars here...
+ */
+ s = lookup_env(priv, "ddr_ddr4_params0");
+ if (s)
+ ddr4_p0.u64 = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_ddr4_params1");
+ if (s)
+ ddr4_p1.u64 = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_ddr4_dimm_ctl");
+ if (s)
+ ddr4_ctl.u64 = simple_strtoul(s, NULL, 0);
+
+ for (i = 0; i < 11; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1);
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ if (i < 8) {
+ ddr4_p0.u64 &= ~((u64)0xff << (i * 8));
+ ddr4_p0.u64 |= (value << (i * 8));
+ } else {
+ ddr4_p1.u64 &=
+ ~((u64)0xff << ((i - 8) * 8));
+ ddr4_p1.u64 |= (value << ((i - 8) * 8));
+ }
+ }
+ }
+
+ /*
+ * write the final CSR values
+ */
+ lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num),
+ ddr4_p0.u64);
+
+ lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64);
+
+ lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num),
+ ddr4_p1.u64);
+
+ debug("DIMM%d Register Control Words RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
+ dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax,
+ ddr4_p1.s.rc9x, ddr4_p0.s.rc8x,
+ ddr4_p0.s.rc7x, ddr4_p0.s.rc6x,
+ ddr4_p0.s.rc5x, ddr4_p0.s.rc4x,
+ ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x);
+
+ } else {
+ rc = read_spd(&dimm_config_table[didx], 0, 69);
+ dimm_p.s.rc0 = (rc >> 0) & 0xf;
+ dimm_p.s.rc1 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 70);
+ dimm_p.s.rc2 = (rc >> 0) & 0xf;
+ dimm_p.s.rc3 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 71);
+ dimm_p.s.rc4 = (rc >> 0) & 0xf;
+ dimm_p.s.rc5 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 72);
+ dimm_p.s.rc6 = (rc >> 0) & 0xf;
+ dimm_p.s.rc7 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 73);
+ dimm_p.s.rc8 = (rc >> 0) & 0xf;
+ dimm_p.s.rc9 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 74);
+ dimm_p.s.rc10 = (rc >> 0) & 0xf;
+ dimm_p.s.rc11 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 75);
+ dimm_p.s.rc12 = (rc >> 0) & 0xf;
+ dimm_p.s.rc13 = (rc >> 4) & 0xf;
+
+ rc = read_spd(&dimm_config_table[didx], 0, 76);
+ dimm_p.s.rc14 = (rc >> 0) & 0xf;
+ dimm_p.s.rc15 = (rc >> 4) & 0xf;
+
+ s = ddr_getenv_debug(priv, "ddr_clk_drive");
+ if (s) {
+ if (strcmp(s, "light") == 0)
+ dimm_p.s.rc5 = 0x0; /* Light Drive */
+ if (strcmp(s, "moderate") == 0)
+ dimm_p.s.rc5 = 0x5; /* Moderate Drive */
+ if (strcmp(s, "strong") == 0)
+ dimm_p.s.rc5 = 0xA; /* Strong Drive */
+ printf("Parameter found in environment. ddr_clk_drive = %s\n",
+ s);
+ }
+
+ s = ddr_getenv_debug(priv, "ddr_cmd_drive");
+ if (s) {
+ if (strcmp(s, "light") == 0)
+ dimm_p.s.rc3 = 0x0; /* Light Drive */
+ if (strcmp(s, "moderate") == 0)
+ dimm_p.s.rc3 = 0x5; /* Moderate Drive */
+ if (strcmp(s, "strong") == 0)
+ dimm_p.s.rc3 = 0xA; /* Strong Drive */
+ printf("Parameter found in environment. ddr_cmd_drive = %s\n",
+ s);
+ }
+
+ s = ddr_getenv_debug(priv, "ddr_ctl_drive");
+ if (s) {
+ if (strcmp(s, "light") == 0)
+ dimm_p.s.rc4 = 0x0; /* Light Drive */
+ if (strcmp(s, "moderate") == 0)
+ dimm_p.s.rc4 = 0x5; /* Moderate Drive */
+ printf("Parameter found in environment. ddr_ctl_drive = %s\n",
+ s);
+ }
+
+ /*
+ * rc10 DDR3 RDIMM Operating Speed
+ * == =====================================================
+ * 0 tclk_psecs >= 2500 psec DDR3/DDR3L-800 def
+ * 1 2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
+ * 2 1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
+ * 3 1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
+ * 4 1250 psec > tclk_psecs >= 1071 psec DDR3-1866
+ */
+ dimm_p.s.rc10 = 0;
+ if (tclk_psecs < 2500)
+ dimm_p.s.rc10 = 1;
+ if (tclk_psecs < 1875)
+ dimm_p.s.rc10 = 2;
+ if (tclk_psecs < 1500)
+ dimm_p.s.rc10 = 3;
+ if (tclk_psecs < 1250)
+ dimm_p.s.rc10 = 4;
+ }
+
+ s = lookup_env(priv, "ddr_dimmx_params", i);
+ if (s)
+ dimm_p.u64 = simple_strtoul(s, NULL, 0);
+
+ for (i = 0; i < 16; ++i) {
+ u64 value;
+
+ s = lookup_env(priv, "ddr_rc%d", i);
+ if (s) {
+ value = simple_strtoul(s, NULL, 0);
+ dimm_p.u64 &= ~((u64)0xf << (i * 4));
+ dimm_p.u64 |= (value << (i * 4));
+ }
+ }
+
+ lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64);
+
+ debug("DIMM%d Register Control Words RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
+ dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13,
+ dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10,
+ dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7,
+ dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4,
+ dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0);
+
+ // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers,
+ // and treat it specially
+ if (ddr_type == DDR3_DRAM && num_ranks == 4 &&
+ spd_rdimm_registers == 2 && dimmx == 0) {
+ debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n");
+ lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64);
+ }
+}
+
+static void lmc_dimm01_params(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_dimm_ctl dimm_ctl;
+ char *s;
+
+ if (spd_rdimm) {
+ for (didx = 0; didx < (unsigned int)dimm_count; ++didx)
+ lmc_dimm01_params_loop(priv);
+
+ if (ddr_type == DDR4_DRAM) {
+ /* LMC0_DIMM_CTL */
+ dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+ dimm_ctl.s.dimm0_wmask = 0xdf3f;
+ dimm_ctl.s.dimm1_wmask =
+ (dimm_count > 1) ? 0xdf3f : 0x0000;
+ dimm_ctl.s.tcws = 0x4e0;
+ dimm_ctl.s.parity = c_cfg->parity;
+
+ s = lookup_env(priv, "ddr_dimm0_wmask");
+ if (s) {
+ dimm_ctl.s.dimm0_wmask =
+ simple_strtoul(s, NULL, 0);
+ }
+
+ s = lookup_env(priv, "ddr_dimm1_wmask");
+ if (s) {
+ dimm_ctl.s.dimm1_wmask =
+ simple_strtoul(s, NULL, 0);
+ }
+
+ s = lookup_env(priv, "ddr_dimm_ctl_parity");
+ if (s)
+ dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+ if (s)
+ dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+ debug("LMC DIMM_CTL : 0x%016llx\n",
+ dimm_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+ /* Init RCW */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+
+ /* Write RC0D last */
+ dimm_ctl.s.dimm0_wmask = 0x2000;
+ dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ?
+ 0x2000 : 0x0000;
+ debug("LMC DIMM_CTL : 0x%016llx\n",
+ dimm_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+ /*
+ * Don't write any extended registers the second time
+ */
+ lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0);
+
+ /* Init RCW */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+ } else {
+ /* LMC0_DIMM_CTL */
+ dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+ dimm_ctl.s.dimm0_wmask = 0xffff;
+ // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2
+ // registers, and treat it specially
+ if (num_ranks == 4 && spd_rdimm_registers == 2) {
+ debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n");
+ dimm_ctl.s.dimm1_wmask = 0xffff;
+ } else {
+ dimm_ctl.s.dimm1_wmask =
+ (dimm_count > 1) ? 0xffff : 0x0000;
+ }
+ dimm_ctl.s.tcws = 0x4e0;
+ dimm_ctl.s.parity = c_cfg->parity;
+
+ s = lookup_env(priv, "ddr_dimm0_wmask");
+ if (s) {
+ dimm_ctl.s.dimm0_wmask =
+ simple_strtoul(s, NULL, 0);
+ }
+
+ s = lookup_env(priv, "ddr_dimm1_wmask");
+ if (s) {
+ dimm_ctl.s.dimm1_wmask =
+ simple_strtoul(s, NULL, 0);
+ }
+
+ s = lookup_env(priv, "ddr_dimm_ctl_parity");
+ if (s)
+ dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+ if (s)
+ dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+ debug("LMC DIMM_CTL : 0x%016llx\n",
+ dimm_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+ /* Init RCW */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+ }
+
+ } else {
+ /* Disable register control writes for unbuffered */
+ union cvmx_lmcx_dimm_ctl dimm_ctl;
+
+ dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+ dimm_ctl.s.dimm0_wmask = 0;
+ dimm_ctl.s.dimm1_wmask = 0;
+ lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+ }
+}
+
+static int lmc_rank_init(struct ddr_priv *priv)
+{
+ char *s;
+
+#if ALLOW_BY_RANK_INIT
+ if (enable_by_rank_init) {
+ by_rank = 3;
+ saved_rank_mask = rank_mask;
+ }
+
+start_by_rank_init:
+
+ if (enable_by_rank_init) {
+ rank_mask = (1 << by_rank);
+ if (!(rank_mask & saved_rank_mask))
+ goto end_by_rank_init;
+ if (by_rank == 0)
+ rank_mask = saved_rank_mask;
+
+ debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n",
+ by_rank, rank_mask);
+ }
+
+#endif /* ALLOW_BY_RANK_INIT */
+
+ /*
+ * Comments (steps 3 through 5) continue in oct3_ddr3_seq()
+ */
+ union cvmx_lmcx_modereg_params0 mp0;
+
+ if (ddr_memory_preserved(priv)) {
+ /*
+ * Contents are being preserved. Take DRAM out of self-refresh
+ * first. Then init steps can procede normally
+ */
+ /* self-refresh exit */
+ oct3_ddr3_seq(priv, rank_mask, if_num, 3);
+ }
+
+ mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+ mp0.s.dllr = 1; /* Set during first init sequence */
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+ ddr_init_seq(priv, rank_mask, if_num);
+
+ mp0.s.dllr = 0; /* Clear for normal operation */
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+ if (spd_rdimm && ddr_type == DDR4_DRAM &&
+ octeon_is_cpuid(OCTEON_CN7XXX)) {
+ debug("Running init sequence 1\n");
+ change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count);
+ }
+
+ memset(lanes, 0, sizeof(lanes));
+ for (lane = 0; lane < last_lane; lane++) {
+ // init all lanes to reset value
+ dac_settings[lane] = 127;
+ }
+
+ // FIXME: disable internal VREF if deskew is disabled?
+ if (disable_deskew_training) {
+ debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n",
+ node, if_num);
+ num_samples = 0;
+ } else if (ddr_type == DDR4_DRAM &&
+ !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ num_samples = DEFAULT_DAC_SAMPLES;
+ } else {
+ // if DDR3 or no ability to write DAC values
+ num_samples = 1;
+ }
+
+perform_internal_vref_training:
+
+ total_dac_eval_retries = 0;
+ dac_eval_exhausted = 0;
+
+ for (sample = 0; sample < num_samples; sample++) {
+ dac_eval_retries = 0;
+
+ // make offset and internal vref training repeatable
+ do {
+ /*
+ * 6.9.8 LMC Offset Training
+ * LMC requires input-receiver offset training.
+ */
+ perform_offset_training(priv, rank_mask, if_num);
+
+ /*
+ * 6.9.9 LMC Internal vref Training
+ * LMC requires input-reference-voltage training.
+ */
+ perform_internal_vref_training(priv, rank_mask, if_num);
+
+ // read and maybe display the DAC values for a sample
+ read_dac_dbi_settings(priv, if_num, /*DAC*/ 1,
+ dac_settings);
+ if (num_samples == 1 || ddr_verbose(priv)) {
+ display_dac_dbi_settings(if_num, /*DAC*/ 1,
+ use_ecc, dac_settings,
+ "Internal VREF");
+ }
+
+ // for DDR4, evaluate the DAC settings and retry
+ // if any issues
+ if (ddr_type == DDR4_DRAM) {
+ if (evaluate_dac_settings
+ (if_64b, use_ecc, dac_settings)) {
+ dac_eval_retries += 1;
+ if (dac_eval_retries >
+ DAC_RETRIES_LIMIT) {
+ debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
+ node, if_num);
+ dac_eval_exhausted += 1;
+ } else {
+ debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
+ node, if_num);
+ total_dac_eval_retries += 1;
+ // try another sample
+ continue;
+ }
+ }
+
+ // taking multiple samples, otherwise do nothing
+ if (num_samples > 1) {
+ // good sample or exhausted retries,
+ // record it
+ for (lane = 0; lane < last_lane;
+ lane++) {
+ lanes[lane].bytes[sample] =
+ dac_settings[lane];
+ }
+ }
+ }
+ // done if DDR3, or good sample, or exhausted retries
+ break;
+ } while (1);
+ }
+
+ if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) {
+ debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n",
+ node, if_num, total_dac_eval_retries, dac_eval_exhausted);
+ }
+
+ if (num_samples > 1) {
+ debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
+ node, if_num);
+
+ for (lane = 0; lane < last_lane; lane++) {
+ dac_settings[lane] =
+ process_samples_average(&lanes[lane].bytes[0],
+ num_samples, if_num, lane);
+ }
+ display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+ dac_settings, "Averaged VREF");
+
+ // finally, write the final DAC values
+ for (lane = 0; lane < last_lane; lane++) {
+ load_dac_override(priv, if_num, dac_settings[lane],
+ lane);
+ }
+ }
+
+ // allow override of any byte-lane internal VREF
+ int overrode_vref_dac = 0;
+
+ for (lane = 0; lane < last_lane; lane++) {
+ s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane);
+ if (s) {
+ dac_settings[lane] = simple_strtoul(s, NULL, 0);
+ overrode_vref_dac = 1;
+ // finally, write the new DAC value
+ load_dac_override(priv, if_num, dac_settings[lane],
+ lane);
+ }
+ }
+ if (overrode_vref_dac) {
+ display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+ dac_settings, "Override VREF");
+ }
+
+#if DDR3_DAC_OVERRIDE
+ // as a second step, after internal VREF training, before starting
+ // deskew training:
+ // for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting
+ // to 127
+ if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+ !disable_deskew_training) {
+ load_dac_override(priv, if_num, 127, /* all */ 0x0A);
+ debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n",
+ node, if_num);
+ }
+#endif
+
+ /*
+ * 4.8.8 LMC Deskew Training
+ *
+ * LMC requires input-read-data deskew training.
+ */
+ if (!disable_deskew_training) {
+ deskew_training_errors =
+ perform_deskew_training(priv, rank_mask, if_num,
+ spd_rawcard_aorb);
+
+ // All the Deskew lock and saturation retries (may) have
+ // been done, but we ended up with nibble errors; so,
+ // as a last ditch effort, try the Internal vref
+ // Training again...
+ if (deskew_training_errors) {
+ if (internal_retries <
+ DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
+ internal_retries++;
+ debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n",
+ node, if_num, internal_retries);
+ goto perform_internal_vref_training;
+ } else {
+ if (restart_if_dsk_incomplete) {
+ debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n",
+ node, if_num, internal_retries);
+ return -EAGAIN;
+ }
+ debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
+ node, if_num, internal_retries);
+ }
+ } /* if (deskew_training_errors) */
+
+ // FIXME: treat this as the final DSK print from now on,
+ // and print if VBL_NORM or above also, save the results
+ // of the original training in case we want them later
+ validate_deskew_training(priv, rank_mask, if_num,
+ &deskew_training_results, 1);
+ } else { /* if (! disable_deskew_training) */
+ debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n",
+ node, if_num);
+ validate_deskew_training(priv, rank_mask, if_num,
+ &deskew_training_results, 1);
+ } /* if (! disable_deskew_training) */
+
+#if ALLOW_BY_RANK_INIT
+
+ if (enable_by_rank_init) {
+ read_dac_dbi_settings(priv, if_num, /*dac */ 1,
+ &rank_dac[by_rank].bytes[0]);
+ get_deskew_settings(priv, if_num, &rank_dsk[by_rank]);
+ debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+ }
+
+end_by_rank_init:
+
+ if (enable_by_rank_init) {
+ //debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+
+ by_rank--;
+ if (by_rank >= 0)
+ goto start_by_rank_init;
+
+ rank_mask = saved_rank_mask;
+ ddr_init_seq(priv, rank_mask, if_num);
+
+ process_by_rank_dac(priv, if_num, rank_mask, rank_dac);
+ process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk);
+
+ // FIXME: set this to prevent later checking!!!
+ disable_deskew_training = 1;
+
+ debug("\n>>>>> BY_RANK: FINISHED!!\n\n");
+ }
+#endif /* ALLOW_BY_RANK_INIT */
+
+ return 0;
+}
+
+static void lmc_config_2(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_config lmc_config;
+ int save_ref_zqcs_int;
+ u64 temp_delay_usecs;
+
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+ /*
+ * Temporarily select the minimum ZQCS interval and wait
+ * long enough for a few ZQCS calibrations to occur. This
+ * should ensure that the calibration circuitry is
+ * stabilized before read/write leveling occurs.
+ */
+ if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+ save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+ /* set smallest interval */
+ lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7);
+ } else {
+ save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int;
+ /* set smallest interval */
+ lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7);
+ }
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+ lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+ /*
+ * Compute an appropriate delay based on the current ZQCS
+ * interval. The delay should be long enough for the
+ * current ZQCS delay counter to expire plus ten of the
+ * minimum intarvals to ensure that some calibrations
+ * occur.
+ */
+ temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs *
+ 100 * 512 * 128) / (10000 * 10000) + 10 *
+ ((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000);
+
+ debug("Waiting %lld usecs for ZQCS calibrations to start\n",
+ temp_delay_usecs);
+ udelay(temp_delay_usecs);
+
+ if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+ /* Restore computed interval */
+ lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+ } else {
+ /* Restore computed interval */
+ lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int;
+ }
+
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+ lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+}
+
+static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data");
+static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data");
+static union cvmx_lmcx_modereg_params1 mp1 __section(".data");
+
+static int wl_mask[9] __section(".data");
+static int byte_idx __section(".data");
+static int ecc_ena __section(".data");
+static int wl_roundup __section(".data");
+static int save_mode32b __section(".data");
+static int disable_hwl_validity __section(".data");
+static int default_wl_rtt_nom __section(".data");
+static int wl_pbm_pump __section(".data");
+
+static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+ int wloop = 0;
+ // retries per sample for HW-related issues with bitmasks or values
+ int wloop_retries = 0;
+ int wloop_retries_total = 0;
+ int wloop_retries_exhausted = 0;
+#define WLOOP_RETRIES_DEFAULT 5
+ int wl_val_err;
+ int wl_mask_err_rank = 0;
+ int wl_val_err_rank = 0;
+#if HW_WL_MAJORITY
+ // array to collect counts of byte-lane values
+ // assume low-order 3 bits and even, so really only 2-bit values
+ struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9];
+ int extra_bumps, extra_mask;
+#endif
+ int rank_nom = 0;
+
+ if (!(rank_mask & (1 << rankx)))
+ return;
+
+ if (match_wl_rtt_nom) {
+ if (rankx == 0)
+ rank_nom = mp1.s.rtt_nom_00;
+ if (rankx == 1)
+ rank_nom = mp1.s.rtt_nom_01;
+ if (rankx == 2)
+ rank_nom = mp1.s.rtt_nom_10;
+ if (rankx == 3)
+ rank_nom = mp1.s.rtt_nom_11;
+
+ debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n",
+ node, if_num, rankx, rank_nom,
+ imp_val->rtt_nom_ohms[rank_nom]);
+ }
+
+#if HW_WL_MAJORITY
+ memset(wl_bytes, 0, sizeof(wl_bytes));
+ memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra));
+#endif
+
+ // restructure the looping so we can keep trying until we get the
+ // samples we want
+ while (wloop < wl_loops) {
+ wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+
+ wl_ctl.cn78xx.rtt_nom =
+ (default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7;
+
+ if (match_wl_rtt_nom) {
+ wl_ctl.cn78xx.rtt_nom =
+ (rank_nom > 0) ? (rank_nom - 1) : 7;
+ }
+
+ /* Clear write-level delays */
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0);
+
+ wl_mask_err = 0; /* Reset error counters */
+ wl_val_err = 0;
+
+ for (byte_idx = 0; byte_idx < 9; ++byte_idx)
+ wl_mask[byte_idx] = 0; /* Reset bitmasks */
+
+ // do all the byte-lanes at the same time
+ wl_ctl.cn78xx.lanemask = 0x1ff;
+
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+
+ /*
+ * Read and write values back in order to update the
+ * status field. This insures that we read the updated
+ * values after write-leveling has completed.
+ */
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)));
+
+ /* write-leveling */
+ oct3_ddr3_seq(priv, 1 << rankx, if_num, 6);
+
+ do {
+ wl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+ } while (wl_rank.cn78xx.status != 3);
+
+ wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+
+ for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+ wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv,
+ if_num,
+ byte_idx);
+ if (wl_mask[byte_idx] == 0)
+ ++wl_mask_err;
+ }
+
+ // check validity only if no bitmask errors
+ if (wl_mask_err == 0) {
+ if ((spd_dimm_type == 1 || spd_dimm_type == 2) &&
+ dram_width != 16 && if_64b &&
+ !disable_hwl_validity) {
+ // bypass if [mini|SO]-[RU]DIMM or x16 or
+ // 32-bit
+ wl_val_err =
+ validate_hw_wl_settings(if_num,
+ &wl_rank,
+ spd_rdimm, ecc_ena);
+ wl_val_err_rank += (wl_val_err != 0);
+ }
+ } else {
+ wl_mask_err_rank++;
+ }
+
+ // before we print, if we had bitmask or validity errors,
+ // do a retry...
+ if (wl_mask_err != 0 || wl_val_err != 0) {
+ if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
+ wloop_retries++;
+ wloop_retries_total++;
+ // this printout is per-retry: only when VBL
+ // is high enough (DEV?)
+ // FIXME: do we want to show the bad bitmaps
+ // or delays here also?
+ debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
+ node, if_num, rankx,
+ (wl_mask_err) ? "Bitmask" : "Validity");
+ // this takes us back to the top without
+ // counting a sample
+ return;
+ }
+
+ // retries exhausted, do not print at normal VBL
+ debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
+ node, if_num, rankx,
+ (wl_mask_err) ? "Bitmask" : "Validity");
+ wloop_retries_exhausted++;
+ }
+ // no errors or exhausted retries, use this sample
+ wloop_retries = 0; //reset for next sample
+
+ // when only 1 sample or forced, print the bitmasks then
+ // current HW WL
+ if (wl_loops == 1 || wl_print) {
+ if (wl_print > 1)
+ display_wl_bm(if_num, rankx, wl_mask);
+ display_wl(if_num, wl_rank, rankx);
+ }
+
+ if (wl_roundup) { /* Round up odd bitmask delays */
+ for (byte_idx = 0; byte_idx < (8 + ecc_ena);
+ ++byte_idx) {
+ if (!(if_bytemask & (1 << byte_idx)))
+ return;
+ upd_wl_rank(&wl_rank, byte_idx,
+ roundup_ddr3_wlevel_bitmask
+ (wl_mask[byte_idx]));
+ }
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ wl_rank.u64);
+ display_wl(if_num, wl_rank, rankx);
+ }
+
+#if HW_WL_MAJORITY
+ // OK, we have a decent sample, no bitmask or validity errors
+ extra_bumps = 0;
+ extra_mask = 0;
+ for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+ int ix;
+
+ if (!(if_bytemask & (1 << byte_idx)))
+ return;
+
+ // increment count of byte-lane value
+ // only 4 values
+ ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3;
+ wl_bytes[byte_idx].bitcnt[ix]++;
+ wl_bytes_extra[byte_idx].bitcnt[ix]++;
+ // if perfect...
+ if (__builtin_popcount(wl_mask[byte_idx]) == 4) {
+ wl_bytes_extra[byte_idx].bitcnt[ix] +=
+ wl_pbm_pump;
+ extra_bumps++;
+ extra_mask |= 1 << byte_idx;
+ }
+ }
+
+ if (extra_bumps) {
+ if (wl_print > 1) {
+ debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n",
+ node, if_num, rankx, extra_bumps,
+ extra_mask);
+ }
+ }
+#endif
+
+ // if we get here, we have taken a decent sample
+ wloop++;
+
+ } /* while (wloop < wl_loops) */
+
+#if HW_WL_MAJORITY
+ // if we did sample more than once, try to pick a majority vote
+ if (wl_loops > 1) {
+ // look for the majority in each byte-lane
+ for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+ int mx, mc, xc, cc;
+ int ix, alts;
+ int maj, xmaj, xmx, xmc, xxc, xcc;
+
+ if (!(if_bytemask & (1 << byte_idx)))
+ return;
+ maj = find_wl_majority(&wl_bytes[byte_idx], &mx,
+ &mc, &xc, &cc);
+ xmaj = find_wl_majority(&wl_bytes_extra[byte_idx],
+ &xmx, &xmc, &xxc, &xcc);
+ if (maj != xmaj) {
+ if (wl_print) {
+ debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n",
+ node, if_num, rankx,
+ byte_idx, maj, xc, xmaj, xxc);
+ }
+ mx = xmx;
+ mc = xmc;
+ xc = xxc;
+ cc = xcc;
+ }
+
+#if SWL_TRY_HWL_ALT
+ // see if there was an alternate
+ // take out the majority choice
+ alts = (mc & ~(1 << mx));
+ if (alts != 0) {
+ for (ix = 0; ix < 4; ix++) {
+ // FIXME: could be done multiple times?
+ // bad if so
+ if (alts & (1 << ix)) {
+ // set the mask
+ hwl_alts[rankx].hwl_alt_mask |=
+ (1 << byte_idx);
+ // record the value
+ hwl_alts[rankx].hwl_alt_delay[byte_idx] =
+ ix << 1;
+ if (wl_print > 1) {
+ debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
+ node,
+ if_num,
+ rankx,
+ byte_idx,
+ mx << 1,
+ xc,
+ ix << 1,
+ wl_bytes
+ [byte_idx].bitcnt
+ [ix]);
+ }
+ }
+ }
+ }
+#endif /* SWL_TRY_HWL_ALT */
+
+ if (cc > 2) { // unlikely, but...
+ // assume: counts for 3 indices are all 1
+ // possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
+ // and the desired?: 2 , 4 , 6, 0
+ // we choose the middle, assuming one of the
+ // outliers is bad
+ // NOTE: this is an ugly hack at the moment;
+ // there must be a better way
+ switch (mc) {
+ case 0x7:
+ mx = 1;
+ break; // was 0/2/4, choose 2
+ case 0xb:
+ mx = 0;
+ break; // was 0/2/6, choose 0
+ case 0xd:
+ mx = 3;
+ break; // was 0/4/6, choose 6
+ case 0xe:
+ mx = 2;
+ break; // was 2/4/6, choose 4
+ default:
+ case 0xf:
+ mx = 1;
+ break; // was 0/2/4/6, choose 2?
+ }
+ printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
+ node, if_num, rankx, byte_idx, mc,
+ mx << 1);
+ }
+ upd_wl_rank(&wl_rank, byte_idx, mx << 1);
+ }
+
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ wl_rank.u64);
+ display_wl_with_final(if_num, wl_rank, rankx);
+
+ // FIXME: does this help make the output a little easier
+ // to focus?
+ if (wl_print > 0)
+ debug("-----------\n");
+
+ } /* if (wl_loops > 1) */
+#endif /* HW_WL_MAJORITY */
+
+ // maybe print an error summary for the rank
+ if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) {
+ debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
+ node, if_num, rankx, wl_mask_err_rank,
+ wl_val_err_rank, wloop_retries_total,
+ wloop_retries_exhausted);
+ }
+}
+
+static void lmc_write_leveling(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_config cfg;
+ int rankx;
+ char *s;
+
+ /*
+ * 4.8.9 LMC Write Leveling
+ *
+ * LMC supports an automatic write leveling like that described in the
+ * JEDEC DDR3 specifications separately per byte-lane.
+ *
+ * All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations
+ * must be completed prior to starting this LMC write-leveling sequence.
+ *
+ * There are many possible procedures that will write-level all the
+ * attached DDR3 DRAM parts. One possibility is for software to simply
+ * write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
+ * describes one possible sequence that uses LMC's autowrite-leveling
+ * capabilities.
+ *
+ * 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
+ * delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
+ * point.
+ *
+ * Do the remaining steps 2-7 separately for each rank i with attached
+ * DRAM.
+ *
+ * 2. Write LMC(0)_WLEVEL_RANKi = 0.
+ *
+ * 3. For x8 parts:
+ *
+ * Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+ * LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
+ * DRAM.
+ *
+ * For x16 parts:
+ *
+ * Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+ * LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
+ * attached DRAM.
+ *
+ * 4. Without changing any other fields in LMC(0)_CONFIG,
+ *
+ * o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
+ *
+ * o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+ *
+ * o write LMC(0)_SEQ_CTL[INIT_START] = 1
+ *
+ * LMC will initiate write-leveling at this point. Assuming
+ * LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
+ * the selected DRAM rank via a DDR3 MR1 write, then sequences
+ * through
+ * and accumulates write-leveling results for eight different delay
+ * settings twice, starting at a delay of zero in this case since
+ * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
+ * setting, covering a total distance of one CK, then disables the
+ * write-leveling via another DDR3 MR1 write.
+ *
+ * After the sequence through 16 delay settings is complete:
+ *
+ * o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
+ *
+ * o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
+ * by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
+ * leveling result of 1 that followed result of 0 during the
+ * sequence, except that the LMC always writes
+ * LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
+ *
+ * o Software can read the eight write-leveling results from the
+ * first pass through the delay settings by reading
+ * LMC(0)_WLEVEL_DBG[BITMASK] (after writing
+ * LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
+ * results from the second pass through the eight delay
+ * settings. They should often be identical to the
+ * LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
+ *
+ * 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
+ *
+ * LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
+ * lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
+ * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
+ * software wrote in substep 2 above, which is 0.
+ *
+ * 6. For x16 parts:
+ *
+ * Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+ * LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
+ * attached DRAM.
+ *
+ * Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
+ * setting. Skip to substep 7 if this has already been done.
+ *
+ * For x8 parts:
+ *
+ * Skip this substep. Go to substep 7.
+ *
+ * 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
+ * lanes on all ranks with attached DRAM.
+ *
+ * At this point, all byte lanes on rank i with attached DRAM should
+ * have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
+ * the result for each byte lane.
+ *
+ * But note that the DDR3 write-leveling sequence will only determine
+ * the delay modulo the CK cycle time, and cannot determine how many
+ * additional CK cycles of delay are present. Software must calculate
+ * the number of CK cycles, or equivalently, the
+ * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
+ *
+ * This BYTE*<4:3> calculation is system/board specific.
+ *
+ * Many techniques can be used to calculate write-leveling BYTE*<4:3>
+ * values, including:
+ *
+ * o Known values for some byte lanes.
+ *
+ * o Relative values for some byte lanes relative to others.
+ *
+ * For example, suppose lane X is likely to require a larger
+ * write-leveling delay than lane Y. A BYTEX<2:0> value that is much
+ * smaller than the BYTEY<2:0> value may then indicate that the
+ * required lane X delay wrapped into the next CK, so BYTEX<4:3>
+ * should be set to BYTEY<4:3>+1.
+ *
+ * When ECC DRAM is not present (i.e. when DRAM is not attached to
+ * the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the
+ * DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write
+ * LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0],
+ * using the final calculated BYTE0 value.
+ * Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
+ * using the final calculated BYTE0 value.
+ *
+ * 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
+ *
+ * Let rank i be a rank with attached DRAM.
+ *
+ * For all ranks j that do not have attached DRAM, set
+ * LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
+ */
+
+ rankx = 0;
+ wl_roundup = 0;
+ disable_hwl_validity = 0;
+
+ // wl_pbm_pump: weight for write-leveling PBMs...
+ // 0 causes original behavior
+ // 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms
+ // 4 would allow a minority of 1 pbm to outscore a majority of 4
+ // non-pbms
+ wl_pbm_pump = 4; // FIXME: is 4 too much?
+
+ if (wl_loops) {
+ debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node,
+ if_num);
+ } else {
+ /* Force software write-leveling to run */
+ wl_mask_err = 1;
+ debug("N%d.LMC%d: Forcing software Write-Leveling\n", node,
+ if_num);
+ }
+
+ default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ?
+ rttnom_20ohm : ddr4_rttnom_40ohm;
+
+ cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ ecc_ena = cfg.s.ecc_ena;
+ save_mode32b = cfg.cn78xx.mode32b;
+ cfg.cn78xx.mode32b = (!if_64b);
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+ debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+ s = lookup_env(priv, "ddr_wlevel_roundup");
+ if (s)
+ wl_roundup = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_wlevel_printall");
+ if (s)
+ wl_print = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_wlevel_pbm_bump");
+ if (s)
+ wl_pbm_pump = strtoul(s, NULL, 0);
+
+ // default to disable when RL sequential delay check is disabled
+ disable_hwl_validity = disable_sequential_delay_check;
+ s = lookup_env(priv, "ddr_disable_hwl_validity");
+ if (s)
+ disable_hwl_validity = !!strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_wl_rtt_nom");
+ if (s)
+ default_wl_rtt_nom = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_match_wl_rtt_nom");
+ if (s)
+ match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0);
+
+ if (match_wl_rtt_nom)
+ mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+ // For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK
+ // For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
+ if (ddr_type == DDR4_DRAM) {
+ int default_or_dis = 1;
+ int default_bitmask = 0xff;
+
+ // when x4, use only the lower nibble
+ if (dram_width == 4) {
+ default_bitmask = 0x0f;
+ if (wl_print) {
+ debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n",
+ node, if_num, default_bitmask);
+ }
+ }
+
+ wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+ wl_ctl.s.or_dis = default_or_dis;
+ wl_ctl.s.bitmask = default_bitmask;
+
+ // allow overrides
+ s = lookup_env(priv, "ddr_wlevel_ctl_or_dis");
+ if (s)
+ wl_ctl.s.or_dis = !!strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_wlevel_ctl_bitmask");
+ if (s)
+ wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0);
+
+ // print only if not defaults
+ if (wl_ctl.s.or_dis != default_or_dis ||
+ wl_ctl.s.bitmask != default_bitmask) {
+ debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
+ node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask);
+ }
+
+ // always write
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+ }
+
+ // Start the hardware write-leveling loop per rank
+ for (rankx = 0; rankx < dimm_count * 4; rankx++)
+ lmc_write_leveling_loop(priv, rankx);
+
+ cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ cfg.cn78xx.mode32b = save_mode32b;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+ debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+ // At the end of HW Write Leveling, check on some DESKEW things...
+ if (!disable_deskew_training) {
+ struct deskew_counts dsk_counts;
+ int retry_count = 0;
+
+ debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n",
+ node, if_num);
+
+ do {
+ validate_deskew_training(priv, rank_mask, if_num,
+ &dsk_counts, 1);
+
+ // only RAWCARD A or B will not benefit from
+ // retraining if there's only saturation
+ // or any rawcard if there is a nibble error
+ if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) ||
+ (dsk_counts.nibrng_errs != 0 ||
+ dsk_counts.nibunl_errs != 0)) {
+ retry_count++;
+ debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
+ node, if_num, retry_count);
+ perform_deskew_training(priv, rank_mask, if_num,
+ spd_rawcard_aorb);
+ } else {
+ break;
+ }
+ } while (retry_count < 5);
+ }
+}
+
+static void lmc_workaround(struct ddr_priv *priv)
+{
+ /* Workaround Trcd overflow by using Additive latency. */
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ union cvmx_lmcx_modereg_params0 mp0;
+ union cvmx_lmcx_timing_params1 tp1;
+ union cvmx_lmcx_control ctrl;
+ int rankx;
+
+ tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+ mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+ ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+ if (tp1.cn78xx.trcd == 0) {
+ debug("Workaround Trcd overflow by using Additive latency.\n");
+ /* Hard code this to 12 and enable additive latency */
+ tp1.cn78xx.trcd = 12;
+ mp0.s.al = 2; /* CL-2 */
+ ctrl.s.pocas = 1;
+
+ debug("MODEREG_PARAMS0 : 0x%016llx\n",
+ mp0.u64);
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+ mp0.u64);
+ debug("TIMING_PARAMS1 : 0x%016llx\n",
+ tp1.u64);
+ lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+
+ debug("LMC_CONTROL : 0x%016llx\n",
+ ctrl.u64);
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ /* MR1 */
+ ddr4_mrw(priv, if_num, rankx, -1, 1, 0);
+ }
+ }
+ }
+
+ // this is here just for output, to allow check of the Deskew
+ // settings one last time...
+ if (!disable_deskew_training) {
+ struct deskew_counts dsk_counts;
+
+ debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
+ node, if_num);
+ validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+ 3);
+ }
+
+ /*
+ * Workaround Errata 26304 (T88 at 2.0, O75 at 1.x, O78 at 2.x)
+ *
+ * When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
+ * LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
+ * LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
+ */
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+ octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) {
+ union cvmx_lmcx_dll_ctl3 dll_ctl3;
+ union cvmx_lmcx_phy_ctl2 phy_ctl2;
+ union cvmx_lmcx_ext_config ext_cfg;
+ int increased_dsk_adj = 0;
+ int byte;
+
+ phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num));
+ ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+ dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+ for (byte = 0; byte < 8; ++byte) {
+ if (!(if_bytemask & (1 << byte)))
+ continue;
+ increased_dsk_adj |=
+ (((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4);
+ }
+
+ if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) {
+ ext_cfg.s.drive_ena_bprch = 1;
+ lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+ debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n",
+ if_num);
+ }
+ }
+}
+
+// Software Write-Leveling block
+
+#define VREF_RANGE1_LIMIT 0x33 // range1 is valid for 0x00 - 0x32
+#define VREF_RANGE2_LIMIT 0x18 // range2 is valid for 0x00 - 0x17
+// full window is valid for 0x00 to 0x4A
+// let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
+#define VREF_LIMIT (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
+#define VREF_FINAL (VREF_LIMIT - 1)
+
+enum sw_wl_status {
+ WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */
+ WL_HARDWARE = 1, /* H/W wleveling succeeded */
+ WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */
+ WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */
+};
+
+static u64 rank_addr __section(".data");
+static int vref_val __section(".data");
+static int final_vref_val __section(".data");
+static int final_vref_range __section(".data");
+static int start_vref_val __section(".data");
+static int computed_final_vref_val __section(".data");
+static char best_vref_val_count __section(".data");
+static char vref_val_count __section(".data");
+static char best_vref_val_start __section(".data");
+static char vref_val_start __section(".data");
+static int bytes_failed __section(".data");
+static enum sw_wl_status byte_test_status[9] __section(".data");
+static enum sw_wl_status sw_wl_rank_status __section(".data");
+static int sw_wl_failed __section(".data");
+static int sw_wl_hw __section(".data");
+static int measured_vref_flag __section(".data");
+
+static void ddr4_vref_loop(struct ddr_priv *priv, int rankx)
+{
+ char *s;
+
+ if (vref_val < VREF_FINAL) {
+ int vrange, vvalue;
+
+ if (vref_val < VREF_RANGE2_LIMIT) {
+ vrange = 1;
+ vvalue = vref_val;
+ } else {
+ vrange = 0;
+ vvalue = vref_val - VREF_RANGE2_LIMIT;
+ }
+
+ set_vref(priv, if_num, rankx, vrange, vvalue);
+ } else { /* if (vref_val < VREF_FINAL) */
+ /* Print the final vref value first. */
+
+ /* Always print the computed first if its valid */
+ if (computed_final_vref_val >= 0) {
+ debug("N%d.LMC%d.R%d: vref Computed Summary : %2d (0x%02x)\n",
+ node, if_num, rankx,
+ computed_final_vref_val, computed_final_vref_val);
+ }
+
+ if (!measured_vref_flag) { // setup to use the computed
+ best_vref_val_count = 1;
+ final_vref_val = computed_final_vref_val;
+ } else { // setup to use the measured
+ if (best_vref_val_count > 0) {
+ best_vref_val_count =
+ max(best_vref_val_count, (char)2);
+ final_vref_val = best_vref_val_start +
+ divide_nint(best_vref_val_count - 1, 2);
+
+ if (final_vref_val < VREF_RANGE2_LIMIT) {
+ final_vref_range = 1;
+ } else {
+ final_vref_range = 0;
+ final_vref_val -= VREF_RANGE2_LIMIT;
+ }
+
+ int vvlo = best_vref_val_start;
+ int vrlo;
+ int vvhi = best_vref_val_start +
+ best_vref_val_count - 1;
+ int vrhi;
+
+ if (vvlo < VREF_RANGE2_LIMIT) {
+ vrlo = 2;
+ } else {
+ vrlo = 1;
+ vvlo -= VREF_RANGE2_LIMIT;
+ }
+
+ if (vvhi < VREF_RANGE2_LIMIT) {
+ vrhi = 2;
+ } else {
+ vrhi = 1;
+ vvhi -= VREF_RANGE2_LIMIT;
+ }
+ debug("N%d.LMC%d.R%d: vref Training Summary : 0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
+ node, if_num, rankx, vvlo, vrlo,
+ final_vref_val,
+ final_vref_range + 1, vvhi, vrhi,
+ best_vref_val_count - 1);
+
+ } else {
+ /*
+ * If nothing passed use the default vref
+ * value for this rank
+ */
+ union cvmx_lmcx_modereg_params2 mp2;
+
+ mp2.u64 =
+ lmc_rd(priv,
+ CVMX_LMCX_MODEREG_PARAMS2(if_num));
+ final_vref_val = (mp2.u64 >>
+ (rankx * 10 + 3)) & 0x3f;
+ final_vref_range = (mp2.u64 >>
+ (rankx * 10 + 9)) & 0x01;
+
+ debug("N%d.LMC%d.R%d: vref Using Default : %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
+ node, if_num, rankx, final_vref_val,
+ final_vref_val, final_vref_val,
+ final_vref_val, final_vref_range + 1);
+ }
+ }
+
+ // allow override
+ s = lookup_env(priv, "ddr%d_vref_val_%1d%1d",
+ if_num, !!(rankx & 2), !!(rankx & 1));
+ if (s)
+ final_vref_val = strtoul(s, NULL, 0);
+
+ set_vref(priv, if_num, rankx, final_vref_range, final_vref_val);
+ }
+}
+
+#define WL_MIN_NO_ERRORS_COUNT 3 // FIXME? three passes without errors
+
+static int errors __section(".data");
+static int byte_delay[9] __section(".data");
+static u64 bytemask __section(".data");
+static int bytes_todo __section(".data");
+static int no_errors_count __section(".data");
+static u64 bad_bits[2] __section(".data");
+#if ENABLE_SW_WLEVEL_UTILIZATION
+static u64 sum_dram_dclk __section(".data");
+static u64 sum_dram_ops __section(".data");
+static u64 start_dram_dclk __section(".data");
+static u64 stop_dram_dclk __section(".data");
+static u64 start_dram_ops __section(".data");
+static u64 stop_dram_ops __section(".data");
+#endif
+
+static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+ int delay;
+ int b;
+
+ // write the current set of WL delays
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64);
+ wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+
+ // do the test
+ if (sw_wl_hw) {
+ errors = run_best_hw_patterns(priv, if_num, rank_addr,
+ DBTRAIN_TEST, bad_bits);
+ errors &= bytes_todo; // keep only the ones we are still doing
+ } else {
+#if ENABLE_SW_WLEVEL_UTILIZATION
+ start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+ start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+#endif
+ errors = test_dram_byte64(priv, if_num, rank_addr, bytemask,
+ bad_bits);
+
+#if ENABLE_SW_WLEVEL_UTILIZATION
+ stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+ stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+ sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
+ sum_dram_ops += stop_dram_ops - start_dram_ops;
+#endif
+ }
+
+ debug("WL pass1: test_dram_byte returned 0x%x\n", errors);
+
+ // remember, errors will not be returned for byte-lanes that have
+ // maxxed out...
+ if (errors == 0) {
+ no_errors_count++; // bump
+ // bypass check/update completely
+ if (no_errors_count > 1)
+ return; // to end of do-while
+ } else {
+ no_errors_count = 0; // reset
+ }
+
+ // check errors by byte
+ for (b = 0; b < 9; ++b) {
+ if (!(bytes_todo & (1 << b)))
+ continue;
+
+ delay = byte_delay[b];
+ // yes, an error in this byte lane
+ if (errors & (1 << b)) {
+ debug(" byte %d delay %2d Errors\n", b, delay);
+ // since this byte had an error, we move to the next
+ // delay value, unless done with it
+ delay += 8; // incr by 8 to do delay high-order bits
+ if (delay < 32) {
+ upd_wl_rank(&wl_rank, b, delay);
+ debug(" byte %d delay %2d New\n",
+ b, delay);
+ byte_delay[b] = delay;
+ } else {
+ // reached max delay, maybe really done with
+ // this byte
+#if SWL_TRY_HWL_ALT
+ // consider an alt only for computed VREF and
+ if (!measured_vref_flag &&
+ (hwl_alts[rankx].hwl_alt_mask & (1 << b))) {
+ // if an alt exists...
+ // just orig low-3 bits
+ int bad_delay = delay & 0x6;
+
+ // yes, use it
+ delay = hwl_alts[rankx].hwl_alt_delay[b];
+ // clear that flag
+ hwl_alts[rankx].hwl_alt_mask &=
+ ~(1 << b);
+ upd_wl_rank(&wl_rank, b, delay);
+ byte_delay[b] = delay;
+ debug(" byte %d delay %2d ALTERNATE\n",
+ b, delay);
+ debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
+ node, if_num,
+ rankx, b, bad_delay, delay);
+
+ } else
+#endif /* SWL_TRY_HWL_ALT */
+ {
+ unsigned int bits_bad;
+
+ if (b < 8) {
+ // test no longer, remove from
+ // byte mask
+ bytemask &=
+ ~(0xffULL << (8 * b));
+ bits_bad = (unsigned int)
+ ((bad_bits[0] >>
+ (8 * b)) & 0xffUL);
+ } else {
+ bits_bad = (unsigned int)
+ (bad_bits[1] & 0xffUL);
+ }
+
+ // remove from bytes to do
+ bytes_todo &= ~(1 << b);
+ // make sure this is set for this case
+ byte_test_status[b] = WL_ESTIMATED;
+ debug(" byte %d delay %2d Exhausted\n",
+ b, delay);
+ if (!measured_vref_flag) {
+ // this is too noisy when doing
+ // measured VREF
+ debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n",
+ node, if_num, rankx,
+ b, bits_bad, delay);
+ }
+ }
+ }
+ } else {
+ // no error, stay with current delay, but keep testing
+ // it...
+ debug(" byte %d delay %2d Passed\n", b, delay);
+ byte_test_status[b] = WL_HARDWARE; // change status
+ }
+ } /* for (b = 0; b < 9; ++b) */
+}
+
+static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx)
+{
+ int save_byte8 = wl_rank.s.byte8;
+
+ byte_test_status[8] = WL_HARDWARE; /* H/W delay value */
+
+ if (save_byte8 != wl_rank.s.byte3 &&
+ save_byte8 != wl_rank.s.byte4) {
+ int test_byte8 = save_byte8;
+ int test_byte8_error;
+ int byte8_error = 0x1f;
+ int adder;
+ int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4,
+ 2);
+
+ for (adder = 0; adder <= 32; adder += 8) {
+ test_byte8_error = abs((adder + save_byte8) -
+ avg_bytes);
+ if (test_byte8_error < byte8_error) {
+ byte8_error = test_byte8_error;
+ test_byte8 = save_byte8 + adder;
+ }
+ }
+
+#if SW_WL_CHECK_PATCH
+ // only do the check if we are not using measured VREF
+ if (!measured_vref_flag) {
+ /* Use only even settings, rounding down... */
+ test_byte8 &= ~1;
+
+ // do validity check on the calculated ECC delay value
+ // this depends on the DIMM type
+ if (spd_rdimm) { // RDIMM
+ // but not mini-RDIMM
+ if (spd_dimm_type != 5) {
+ // it can be > byte4, but should never
+ // be > byte3
+ if (test_byte8 > wl_rank.s.byte3) {
+ /* say it is still estimated */
+ byte_test_status[8] =
+ WL_ESTIMATED;
+ }
+ }
+ } else { // UDIMM
+ if (test_byte8 < wl_rank.s.byte3 ||
+ test_byte8 > wl_rank.s.byte4) {
+ // should never be outside the
+ // byte 3-4 range
+ /* say it is still estimated */
+ byte_test_status[8] = WL_ESTIMATED;
+ }
+ }
+ /*
+ * Report whenever the calculation appears bad.
+ * This happens if some of the original values were off,
+ * or unexpected geometry from DIMM type, or custom
+ * circuitry (NIC225E, I am looking at you!).
+ * We will trust the calculated value, and depend on
+ * later testing to catch any instances when that
+ * value is truly bad.
+ */
+ // ESTIMATED means there may be an issue
+ if (byte_test_status[8] == WL_ESTIMATED) {
+ debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
+ node, if_num, rankx,
+ (spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4,
+ test_byte8, wl_rank.s.byte3);
+ byte_test_status[8] = WL_HARDWARE;
+ }
+ }
+#endif /* SW_WL_CHECK_PATCH */
+ /* Use only even settings */
+ wl_rank.s.byte8 = test_byte8 & ~1;
+ }
+
+ if (wl_rank.s.byte8 != save_byte8) {
+ /* Change the status if s/w adjusted the delay */
+ byte_test_status[8] = WL_SOFTWARE; /* Estimated delay */
+ }
+}
+
+static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv,
+ int rankx)
+{
+ int errors;
+ int byte_delay[8];
+ int byte_passed[8];
+ u64 bytemask;
+ u64 bitmask;
+ int wl_offset;
+ int bytes_todo;
+ int sw_wl_offset = 1;
+ int delay;
+ int b;
+
+ for (b = 0; b < 8; ++b)
+ byte_passed[b] = 0;
+
+ bytes_todo = if_bytemask;
+
+ for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) {
+ debug("Starting wl_offset for-loop: %d\n", wl_offset);
+
+ bytemask = 0;
+
+ for (b = 0; b < 8; ++b) {
+ byte_delay[b] = 0;
+ // this does not contain fully passed bytes
+ if (!(bytes_todo & (1 << b)))
+ continue;
+
+ // reset across passes if not fully passed
+ byte_passed[b] = 0;
+ upd_wl_rank(&wl_rank, b, 0); // all delays start at 0
+ bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff;
+ // set the bytes bits in the bytemask
+ bytemask |= bitmask << (8 * b);
+ } /* for (b = 0; b < 8; ++b) */
+
+ // start a pass if there is any byte lane to test
+ while (bytemask != 0) {
+ debug("Starting bytemask while-loop: 0x%llx\n",
+ bytemask);
+
+ // write this set of WL delays
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ wl_rank.u64);
+ wl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+
+ // do the test
+ if (sw_wl_hw) {
+ errors = run_best_hw_patterns(priv, if_num,
+ rank_addr,
+ DBTRAIN_TEST,
+ NULL) & 0xff;
+ } else {
+ errors = test_dram_byte64(priv, if_num,
+ rank_addr, bytemask,
+ NULL);
+ }
+
+ debug("test_dram_byte returned 0x%x\n", errors);
+
+ // check errors by byte
+ for (b = 0; b < 8; ++b) {
+ if (!(bytes_todo & (1 << b)))
+ continue;
+
+ delay = byte_delay[b];
+ if (errors & (1 << b)) { // yes, an error
+ debug(" byte %d delay %2d Errors\n",
+ b, delay);
+ byte_passed[b] = 0;
+ } else { // no error
+ byte_passed[b] += 1;
+ // Look for consecutive working settings
+ if (byte_passed[b] == (1 + wl_offset)) {
+ debug(" byte %d delay %2d FULLY Passed\n",
+ b, delay);
+ if (wl_offset == 1) {
+ byte_test_status[b] =
+ WL_SOFTWARE;
+ } else if (wl_offset == 0) {
+ byte_test_status[b] =
+ WL_SOFTWARE1;
+ }
+
+ // test no longer, remove
+ // from byte mask this pass
+ bytemask &= ~(0xffULL <<
+ (8 * b));
+ // remove completely from
+ // concern
+ bytes_todo &= ~(1 << b);
+ // on to the next byte, bypass
+ // delay updating!!
+ continue;
+ } else {
+ debug(" byte %d delay %2d Passed\n",
+ b, delay);
+ }
+ }
+
+ // error or no, here we move to the next delay
+ // value for this byte, unless done all delays
+ // only a byte that has "fully passed" will
+ // bypass around this,
+ delay += 2;
+ if (delay < 32) {
+ upd_wl_rank(&wl_rank, b, delay);
+ debug(" byte %d delay %2d New\n",
+ b, delay);
+ byte_delay[b] = delay;
+ } else {
+ // reached max delay, done with this
+ // byte
+ debug(" byte %d delay %2d Exhausted\n",
+ b, delay);
+ // test no longer, remove from byte
+ // mask this pass
+ bytemask &= ~(0xffULL << (8 * b));
+ }
+ } /* for (b = 0; b < 8; ++b) */
+ debug("End of for-loop: bytemask 0x%llx\n", bytemask);
+ } /* while (bytemask != 0) */
+ }
+
+ for (b = 0; b < 8; ++b) {
+ // any bytes left in bytes_todo did not pass
+ if (bytes_todo & (1 << b)) {
+ union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank;
+
+ /*
+ * Last resort. Use Rlevel settings to estimate
+ * Wlevel if software write-leveling fails
+ */
+ debug("Using RLEVEL as WLEVEL estimate for byte %d\n",
+ b);
+ lmc_rlevel_rank.u64 =
+ lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b);
+ }
+ } /* for (b = 0; b < 8; ++b) */
+}
+
+static int lmc_sw_write_leveling(struct ddr_priv *priv)
+{
+ /* Try to determine/optimize write-level delays experimentally. */
+ union cvmx_lmcx_wlevel_rankx wl_rank_hw_res;
+ union cvmx_lmcx_config cfg;
+ int rankx;
+ int byte;
+ char *s;
+ int i;
+
+ int active_rank;
+ int sw_wl_enable = 1; /* FIX... Should be customizable. */
+ int interfaces;
+
+ static const char * const wl_status_strings[] = {
+ "(e)",
+ " ",
+ " ",
+ "(1)"
+ };
+
+ // FIXME: make HW-assist the default now?
+ int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT;
+ int dram_connection = c_cfg->dram_connection;
+
+ s = lookup_env(priv, "ddr_sw_wlevel_hw");
+ if (s)
+ sw_wl_hw_default = !!strtoul(s, NULL, 0);
+ if (!if_64b) // must use SW algo if 32-bit mode
+ sw_wl_hw_default = 0;
+
+ // can never use hw-assist
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+ sw_wl_hw_default = 0;
+
+ s = lookup_env(priv, "ddr_software_wlevel");
+ if (s)
+ sw_wl_enable = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr%d_dram_connection", if_num);
+ if (s)
+ dram_connection = !!strtoul(s, NULL, 0);
+
+ cvmx_rng_enable();
+
+#if SWL_WITH_HW_ALTS_CHOOSE_SW
+ // Choose the SW algo for SWL if any HWL alternates were found
+ // NOTE: we have to do this here, and for all, since HW-assist
+ // including ECC requires ECC enable
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!sw_wl_enable)
+ break;
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ // if we are doing HW-assist, and there are alternates,
+ // switch to SW-algorithm for all
+ if (sw_wl_hw_default && hwl_alts[rankx].hwl_alt_mask) {
+ debug("N%d.LMC%d.R%d: Using SW algorithm for write-leveling this rank\n",
+ node, if_num, rankx);
+ sw_wl_hw_default = 0;
+ break;
+ }
+ }
+#endif
+
+ /*
+ * Get the measured_vref setting from the config, check for an
+ * override...
+ */
+ /* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */
+ // NOTE: measured VREF can only be done for DDR4
+ if (ddr_type == DDR4_DRAM) {
+ measured_vref_flag = c_cfg->measured_vref;
+ s = lookup_env(priv, "ddr_measured_vref");
+ if (s)
+ measured_vref_flag = !!strtoul(s, NULL, 0);
+ } else {
+ measured_vref_flag = 0; // OFF for DDR3
+ }
+
+ /*
+ * Ensure disabled ECC for DRAM tests using the SW algo, else leave
+ * it untouched
+ */
+ if (!sw_wl_hw_default) {
+ cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ cfg.cn78xx.ecc_ena = 0;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+ }
+
+ /*
+ * We need to track absolute rank number, as well as how many
+ * active ranks we have. Two single rank DIMMs show up as
+ * ranks 0 and 2, but only 2 ranks are active.
+ */
+ active_rank = 0;
+
+ interfaces = __builtin_popcount(if_mask);
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ final_vref_range = 0;
+ start_vref_val = 0;
+ computed_final_vref_val = -1;
+ sw_wl_rank_status = WL_HARDWARE;
+ sw_wl_failed = 0;
+ sw_wl_hw = sw_wl_hw_default;
+
+ if (!sw_wl_enable)
+ break;
+
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
+ node, if_num, rankx,
+ (sw_wl_hw) ? "with H/W assist" :
+ "with S/W algorithm");
+
+ if (ddr_type == DDR4_DRAM && num_ranks != 4) {
+ // always compute when we can...
+ computed_final_vref_val =
+ compute_vref_val(priv, if_num, rankx, dimm_count,
+ num_ranks, imp_val,
+ is_stacked_die, dram_connection);
+
+ // but only use it if allowed
+ if (!measured_vref_flag) {
+ // skip all the measured vref processing,
+ // just the final setting
+ start_vref_val = VREF_FINAL;
+ }
+ }
+
+ /* Save off the h/w wl results */
+ wl_rank_hw_res.u64 = lmc_rd(priv,
+ CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+
+ vref_val_count = 0;
+ vref_val_start = 0;
+ best_vref_val_count = 0;
+ best_vref_val_start = 0;
+
+ /* Loop one extra time using the Final vref value. */
+ for (vref_val = start_vref_val; vref_val < VREF_LIMIT;
+ ++vref_val) {
+ if (ddr_type == DDR4_DRAM)
+ ddr4_vref_loop(priv, rankx);
+
+ /* Restore the saved value */
+ wl_rank.u64 = wl_rank_hw_res.u64;
+
+ for (byte = 0; byte < 9; ++byte)
+ byte_test_status[byte] = WL_ESTIMATED;
+
+ if (wl_mask_err == 0) {
+ /*
+ * Determine address of DRAM to test for
+ * pass 1 of software write leveling.
+ */
+ rank_addr = active_rank *
+ (1ull << (pbank_lsb - bunk_enable +
+ (interfaces / 2)));
+
+ /*
+ * Adjust address for boot bus hole in memory
+ * map.
+ */
+ if (rank_addr > 0x10000000)
+ rank_addr += 0x10000000;
+
+ debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
+ node, if_num, rankx, active_rank,
+ rank_addr);
+
+ // start parallel write-leveling block for
+ // delay high-order bits
+ errors = 0;
+ no_errors_count = 0;
+#if ENABLE_SW_WLEVEL_UTILIZATION
+ sum_dram_dclk = 0;
+ sum_dram_ops = 0;
+#endif
+
+ if (if_64b) {
+ bytes_todo = (sw_wl_hw) ?
+ if_bytemask : 0xFF;
+ bytemask = ~0ULL;
+ } else {
+ // 32-bit, must be using SW algo,
+ // only data bytes
+ bytes_todo = 0x0f;
+ bytemask = 0x00000000ffffffffULL;
+ }
+
+ for (byte = 0; byte < 9; ++byte) {
+ if (!(bytes_todo & (1 << byte))) {
+ byte_delay[byte] = 0;
+ } else {
+ byte_delay[byte] =
+ get_wl_rank(&wl_rank, byte);
+ }
+ } /* for (byte = 0; byte < 9; ++byte) */
+
+ do {
+ lmc_sw_write_leveling_loop(priv, rankx);
+ } while (no_errors_count <
+ WL_MIN_NO_ERRORS_COUNT);
+
+#if ENABLE_SW_WLEVEL_UTILIZATION
+ if (!sw_wl_hw) {
+ u64 percent_x10;
+
+ if (sum_dram_dclk == 0)
+ sum_dram_dclk = 1;
+ percent_x10 = sum_dram_ops * 1000 /
+ sum_dram_dclk;
+ debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
+ node, if_num, rankx, sum_dram_ops,
+ sum_dram_dclk, percent_x10 / 10,
+ percent_x10 % 10);
+ }
+#endif
+ if (errors) {
+ debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n",
+ vref_val, vref_val, errors);
+ }
+ // end parallel write-leveling block for
+ // delay high-order bits
+
+ // if we used HW-assist, we did the ECC byte
+ // when approp.
+ if (sw_wl_hw) {
+ if (wl_print) {
+ debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n",
+ node, if_num, rankx);
+ }
+ goto no_ecc_estimate;
+ }
+
+ if ((if_bytemask & 0xff) == 0xff) {
+ if (use_ecc) {
+ sw_write_lvl_use_ecc(priv,
+ rankx);
+ } else {
+ /* H/W delay value */
+ byte_test_status[8] =
+ WL_HARDWARE;
+ /* ECC is not used */
+ wl_rank.s.byte8 =
+ wl_rank.s.byte0;
+ }
+ } else {
+ if (use_ecc) {
+ /* Estimate the ECC byte dly */
+ // add hi-order to b4
+ wl_rank.s.byte4 |=
+ (wl_rank.s.byte3 &
+ 0x38);
+ if ((wl_rank.s.byte4 & 0x06) <
+ (wl_rank.s.byte3 & 0x06)) {
+ // must be next clock
+ wl_rank.s.byte4 += 8;
+ }
+ } else {
+ /* ECC is not used */
+ wl_rank.s.byte4 =
+ wl_rank.s.byte0;
+ }
+
+ /*
+ * Change the status if s/w adjusted
+ * the delay
+ */
+ /* Estimated delay */
+ byte_test_status[4] = WL_SOFTWARE;
+ } /* if ((if_bytemask & 0xff) == 0xff) */
+ } /* if (wl_mask_err == 0) */
+
+no_ecc_estimate:
+
+ bytes_failed = 0;
+ for (byte = 0; byte < 9; ++byte) {
+ /* Don't accumulate errors for untested bytes */
+ if (!(if_bytemask & (1 << byte)))
+ continue;
+ bytes_failed +=
+ (byte_test_status[byte] == WL_ESTIMATED);
+ }
+
+ /* vref training loop is only used for DDR4 */
+ if (ddr_type != DDR4_DRAM)
+ break;
+
+ if (bytes_failed == 0) {
+ if (vref_val_count == 0)
+ vref_val_start = vref_val;
+
+ ++vref_val_count;
+ if (vref_val_count > best_vref_val_count) {
+ best_vref_val_count = vref_val_count;
+ best_vref_val_start = vref_val_start;
+ debug("N%d.LMC%d.R%d: vref Training (%2d) : 0x%02x <----- ???? -----> 0x%02x\n",
+ node, if_num, rankx, vref_val,
+ best_vref_val_start,
+ best_vref_val_start +
+ best_vref_val_count - 1);
+ }
+ } else {
+ vref_val_count = 0;
+ debug("N%d.LMC%d.R%d: vref Training (%2d) : failed\n",
+ node, if_num, rankx, vref_val);
+ }
+ }
+
+ /*
+ * Determine address of DRAM to test for software write
+ * leveling.
+ */
+ rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable +
+ (interfaces / 2)));
+ /* Adjust address for boot bus hole in memory map. */
+ if (rank_addr > 0x10000000)
+ rank_addr += 0x10000000;
+
+ debug("Rank Address: 0x%llx\n", rank_addr);
+
+ if (bytes_failed) {
+#if !DISABLE_SW_WL_PASS_2
+ debug("N%d.LMC%d.R%d: Starting SW Write-leveling pass 2\n",
+ node, if_num, rankx);
+
+ sw_wl_rank_status = WL_SOFTWARE;
+
+ /*
+ * If s/w fixups failed then retry using s/w
+ * write-leveling.
+ */
+ if (wl_mask_err == 0) {
+ /*
+ * h/w succeeded but s/w fixups failed.
+ * So retry s/w.
+ */
+ debug("N%d.LMC%d.R%d: Retrying software Write-Leveling.\n",
+ node, if_num, rankx);
+ }
+
+ // start parallel write-leveling block for delay
+ // low-order bits
+ parallel_wl_block_delay(priv, rankx);
+
+ if (use_ecc) {
+ /*
+ * ECC byte has to be estimated. Take the
+ * average of the two surrounding bytes.
+ */
+ int test_byte8 = divide_nint(wl_rank.s.byte3 +
+ wl_rank.s.byte4 +
+ 2, 2);
+ /* Use only even settings */
+ wl_rank.s.byte8 = test_byte8 & ~1;
+ /* Estimated delay */
+ byte_test_status[8] = WL_ESTIMATED;
+ } else {
+ /* H/W delay value */
+ byte_test_status[8] = WL_HARDWARE;
+ /* ECC is not used */
+ wl_rank.s.byte8 = wl_rank.s.byte0;
+ }
+
+ /* Set delays for unused bytes to match byte 0. */
+ for (byte = 0; byte < 8; ++byte) {
+ if ((if_bytemask & (1 << byte)))
+ continue;
+ upd_wl_rank(&wl_rank, byte, wl_rank.s.byte0);
+ byte_test_status[byte] = WL_SOFTWARE;
+ }
+#else /* !DISABLE_SW_WL_PASS_2 */
+ // FIXME? the big hammer, did not even try SW WL pass2,
+ // assume only chip reset will help
+ debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
+ node, if_num, rankx);
+ sw_wl_failed = 1;
+#endif /* !DISABLE_SW_WL_PASS_2 */
+ } else { /* if (bytes_failed) */
+ // SW WL pass 1 was OK, write the settings
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ wl_rank.u64);
+ wl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+
+#if SW_WL_CHECK_PATCH
+ // do validity check on the delay values by running
+ // the test 1 more time...
+ // FIXME: we really need to check the ECC byte setting
+ // here as well, so we need to enable ECC for this test!
+ // if there are any errors, claim SW WL failure
+ u64 datamask = (if_64b) ? 0xffffffffffffffffULL :
+ 0x00000000ffffffffULL;
+ int errors;
+
+ // do the test
+ if (sw_wl_hw) {
+ errors = run_best_hw_patterns(priv, if_num,
+ rank_addr,
+ DBTRAIN_TEST,
+ NULL) & 0xff;
+ } else {
+ errors = test_dram_byte64(priv, if_num,
+ rank_addr, datamask,
+ NULL);
+ }
+
+ if (errors) {
+ debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n",
+ node, if_num, rankx, errors);
+ sw_wl_failed = 1;
+ }
+#endif /* SW_WL_CHECK_PATCH */
+ } /* if (bytes_failed) */
+
+ // FIXME? dump the WL settings, so we get more of a clue
+ // as to what happened where
+ debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
+ node, if_num, rankx, wl_rank.s.status, wl_rank.u64,
+ wl_rank.s.byte8, wl_status_strings[byte_test_status[8]],
+ wl_rank.s.byte7, wl_status_strings[byte_test_status[7]],
+ wl_rank.s.byte6, wl_status_strings[byte_test_status[6]],
+ wl_rank.s.byte5, wl_status_strings[byte_test_status[5]],
+ wl_rank.s.byte4, wl_status_strings[byte_test_status[4]],
+ wl_rank.s.byte3, wl_status_strings[byte_test_status[3]],
+ wl_rank.s.byte2, wl_status_strings[byte_test_status[2]],
+ wl_rank.s.byte1, wl_status_strings[byte_test_status[1]],
+ wl_rank.s.byte0, wl_status_strings[byte_test_status[0]],
+ (sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)");
+
+ // finally, check for fatal conditions: either chip reset
+ // right here, or return error flag
+ if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) ||
+ sw_wl_failed) {
+ if (!ddr_disable_chip_reset) { // do chip RESET
+ printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n",
+ node, if_num, rankx);
+ mdelay(500);
+ do_reset(NULL, 0, 0, NULL);
+ } else {
+ // return error flag so LMC init can be retried.
+ debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n",
+ node, if_num, rankx);
+ return -EAGAIN; // 0 indicates restart possible.
+ }
+ }
+ active_rank++;
+ }
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ int parameter_set = 0;
+ u64 value;
+
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+ if_num));
+
+ for (i = 0; i < 9; ++i) {
+ s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d",
+ if_num, rankx, i);
+ if (s) {
+ parameter_set |= 1;
+ value = strtoul(s, NULL, 0);
+
+ upd_wl_rank(&wl_rank, i, value);
+ }
+ }
+
+ s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx);
+ if (s) {
+ parameter_set |= 1;
+ value = strtoull(s, NULL, 0);
+ wl_rank.u64 = value;
+ }
+
+ if (parameter_set) {
+ lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+ wl_rank.u64);
+ wl_rank.u64 =
+ lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+ display_wl(if_num, wl_rank, rankx);
+ }
+#if WLEXTRAS_PATCH
+ // if there are unused entries to be filled
+ if ((rank_mask & 0x0F) != 0x0F) {
+ if (rankx < 3) {
+ debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
+ node, if_num, rankx);
+
+ // if rank 0, write ranks 1 and 2 here if empty
+ if (rankx == 0) {
+ // check that rank 1 is empty
+ if (!(rank_mask & (1 << 1))) {
+ debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 1);
+ lmc_wr(priv,
+ CVMX_LMCX_WLEVEL_RANKX(1,
+ if_num),
+ wl_rank.u64);
+ }
+
+ // check that rank 2 is empty
+ if (!(rank_mask & (1 << 2))) {
+ debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 2);
+ lmc_wr(priv,
+ CVMX_LMCX_WLEVEL_RANKX(2,
+ if_num),
+ wl_rank.u64);
+ }
+ }
+
+ // if rank 0, 1 or 2, write rank 3 here if empty
+ // check that rank 3 is empty
+ if (!(rank_mask & (1 << 3))) {
+ debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 3);
+ lmc_wr(priv,
+ CVMX_LMCX_WLEVEL_RANKX(3,
+ if_num),
+ wl_rank.u64);
+ }
+ }
+ }
+#endif /* WLEXTRAS_PATCH */
+ }
+
+ /* Enable 32-bit mode if required. */
+ cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ cfg.cn78xx.mode32b = (!if_64b);
+ debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+ /* Restore the ECC configuration */
+ if (!sw_wl_hw_default)
+ cfg.cn78xx.ecc_ena = use_ecc;
+
+ lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+
+ return 0;
+}
+
+static void lmc_dll(struct ddr_priv *priv)
+{
+#ifdef CAVIUM_ONLY
+ union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+ int setting[9];
+ int i;
+
+ ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+ for (i = 0; i < 9; ++i) {
+ SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i));
+ lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+ lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+ ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+ setting[i] = GET_DDR_DLL_CTL3(dll90_setting);
+ debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num,
+ GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64,
+ setting[i]);
+ }
+
+ debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+ node, if_num, "DLL90 Setting 8:0",
+ setting[8], setting[7], setting[6], setting[5], setting[4],
+ setting[3], setting[2], setting[1], setting[0]);
+#endif /* CAVIUM_ONLY */
+
+ process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset",
+ c_cfg->dll_write_offset,
+ "ddr%d_dll_write_offset_byte%d", 1);
+ process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset",
+ c_cfg->dll_read_offset,
+ "ddr%d_dll_read_offset_byte%d", 2);
+}
+
+#define SLOT_CTL_INCR(csr, chip, field, incr) \
+ csr.chip.field = (csr.chip.field < (64 - incr)) ? \
+ (csr.chip.field + incr) : 63
+
+#define INCR(csr, chip, field, incr) \
+ csr.chip.field = (csr.chip.field < (64 - incr)) ? \
+ (csr.chip.field + incr) : 63
+
+static void lmc_workaround_2(struct ddr_priv *priv)
+{
+ /* Workaround Errata 21063 */
+ if (octeon_is_cpuid(OCTEON_CN78XX) ||
+ octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+ union cvmx_lmcx_slot_ctl0 slot_ctl0;
+ union cvmx_lmcx_slot_ctl1 slot_ctl1;
+ union cvmx_lmcx_slot_ctl2 slot_ctl2;
+ union cvmx_lmcx_ext_config ext_cfg;
+
+ slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
+ slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+ slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+
+ ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+
+ /* When ext_cfg.s.read_ena_bprch is set add 1 */
+ if (ext_cfg.s.read_ena_bprch) {
+ SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1);
+ SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1);
+ SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1);
+ SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1);
+ }
+
+ /* Always add 2 */
+ SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2);
+ SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2);
+
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64);
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+ }
+
+ /* Workaround Errata 21216 */
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) ||
+ octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+ union cvmx_lmcx_slot_ctl1 slot_ctl1;
+ union cvmx_lmcx_slot_ctl2 slot_ctl2;
+
+ slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+ slot_ctl1.cn78xx.w2w_xrank_init =
+ max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init);
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+
+ slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+ slot_ctl2.cn78xx.w2w_xdimm_init =
+ max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init);
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+ }
+}
+
+static void lmc_final(struct ddr_priv *priv)
+{
+ /*
+ * 4.8.11 Final LMC Initialization
+ *
+ * Early LMC initialization, LMC write-leveling, and LMC read-leveling
+ * must be completed prior to starting this final LMC initialization.
+ *
+ * LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
+ * LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
+ * readleveling and write-leveling settings. Software should not write
+ * the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
+ * values until after the final read-leveling and write-leveling
+ * settings are written.
+ *
+ * Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
+ * LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
+ * select the minimum gaps between read operations and write operations
+ * of various types.
+ *
+ * Software must not reduce the values in these CSR fields below the
+ * values previously selected by the LMC hardware (during write-leveling
+ * and read-leveling steps above).
+ *
+ * All sections in this chapter may be used to derive proper settings
+ * for these registers.
+ *
+ * For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
+ * properly. This should be done prior to the first read.
+ */
+
+#ifdef ENABLE_SLOT_CTL_ACCESS
+ union cvmx_lmcx_slot_ctl0 lmc_slot_ctl0;
+ union cvmx_lmcx_slot_ctl1 lmc_slot_ctl1;
+ union cvmx_lmcx_slot_ctl2 lmc_slot_ctl2;
+ union cvmx_lmcx_slot_ctl3 lmc_slot_ctl3;
+
+ lmc_slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
+ lmc_slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+ lmc_slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+ lmc_slot_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL3(if_num));
+
+ debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL0", lmc_slot_ctl0.u64);
+ debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL1", lmc_slot_ctl1.u64);
+ debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL2", lmc_slot_ctl2.u64);
+ debug("%-45s : 0x%016llx\n", "LMC_SLOT_CTL3", lmc_slot_ctl3.u64);
+
+ // for now, look only for SLOT_CTL1 envvar for override of contents
+ s = lookup_env(priv, "ddr%d_slot_ctl1", if_num);
+ if (s) {
+ int slot_ctl1_incr = strtoul(s, NULL, 0);
+ // validate the value
+ if (slot_ctl1_incr < 1 || slot_ctl1_incr > 3) {
+ printf("ddr%d_slot_ctl1 illegal value (%d); must be 1-3\n",
+ if_num, slot_ctl1_incr);
+ } else {
+ // modify all the SLOT_CTL1 fields by the increment,
+ // for now...
+ // but make sure the value will not overflow!!!
+ INCR(lmc_slot_ctl1, s, r2r_xrank_init, slot_ctl1_incr);
+ INCR(lmc_slot_ctl1, s, r2w_xrank_init, slot_ctl1_incr);
+ INCR(lmc_slot_ctl1, s, w2r_xrank_init, slot_ctl1_incr);
+ INCR(lmc_slot_ctl1, s, w2w_xrank_init, slot_ctl1_incr);
+ lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num),
+ lmc_slot_ctl1.u64);
+ }
+ }
+#endif /* ENABLE_SLOT_CTL_ACCESS */
+
+ /* Clear any residual ECC errors */
+ int num_tads = 1;
+ int tad;
+ int num_mcis = 1;
+ int mci;
+
+ if (octeon_is_cpuid(OCTEON_CN78XX)) {
+ num_tads = 8;
+ num_mcis = 4;
+ } else if (octeon_is_cpuid(OCTEON_CN70XX)) {
+ num_tads = 1;
+ num_mcis = 1;
+ } else if (octeon_is_cpuid(OCTEON_CN73XX) ||
+ octeon_is_cpuid(OCTEON_CNF75XX)) {
+ num_tads = 4;
+ num_mcis = 3;
+ }
+
+ lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL);
+ lmc_rd(priv, CVMX_LMCX_INT(if_num));
+
+ for (tad = 0; tad < num_tads; tad++) {
+ l2c_wr(priv, CVMX_L2C_TADX_INT(tad),
+ l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+ debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad,
+ l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+ }
+
+ for (mci = 0; mci < num_mcis; mci++) {
+ l2c_wr(priv, CVMX_L2C_MCIX_INT(mci),
+ l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+ debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci,
+ l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+ }
+
+ debug("%-45s : 0x%08llx\n", "LMC_INT",
+ lmc_rd(priv, CVMX_LMCX_INT(if_num)));
+}
+
+static void lmc_scrambling(struct ddr_priv *priv)
+{
+ // Make sure scrambling is disabled during init...
+ union cvmx_lmcx_control ctrl;
+ union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0;
+ union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1;
+ union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2;
+ union cvmx_lmcx_ns_ctl lmc_ns_ctl;
+ int use_scramble = 0; // default OFF
+ char *s;
+
+ ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num));
+ lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num));
+ lmc_scramble_cfg2.u64 = 0; // quiet compiler
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ lmc_scramble_cfg2.u64 =
+ lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num));
+ }
+ lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num));
+
+ s = lookup_env_ull(priv, "ddr_use_scramble");
+ if (s)
+ use_scramble = simple_strtoull(s, NULL, 0);
+
+ /* Generate random values if scrambling is needed */
+ if (use_scramble) {
+ lmc_scramble_cfg0.u64 = cvmx_rng_get_random64();
+ lmc_scramble_cfg1.u64 = cvmx_rng_get_random64();
+ lmc_scramble_cfg2.u64 = cvmx_rng_get_random64();
+ lmc_ns_ctl.s.ns_scramble_dis = 0;
+ lmc_ns_ctl.s.adr_offset = 0;
+ ctrl.s.scramble_ena = 1;
+ }
+
+ s = lookup_env_ull(priv, "ddr_scramble_cfg0");
+ if (s) {
+ lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0);
+ ctrl.s.scramble_ena = 1;
+ }
+ debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0",
+ lmc_scramble_cfg0.u64);
+
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64);
+
+ s = lookup_env_ull(priv, "ddr_scramble_cfg1");
+ if (s) {
+ lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0);
+ ctrl.s.scramble_ena = 1;
+ }
+ debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1",
+ lmc_scramble_cfg1.u64);
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64);
+
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+ s = lookup_env_ull(priv, "ddr_scramble_cfg2");
+ if (s) {
+ lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0);
+ ctrl.s.scramble_ena = 1;
+ }
+ debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2",
+ lmc_scramble_cfg1.u64);
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num),
+ lmc_scramble_cfg2.u64);
+ }
+
+ s = lookup_env_ull(priv, "ddr_ns_ctl");
+ if (s)
+ lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0);
+ debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64);
+ lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64);
+
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+struct rl_score {
+ u64 setting;
+ int score;
+};
+
+static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data");
+static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data");
+static unsigned char rodt_ctl __section(".data");
+
+static int rl_rodt_err __section(".data");
+static unsigned char rtt_nom __section(".data");
+static unsigned char rtt_idx __section(".data");
+static char min_rtt_nom_idx __section(".data");
+static char max_rtt_nom_idx __section(".data");
+static char min_rodt_ctl __section(".data");
+static char max_rodt_ctl __section(".data");
+static int rl_dbg_loops __section(".data");
+static unsigned char save_ddr2t __section(".data");
+static int rl_samples __section(".data");
+static char rl_compute __section(".data");
+static char saved_ddr__ptune __section(".data");
+static char saved_ddr__ntune __section(".data");
+static char rl_comp_offs __section(".data");
+static char saved_int_zqcs_dis __section(".data");
+static int max_adj_rl_del_inc __section(".data");
+static int print_nom_ohms __section(".data");
+static int rl_print __section(".data");
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+static char part_number[21] __section(".data");
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+#if PERFECT_BITMASK_COUNTING
+struct perfect_counts {
+ u16 count[9][32]; // 8+ECC by 64 values
+ u32 mask[9]; // 8+ECC, bitmask of perfect delays
+};
+
+static struct perfect_counts rank_perf[4] __section(".data");
+static struct perfect_counts rodt_perfect_counts __section(".data");
+static int pbm_lowsum_limit __section(".data");
+// FIXME: PBM skip for RODT 240 and 34
+static u32 pbm_rodt_skip __section(".data");
+#endif /* PERFECT_BITMASK_COUNTING */
+
+// control rank majority processing
+static int disable_rank_majority __section(".data");
+
+// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+// for DDR3
+static int enable_rldelay_bump __section(".data");
+static int rldelay_bump_incr __section(".data");
+static int disable_rlv_bump_this_byte __section(".data");
+static u64 value_mask __section(".data");
+
+static struct rlevel_byte_data rl_byte[9] __section(".data");
+static int sample_loops __section(".data");
+static int max_samples __section(".data");
+static int rl_rank_errors __section(".data");
+static int rl_mask_err __section(".data");
+static int rl_nonseq_err __section(".data");
+static struct rlevel_bitmask rl_mask[9] __section(".data");
+static int rl_best_rank_score __section(".data");
+
+static int rodt_row_skip_mask __section(".data");
+
+static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score
+ rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+ union cvmx_lmcx_comp_ctl2 cc2;
+ const int rl_separate_ab = 1;
+ int i;
+
+ rl_best_rank_score = DEFAULT_BEST_RANK_SCORE;
+ rl_rodt_err = 0;
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ cc2.cn78xx.rodt_ctl = rodt_ctl;
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ udelay(1); /* Give it a little time to take affect */
+ if (rl_print > 1) {
+ debug("Read ODT_CTL : 0x%x (%d ohms)\n",
+ cc2.cn78xx.rodt_ctl,
+ imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+ }
+
+ memset(rl_byte, 0, sizeof(rl_byte));
+#if PERFECT_BITMASK_COUNTING
+ memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts));
+#endif /* PERFECT_BITMASK_COUNTING */
+
+ // when iter RODT is the target RODT, take more samples...
+ max_samples = rl_samples;
+ if (rodt_ctl == default_rodt_ctl)
+ max_samples += rl_samples + 1;
+
+ for (sample_loops = 0; sample_loops < max_samples; sample_loops++) {
+ int redoing_nonseq_errs = 0;
+
+ rl_mask_err = 0;
+
+ if (!(rl_separate_ab && spd_rdimm &&
+ ddr_type == DDR4_DRAM)) {
+ /* Clear read-level delays */
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+ /* read-leveling */
+ oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+ do {
+ rl_rank.u64 =
+ lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ } while (rl_rank.cn78xx.status != 3);
+ }
+
+ rl_rank.u64 =
+ lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+ // start bitmask interpretation block
+
+ memset(rl_mask, 0, sizeof(rl_mask));
+
+ if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_rlevel_rankx rl_rank_aside;
+ union cvmx_lmcx_modereg_params0 mp0;
+
+ /* A-side */
+ mp0.u64 =
+ lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+ mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+ lmc_wr(priv,
+ CVMX_LMCX_MODEREG_PARAMS0(if_num),
+ mp0.u64);
+
+ /* Clear read-level delays */
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+ /* read-leveling */
+ oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+ do {
+ rl_rank.u64 =
+ lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ } while (rl_rank.cn78xx.status != 3);
+
+ rl_rank.u64 =
+ lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+
+ rl_rank_aside.u64 = rl_rank.u64;
+
+ rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0);
+ rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1);
+ rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2);
+ rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3);
+ rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8);
+ /* A-side complete */
+
+ /* B-side */
+ mp0.u64 =
+ lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+ mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+ mp0.u64);
+
+ /* Clear read-level delays */
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+ /* read-leveling */
+ oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+ do {
+ rl_rank.u64 =
+ lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ } while (rl_rank.cn78xx.status != 3);
+
+ rl_rank.u64 =
+ lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+
+ rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4);
+ rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5);
+ rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6);
+ rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7);
+ /* B-side complete */
+
+ upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0);
+ upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1);
+ upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2);
+ upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3);
+ /* ECC A-side */
+ upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8);
+
+ mp0.u64 =
+ lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+ mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+ mp0.u64);
+ }
+
+ /*
+ * Evaluate the quality of the read-leveling delays from the
+ * bitmasks. Also save off a software computed read-leveling
+ * mask that may be used later to qualify the delay results
+ * from Octeon.
+ */
+ for (i = 0; i < (8 + ecc_ena); ++i) {
+ int bmerr;
+
+ if (!(if_bytemask & (1 << i)))
+ continue;
+ if (!(rl_separate_ab && spd_rdimm &&
+ ddr_type == DDR4_DRAM)) {
+ rl_mask[i].bm =
+ lmc_ddr3_rl_dbg_read(priv, if_num, i);
+ }
+ bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i],
+ ddr_type);
+ rl_mask[i].errs = bmerr;
+ rl_mask_err += bmerr;
+#if PERFECT_BITMASK_COUNTING
+ // count only the "perfect" bitmasks
+ if (ddr_type == DDR4_DRAM && !bmerr) {
+ int delay;
+ // FIXME: for now, simple filtering:
+ // do NOT count PBMs for RODTs in skip mask
+ if ((1U << rodt_ctl) & pbm_rodt_skip)
+ continue;
+ // FIXME: could optimize this a bit?
+ delay = get_rl_rank(&rl_rank, i);
+ rank_perf[rankx].count[i][delay] += 1;
+ rank_perf[rankx].mask[i] |=
+ (1ULL << delay);
+ rodt_perfect_counts.count[i][delay] += 1;
+ rodt_perfect_counts.mask[i] |= (1ULL << delay);
+ }
+#endif /* PERFECT_BITMASK_COUNTING */
+ }
+
+ /* Set delays for unused bytes to match byte 0. */
+ for (i = 0; i < 9; ++i) {
+ if (if_bytemask & (1 << i))
+ continue;
+ upd_rl_rank(&rl_rank, i, rl_rank.s.byte0);
+ }
+
+ /*
+ * Save a copy of the byte delays in physical
+ * order for sequential evaluation.
+ */
+ unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank);
+
+ redo_nonseq_errs:
+
+ rl_nonseq_err = 0;
+ if (!disable_sequential_delay_check) {
+ for (i = 0; i < 9; ++i)
+ rl_byte[i].sqerrs = 0;
+
+ if ((if_bytemask & 0xff) == 0xff) {
+ /*
+ * Evaluate delay sequence across the whole
+ * range of bytes for standard dimms.
+ */
+ /* 1=RDIMM, 5=Mini-RDIMM */
+ if (spd_dimm_type == 1 || spd_dimm_type == 5) {
+ int reg_adj_del = abs(rl_byte[4].delay -
+ rl_byte[5].delay);
+
+ /*
+ * Registered dimm topology routes
+ * from the center.
+ */
+ rl_nonseq_err +=
+ nonseq_del(rl_byte, 0,
+ 3 + ecc_ena,
+ max_adj_rl_del_inc);
+ rl_nonseq_err +=
+ nonseq_del(rl_byte, 5,
+ 7 + ecc_ena,
+ max_adj_rl_del_inc);
+ // byte 5 sqerrs never gets cleared
+ // for RDIMMs
+ rl_byte[5].sqerrs = 0;
+ if (reg_adj_del > 1) {
+ /*
+ * Assess proximity of bytes on
+ * opposite sides of register
+ */
+ rl_nonseq_err += (reg_adj_del -
+ 1) *
+ RLEVEL_ADJACENT_DELAY_ERROR;
+ // update byte 5 error
+ rl_byte[5].sqerrs +=
+ (reg_adj_del - 1) *
+ RLEVEL_ADJACENT_DELAY_ERROR;
+ }
+ }
+
+ /* 2=UDIMM, 6=Mini-UDIMM */
+ if (spd_dimm_type == 2 || spd_dimm_type == 6) {
+ /*
+ * Unbuffered dimm topology routes
+ * from end to end.
+ */
+ rl_nonseq_err += nonseq_del(rl_byte, 0,
+ 7 + ecc_ena,
+ max_adj_rl_del_inc);
+ }
+ } else {
+ rl_nonseq_err += nonseq_del(rl_byte, 0,
+ 3 + ecc_ena,
+ max_adj_rl_del_inc);
+ }
+ } /* if (! disable_sequential_delay_check) */
+
+ rl_rank_errors = rl_mask_err + rl_nonseq_err;
+
+ // print original sample here only if we are not really
+ // averaging or picking best
+ // also do not print if we were redoing the NONSEQ score
+ // for using COMPUTED
+ if (!redoing_nonseq_errs && rl_samples < 2) {
+ if (rl_print > 1) {
+ display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+ display_rl_bm_scores(if_num, rankx, rl_mask,
+ ecc_ena);
+ display_rl_seq_scores(if_num, rankx, rl_byte,
+ ecc_ena);
+ }
+ display_rl_with_score(if_num, rl_rank, rankx,
+ rl_rank_errors);
+ }
+
+ if (rl_compute) {
+ if (!redoing_nonseq_errs) {
+ /* Recompute the delays based on the bitmask */
+ for (i = 0; i < (8 + ecc_ena); ++i) {
+ if (!(if_bytemask & (1 << i)))
+ continue;
+
+ upd_rl_rank(&rl_rank, i,
+ compute_ddr3_rlevel_delay(
+ rl_mask[i].mstart,
+ rl_mask[i].width,
+ rl_ctl));
+ }
+
+ /*
+ * Override the copy of byte delays with the
+ * computed results.
+ */
+ unpack_rlevel_settings(if_bytemask, ecc_ena,
+ rl_byte, rl_rank);
+
+ redoing_nonseq_errs = 1;
+ goto redo_nonseq_errs;
+
+ } else {
+ /*
+ * now print this if already printed the
+ * original sample
+ */
+ if (rl_samples < 2 || rl_print) {
+ display_rl_with_computed(if_num,
+ rl_rank, rankx,
+ rl_rank_errors);
+ }
+ }
+ } /* if (rl_compute) */
+
+ // end bitmask interpretation block
+
+ // if it is a better (lower) score, then keep it
+ if (rl_rank_errors < rl_best_rank_score) {
+ rl_best_rank_score = rl_rank_errors;
+
+ // save the new best delays and best errors
+ for (i = 0; i < (8 + ecc_ena); ++i) {
+ rl_byte[i].best = rl_byte[i].delay;
+ rl_byte[i].bestsq = rl_byte[i].sqerrs;
+ // save bitmasks and their scores as well
+ // xlate UNPACKED index to PACKED index to
+ // get from rl_mask
+ rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm;
+ rl_byte[i].bmerrs =
+ rl_mask[XUP(i, !!ecc_ena)].errs;
+ }
+ }
+
+ rl_rodt_err += rl_rank_errors;
+ }
+
+ /* We recorded the best score across the averaging loops */
+ rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score;
+
+ /*
+ * Restore the delays from the best fields that go with the best
+ * score
+ */
+ for (i = 0; i < 9; ++i) {
+ rl_byte[i].delay = rl_byte[i].best;
+ rl_byte[i].sqerrs = rl_byte[i].bestsq;
+ }
+
+ rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+ pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank);
+
+ if (rl_samples > 1) {
+ // restore the "best" bitmasks and their scores for printing
+ for (i = 0; i < 9; ++i) {
+ if ((if_bytemask & (1 << i)) == 0)
+ continue;
+ // xlate PACKED index to UNPACKED index to get from
+ // rl_byte
+ rl_mask[i].bm = rl_byte[XPU(i, !!ecc_ena)].bm;
+ rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs;
+ }
+
+ // maybe print bitmasks/scores here
+ if (rl_print > 1) {
+ display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+ display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena);
+ display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena);
+
+ display_rl_with_rodt(if_num, rl_rank, rankx,
+ rl_score[rtt_nom][rodt_ctl][rankx].score,
+ print_nom_ohms,
+ imp_val->rodt_ohms[rodt_ctl],
+ WITH_RODT_BESTSCORE);
+
+ debug("-----------\n");
+ }
+ }
+
+ rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64;
+
+#if PERFECT_BITMASK_COUNTING
+ // print out the PBMs for the current RODT
+ if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity?
+#if PRINT_PERFECT_COUNTS
+ // FIXME: change verbosity level after debug complete...
+
+ for (i = 0; i < 9; i++) {
+ u64 temp_mask;
+ int num_values;
+
+ // FIXME: PBM skip for RODTs in mask
+ if ((1U << rodt_ctl) & pbm_rodt_skip)
+ continue;
+
+ temp_mask = rodt_perfect_counts.mask[i];
+ num_values = __builtin_popcountll(temp_mask);
+ i = __builtin_ffsll(temp_mask) - 1;
+
+ debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ",
+ node, if_num, rankx,
+ imp_val->rodt_ohms[rodt_ctl],
+ i, temp_mask >> i, num_values);
+
+ while (temp_mask != 0) {
+ i = __builtin_ffsll(temp_mask) - 1;
+ debug("%2d(%2d) ", i,
+ rodt_perfect_counts.count[i][i]);
+ temp_mask &= ~(1UL << i);
+ } /* while (temp_mask != 0) */
+ debug("\n");
+ }
+#endif
+ }
+#endif /* PERFECT_BITMASK_COUNTING */
+}
+
+static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score
+ rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+ /* Start with an arbitrarily high score */
+ int best_rank_score = DEFAULT_BEST_RANK_SCORE;
+ int best_rank_rtt_nom = 0;
+ int best_rank_ctl = 0;
+ int best_rank_ohms = 0;
+ int best_rankx = 0;
+ int dimm_rank_mask;
+ int max_rank_score;
+ union cvmx_lmcx_rlevel_rankx saved_rl_rank;
+ int next_ohms;
+ int orankx;
+ int next_score = 0;
+ int best_byte, new_byte, temp_byte, orig_best_byte;
+ int rank_best_bytes[9];
+ int byte_sh;
+ int avg_byte;
+ int avg_diff;
+ int i;
+
+ if (!(rank_mask & (1 << rankx)))
+ return;
+
+ // some of the rank-related loops below need to operate only on
+ // the ranks of a single DIMM,
+ // so create a mask for their use here
+ if (num_ranks == 4) {
+ dimm_rank_mask = rank_mask; // should be 1111
+ } else {
+ dimm_rank_mask = rank_mask & 3; // should be 01 or 11
+ if (rankx >= 2) {
+ // doing a rank on the second DIMM, should be
+ // 0100 or 1100
+ dimm_rank_mask <<= 2;
+ }
+ }
+ debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n",
+ dimm_rank_mask, rank_mask, rankx);
+
+ // this is the start of the BEST ROW SCORE LOOP
+
+ for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+ debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
+ node, if_num, rankx, rtt_nom,
+ imp_val->rtt_nom_ohms[rtt_nom]);
+
+ for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+ --rodt_ctl) {
+ next_ohms = imp_val->rodt_ohms[rodt_ctl];
+
+ // skip RODT rows in mask, but *NOT* rows with too
+ // high a score;
+ // we will not use the skipped ones for printing or
+ // evaluating, but we need to allow all the
+ // non-skipped ones to be candidates for "best"
+ if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
+ debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
+ node, if_num, rankx, rodt_ctl,
+ next_ohms, next_score);
+ continue;
+ }
+
+ // this is ROFFIX-0528
+ for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+ // stay on the same DIMM
+ if (!(dimm_rank_mask & (1 << orankx)))
+ continue;
+
+ next_score = rl_score[rtt_nom][rodt_ctl][orankx].score;
+
+ // always skip a higher score
+ if (next_score > best_rank_score)
+ continue;
+
+ // if scores are equal
+ if (next_score == best_rank_score) {
+ // always skip lower ohms
+ if (next_ohms < best_rank_ohms)
+ continue;
+
+ // if same ohms
+ if (next_ohms == best_rank_ohms) {
+ // always skip the other rank(s)
+ if (orankx != rankx)
+ continue;
+ }
+ // else next_ohms are greater,
+ // always choose it
+ }
+ // else next_score is less than current best,
+ // so always choose it
+ debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
+ node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
+ best_rank_score, best_rank_ohms);
+ best_rank_score = next_score;
+ best_rank_rtt_nom = rtt_nom;
+ //best_rank_nom_ohms = rtt_nom_ohms;
+ best_rank_ctl = rodt_ctl;
+ best_rank_ohms = next_ohms;
+ best_rankx = orankx;
+ rl_rank.u64 =
+ rl_score[rtt_nom][rodt_ctl][orankx].setting;
+ }
+ }
+ }
+
+ // this is the end of the BEST ROW SCORE LOOP
+
+ // DANGER, Will Robinson!! Abort now if we did not find a best
+ // score at all...
+ if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
+ printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n",
+ node, if_num, rankx);
+ mdelay(500);
+ do_reset(NULL, 0, 0, NULL);
+ }
+
+ // FIXME: relative now, but still arbitrary...
+ max_rank_score = best_rank_score;
+ if (ddr_type == DDR4_DRAM) {
+ // halve the range if 2 DIMMs unless they are single rank...
+ max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ?
+ dimm_count : 1));
+ } else {
+ // Since DDR3 typically has a wider score range,
+ // keep more of them always
+ max_rank_score += MAX_RANK_SCORE_LIMIT;
+ }
+
+ if (!ecc_ena) {
+ /* ECC is not used */
+ rl_rank.s.byte8 = rl_rank.s.byte0;
+ }
+
+ // at the end, write the best row settings to the current rank
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64);
+ rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+ saved_rl_rank.u64 = rl_rank.u64;
+
+ // this is the start of the PRINT LOOP
+ int pass;
+
+ // for pass==0, print current rank, pass==1 print other rank(s)
+ // this is done because we want to show each ranks RODT values
+ // together, not interlaced
+#if COUNT_RL_CANDIDATES
+ // keep separates for ranks - pass=0 target rank, pass=1 other
+ // rank on DIMM
+ int mask_skipped[2] = {0, 0};
+ int score_skipped[2] = {0, 0};
+ int selected_rows[2] = {0, 0};
+ int zero_scores[2] = {0, 0};
+#endif /* COUNT_RL_CANDIDATES */
+ for (pass = 0; pass < 2; pass++) {
+ for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+ // stay on the same DIMM
+ if (!(dimm_rank_mask & (1 << orankx)))
+ continue;
+
+ if ((pass == 0 && orankx != rankx) ||
+ (pass != 0 && orankx == rankx))
+ continue;
+
+ for (rtt_idx = min_rtt_nom_idx;
+ rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+ if (dyn_rtt_nom_mask == 0) {
+ print_nom_ohms = -1;
+ } else {
+ print_nom_ohms =
+ imp_val->rtt_nom_ohms[rtt_nom];
+ }
+
+ // cycle through all the RODT values...
+ for (rodt_ctl = max_rodt_ctl;
+ rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+ union cvmx_lmcx_rlevel_rankx
+ temp_rl_rank;
+ int temp_score =
+ rl_score[rtt_nom][rodt_ctl][orankx].score;
+ int skip_row;
+
+ temp_rl_rank.u64 =
+ rl_score[rtt_nom][rodt_ctl][orankx].setting;
+
+ // skip RODT rows in mask, or rows
+ // with too high a score;
+ // we will not use them for printing
+ // or evaluating...
+#if COUNT_RL_CANDIDATES
+ if ((1 << rodt_ctl) &
+ rodt_row_skip_mask) {
+ skip_row = WITH_RODT_SKIPPING;
+ ++mask_skipped[pass];
+ } else if (temp_score >
+ max_rank_score) {
+ skip_row = WITH_RODT_SKIPPING;
+ ++score_skipped[pass];
+ } else {
+ skip_row = WITH_RODT_BLANK;
+ ++selected_rows[pass];
+ if (temp_score == 0)
+ ++zero_scores[pass];
+ }
+
+#else /* COUNT_RL_CANDIDATES */
+ skip_row = (((1 << rodt_ctl) &
+ rodt_row_skip_mask) ||
+ (temp_score >
+ max_rank_score))
+ ? WITH_RODT_SKIPPING :
+ WITH_RODT_BLANK;
+#endif
+ // identify and print the BEST ROW
+ // when it comes up
+ if (skip_row == WITH_RODT_BLANK &&
+ best_rankx == orankx &&
+ best_rank_rtt_nom == rtt_nom &&
+ best_rank_ctl == rodt_ctl)
+ skip_row = WITH_RODT_BESTROW;
+
+ if (rl_print) {
+ display_rl_with_rodt(if_num,
+ temp_rl_rank, orankx, temp_score,
+ print_nom_ohms,
+ imp_val->rodt_ohms[rodt_ctl],
+ skip_row);
+ }
+ }
+ }
+ }
+ }
+#if COUNT_RL_CANDIDATES
+ debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
+ node, if_num, rankx, selected_rows[0], selected_rows[1],
+ zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1],
+ score_skipped[0], score_skipped[1]);
+#endif /* COUNT_RL_CANDIDATES */
+ // this is the end of the PRINT LOOP
+
+ // now evaluate which bytes need adjusting
+ // collect the new byte values; first init with current best for
+ // neighbor use
+ for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+ rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) &
+ RLEVEL_BYTE_MSK;
+ }
+
+ // this is the start of the BEST BYTE LOOP
+
+ for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+ int sum = 0, count = 0;
+ int count_less = 0, count_same = 0, count_more = 0;
+#if FAILSAFE_CHECK
+ int count_byte; // save the value we counted around
+#endif /* FAILSAFE_CHECK */
+ // for rank majority use
+ int rank_less = 0, rank_same = 0, rank_more = 0;
+ int neighbor;
+ int neigh_byte;
+
+ best_byte = rank_best_bytes[i];
+ orig_best_byte = rank_best_bytes[i];
+
+ // this is the start of the BEST BYTE AVERAGING LOOP
+
+ // validate the initial "best" byte by looking at the
+ // average of the unskipped byte-column entries
+ // we want to do this before we go further, so we can
+ // try to start with a better initial value
+ // this is the so-called "BESTBUY" patch set
+
+ for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+ ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+ for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+ --rodt_ctl) {
+ union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+ int temp_score;
+
+ // average over all the ranks
+ for (orankx = 0; orankx < dimm_count * 4;
+ orankx++) {
+ // stay on the same DIMM
+ if (!(dimm_rank_mask & (1 << orankx)))
+ continue;
+
+ temp_score =
+ rl_score[rtt_nom][rodt_ctl][orankx].score;
+ // skip RODT rows in mask, or rows with
+ // too high a score;
+ // we will not use them for printing or
+ // evaluating...
+
+ if (!((1 << rodt_ctl) &
+ rodt_row_skip_mask) &&
+ temp_score <= max_rank_score) {
+ temp_rl_rank.u64 =
+ rl_score[rtt_nom][rodt_ctl][orankx].setting;
+ temp_byte =
+ (int)(temp_rl_rank.u64 >> byte_sh) &
+ RLEVEL_BYTE_MSK;
+ sum += temp_byte;
+ count++;
+ }
+ }
+ }
+ }
+
+ // this is the end of the BEST BYTE AVERAGING LOOP
+
+ // FIXME: validate count and sum??
+ avg_byte = (int)divide_nint(sum, count);
+ avg_diff = best_byte - avg_byte;
+ new_byte = best_byte;
+ if (avg_diff != 0) {
+ // bump best up/dn by 1, not necessarily all the
+ // way to avg
+ new_byte = best_byte + ((avg_diff > 0) ? -1 : 1);
+ }
+
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: START: Byte %d: best %d is different by %d from average %d, using %d.\n",
+ node, if_num, rankx,
+ i, best_byte, avg_diff, avg_byte, new_byte);
+ }
+ best_byte = new_byte;
+#if FAILSAFE_CHECK
+ count_byte = new_byte; // save the value we will count around
+#endif /* FAILSAFE_CHECK */
+
+ // At this point best_byte is either:
+ // 1. the original byte-column value from the best scoring
+ // RODT row, OR
+ // 2. that value bumped toward the average of all the
+ // byte-column values
+ //
+ // best_byte will not change from here on...
+
+ // this is the start of the BEST BYTE COUNTING LOOP
+
+ // NOTE: we do this next loop separately from above, because
+ // we count relative to "best_byte"
+ // which may have been modified by the above averaging
+ // operation...
+
+ for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+ ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+ for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+ --rodt_ctl) {
+ union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+ int temp_score;
+
+ for (orankx = 0; orankx < dimm_count * 4;
+ orankx++) { // count over all the ranks
+ // stay on the same DIMM
+ if (!(dimm_rank_mask & (1 << orankx)))
+ continue;
+
+ temp_score =
+ rl_score[rtt_nom][rodt_ctl][orankx].score;
+ // skip RODT rows in mask, or rows
+ // with too high a score;
+ // we will not use them for printing
+ // or evaluating...
+ if (((1 << rodt_ctl) &
+ rodt_row_skip_mask) ||
+ temp_score > max_rank_score)
+ continue;
+
+ temp_rl_rank.u64 =
+ rl_score[rtt_nom][rodt_ctl][orankx].setting;
+ temp_byte = (temp_rl_rank.u64 >>
+ byte_sh) & RLEVEL_BYTE_MSK;
+
+ if (temp_byte == 0)
+ ; // do not count it if illegal
+ else if (temp_byte == best_byte)
+ count_same++;
+ else if (temp_byte == best_byte - 1)
+ count_less++;
+ else if (temp_byte == best_byte + 1)
+ count_more++;
+ // else do not count anything more
+ // than 1 away from the best
+
+ // no rank counting if disabled
+ if (disable_rank_majority)
+ continue;
+
+ // FIXME? count is relative to
+ // best_byte; should it be rank-based?
+ // rank counts only on main rank
+ if (orankx != rankx)
+ continue;
+ else if (temp_byte == best_byte)
+ rank_same++;
+ else if (temp_byte == best_byte - 1)
+ rank_less++;
+ else if (temp_byte == best_byte + 1)
+ rank_more++;
+ }
+ }
+ }
+
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: COUNT: Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
+ node, if_num, rankx,
+ i, orig_best_byte, best_byte,
+ count_more, count_same, count_less,
+ rank_more, rank_same, rank_less);
+ }
+
+ // this is the end of the BEST BYTE COUNTING LOOP
+
+ // choose the new byte value
+ // we need to check that there is no gap greater than 2
+ // between adjacent bytes (adjacency depends on DIMM type)
+ // use the neighbor value to help decide
+ // initially, the rank_best_bytes[] will contain values from
+ // the chosen lowest score rank
+ new_byte = 0;
+
+ // neighbor is index-1 unless we are index 0 or index 8 (ECC)
+ neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1);
+ neigh_byte = rank_best_bytes[neighbor];
+
+ // can go up or down or stay the same, so look at a numeric
+ // average to help
+ new_byte = (int)divide_nint(((count_more * (best_byte + 1)) +
+ (count_same * (best_byte + 0)) +
+ (count_less * (best_byte - 1))),
+ max(1, (count_more + count_same +
+ count_less)));
+
+ // use neighbor to help choose with average
+ if (i > 0 && (abs(neigh_byte - new_byte) > 2) &&
+ !disable_sequential_delay_check) {
+ // but not for byte 0
+ int avg_pick = new_byte;
+
+ if ((new_byte - best_byte) != 0) {
+ // back to best, average did not get better
+ new_byte = best_byte;
+ } else {
+ // avg was the same, still too far, now move
+ // it towards the neighbor
+ new_byte += (neigh_byte > new_byte) ? 1 : -1;
+ }
+
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
+ node, if_num, rankx,
+ i, neighbor, neigh_byte, avg_pick,
+ new_byte);
+ }
+ } else {
+ // NOTE:
+ // For now, we let the neighbor processing above trump
+ // the new simple majority processing here.
+ // This is mostly because we have seen no smoking gun
+ // for a neighbor bad choice (yet?).
+ // Also note that we will ALWAYS be using byte 0
+ // majority, because of the if clause above.
+
+ // majority is dependent on the counts, which are
+ // relative to best_byte, so start there
+ int maj_byte = best_byte;
+ int rank_maj;
+ int rank_sum;
+
+ if (count_more > count_same &&
+ count_more > count_less) {
+ maj_byte++;
+ } else if (count_less > count_same &&
+ count_less > count_more) {
+ maj_byte--;
+ }
+
+ if (maj_byte != new_byte) {
+ // print only when majority choice is
+ // different from average
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
+ node, if_num, rankx, i, maj_byte,
+ new_byte);
+ }
+ new_byte = maj_byte;
+ } else {
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
+ node, if_num, rankx, i, new_byte);
+ }
+ }
+
+ if (!disable_rank_majority) {
+ // rank majority is dependent on the rank
+ // counts, which are relative to best_byte,
+ // so start there, and adjust according to the
+ // rank counts majority
+ rank_maj = best_byte;
+ if (rank_more > rank_same &&
+ rank_more > rank_less) {
+ rank_maj++;
+ } else if (rank_less > rank_same &&
+ rank_less > rank_more) {
+ rank_maj--;
+ }
+ rank_sum = rank_more + rank_same + rank_less;
+
+ // now, let rank majority possibly rule over
+ // the current new_byte however we got it
+ if (rank_maj != new_byte) { // only if different
+ // Here is where we decide whether to
+ // completely apply RANK_MAJORITY or not
+ // ignore if less than
+ if (rank_maj < new_byte) {
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n",
+ node, if_num,
+ rankx, i,
+ rank_maj,
+ new_byte);
+ }
+ } else {
+ // For the moment, we do it
+ // ONLY when running 2-slot
+ // configs
+ // OR when rank_sum is big
+ // enough
+ if (dimm_count > 1 ||
+ rank_sum > 2) {
+ // print only when rank
+ // majority choice is
+ // selected
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
+ node,
+ if_num,
+ rankx,
+ i,
+ rank_maj,
+ new_byte);
+ }
+ new_byte = rank_maj;
+ } else {
+ // FIXME: print some
+ // info when we could
+ // have chosen RANKMAJ
+ // but did not
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
+ node,
+ if_num,
+ rankx,
+ i,
+ rank_maj,
+ new_byte,
+ best_byte,
+ rank_sum);
+ }
+ }
+ }
+ }
+ } /* if (!disable_rank_majority) */
+ }
+#if FAILSAFE_CHECK
+ // one last check:
+ // if new_byte is still count_byte, BUT there was no count
+ // for that value, DO SOMETHING!!!
+ // FIXME: go back to original best byte from the best row
+ if (new_byte == count_byte && count_same == 0) {
+ new_byte = orig_best_byte;
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
+ node, if_num, rankx, i, new_byte);
+ }
+ }
+#endif /* FAILSAFE_CHECK */
+#if PERFECT_BITMASK_COUNTING
+ // Look at counts for "perfect" bitmasks (PBMs) if we had
+ // any for this byte-lane.
+ // Remember, we only counted for DDR4, so zero means none
+ // or DDR3, and we bypass this...
+ value_mask = rank_perf[rankx].mask[i];
+ disable_rlv_bump_this_byte = 0;
+
+ if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) {
+ int i, delay_count, delay_max = 0, del_val = 0;
+ int num_values = __builtin_popcountll(value_mask);
+ int sum_counts = 0;
+ u64 temp_mask = value_mask;
+
+ disable_rlv_bump_this_byte = 1;
+ i = __builtin_ffsll(temp_mask) - 1;
+ if (rl_print)
+ debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ",
+ node, if_num, rankx, i, value_mask >> i,
+ num_values);
+
+ while (temp_mask != 0) {
+ i = __builtin_ffsll(temp_mask) - 1;
+ delay_count = rank_perf[rankx].count[i][i];
+ sum_counts += delay_count;
+ if (rl_print)
+ debug("%2d(%2d) ", i, delay_count);
+ if (delay_count >= delay_max) {
+ delay_max = delay_count;
+ del_val = i;
+ }
+ temp_mask &= ~(1UL << i);
+ } /* while (temp_mask != 0) */
+
+ // if sum_counts is small, just use NEW_BYTE
+ if (sum_counts < pbm_lowsum_limit) {
+ if (rl_print)
+ debug(": LOWSUM (%2d), choose ORIG ",
+ sum_counts);
+ del_val = new_byte;
+ delay_max = rank_perf[rankx].count[i][del_val];
+ }
+
+ // finish printing here...
+ if (rl_print) {
+ debug(": USING %2d (%2d) D%d\n", del_val,
+ delay_max, disable_rlv_bump_this_byte);
+ }
+
+ new_byte = del_val; // override with best PBM choice
+
+ } else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) {
+ // if (value_mask != 0) {
+ int i, delay_count, del_val;
+ int num_values = __builtin_popcountll(value_mask);
+ int sum_counts = 0;
+ u64 temp_mask = value_mask;
+
+ i = __builtin_ffsll(temp_mask) - 1;
+ if (rl_print)
+ debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ",
+ node, if_num, rankx, i, value_mask >> i,
+ num_values);
+ while (temp_mask != 0) {
+ i = __builtin_ffsll(temp_mask) - 1;
+ delay_count = rank_perf[rankx].count[i][i];
+ sum_counts += delay_count;
+ if (rl_print)
+ debug("%2d(%2d) ", i, delay_count);
+ temp_mask &= ~(1UL << i);
+ } /* while (temp_mask != 0) */
+
+ del_val = __builtin_ffsll(value_mask) - 1;
+ delay_count =
+ rank_perf[rankx].count[i][del_val];
+
+ // overkill, normally only 1-4 bits
+ i = (value_mask >> del_val) & 0x1F;
+
+ // if sum_counts is small, treat as special and use
+ // NEW_BYTE
+ if (sum_counts < pbm_lowsum_limit) {
+ if (rl_print)
+ debug(": LOWSUM (%2d), choose ORIG",
+ sum_counts);
+ i = 99; // SPECIAL case...
+ }
+
+ switch (i) {
+ case 0x01 /* 00001b */:
+ // allow BUMP
+ break;
+
+ case 0x13 /* 10011b */:
+ case 0x0B /* 01011b */:
+ case 0x03 /* 00011b */:
+ del_val += 1; // take the second
+ disable_rlv_bump_this_byte = 1; // allow no BUMP
+ break;
+
+ case 0x0D /* 01101b */:
+ case 0x05 /* 00101b */:
+ // test count of lowest and all
+ if (delay_count >= 5 || sum_counts <= 5)
+ del_val += 1; // take the hole
+ else
+ del_val += 2; // take the next set
+ disable_rlv_bump_this_byte = 1; // allow no BUMP
+ break;
+
+ case 0x0F /* 01111b */:
+ case 0x17 /* 10111b */:
+ case 0x07 /* 00111b */:
+ del_val += 1; // take the second
+ if (delay_count < 5) { // lowest count is small
+ int second =
+ rank_perf[rankx].count[i][del_val];
+ int third =
+ rank_perf[rankx].count[i][del_val + 1];
+ // test if middle is more than 1 OR
+ // top is more than 1;
+ // this means if they are BOTH 1,
+ // then we keep the second...
+ if (second > 1 || third > 1) {
+ // if middle is small OR top
+ // is large
+ if (second < 5 ||
+ third > 1) {
+ // take the top
+ del_val += 1;
+ if (rl_print)
+ debug(": TOP7 ");
+ }
+ }
+ }
+ disable_rlv_bump_this_byte = 1; // allow no BUMP
+ break;
+
+ default: // all others...
+ if (rl_print)
+ debug(": ABNORMAL, choose ORIG");
+
+ case 99: // special
+ // FIXME: choose original choice?
+ del_val = new_byte;
+ disable_rlv_bump_this_byte = 1; // allow no BUMP
+ break;
+ }
+ delay_count =
+ rank_perf[rankx].count[i][del_val];
+
+ // finish printing here...
+ if (rl_print)
+ debug(": USING %2d (%2d) D%d\n", del_val,
+ delay_count, disable_rlv_bump_this_byte);
+ new_byte = del_val; // override with best PBM choice
+ } else {
+ if (ddr_type == DDR4_DRAM) { // only report when DDR4
+ // FIXME: remove or increase VBL for this
+ // output...
+ if (rl_print)
+ debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n",
+ node, if_num, rankx, i,
+ new_byte);
+ // prevent ODD bump, rely on original
+ disable_rlv_bump_this_byte = 1;
+ }
+ } /* if (value_mask != 0) */
+#endif /* PERFECT_BITMASK_COUNTING */
+
+ // optionally bump the delay value
+ if (enable_rldelay_bump && !disable_rlv_bump_this_byte) {
+ if ((new_byte & enable_rldelay_bump) ==
+ enable_rldelay_bump) {
+ int bump_value = new_byte + rldelay_bump_incr;
+
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n",
+ node, if_num, rankx, i,
+ new_byte, bump_value,
+ (value_mask &
+ (1 << bump_value)) ?
+ "PBM" : "NOPBM");
+ }
+ new_byte = bump_value;
+ }
+ }
+
+ // last checks for count-related purposes
+ if (new_byte == best_byte && count_more > 0 &&
+ count_less == 0) {
+ // we really should take best_byte + 1
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n",
+ node, if_num, rankx, i,
+ new_byte, best_byte + 1);
+ new_byte = best_byte + 1;
+ }
+ } else if ((new_byte < best_byte) && (count_same > 0)) {
+ // we really should take best_byte
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n",
+ node, if_num, rankx, i,
+ new_byte, best_byte);
+ new_byte = best_byte;
+ }
+ } else if (new_byte > best_byte) {
+ if ((new_byte == (best_byte + 1)) &&
+ count_more == 0 && count_less > 0) {
+ // we really should take best_byte
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n",
+ node, if_num, rankx, i,
+ new_byte, best_byte);
+ new_byte = best_byte;
+ }
+ } else if ((new_byte >= (best_byte + 2)) &&
+ ((count_more > 0) || (count_same > 0))) {
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n",
+ node, if_num, rankx, i,
+ new_byte, best_byte + 1);
+ new_byte = best_byte + 1;
+ }
+ }
+ }
+
+ if (rl_print) {
+ debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n",
+ node, if_num, rankx, i, orig_best_byte,
+ best_byte, count_more, count_same, count_less,
+ new_byte);
+ }
+
+ // update the byte with the new value (NOTE: orig value in
+ // the CSR may not be current "best")
+ upd_rl_rank(&rl_rank, i, new_byte);
+
+ // save new best for neighbor use
+ rank_best_bytes[i] = new_byte;
+ } /* for (i = 0; i < 8+ecc_ena; i++) */
+
+ ////////////////// this is the end of the BEST BYTE LOOP
+
+ if (saved_rl_rank.u64 != rl_rank.u64) {
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+ rl_rank.u64);
+ rl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+ debug("Adjusting Read-Leveling per-RANK settings.\n");
+ } else {
+ debug("Not Adjusting Read-Leveling per-RANK settings.\n");
+ }
+ display_rl_with_final(if_num, rl_rank, rankx);
+
+ // FIXME: does this help make the output a little easier to focus?
+ if (rl_print > 0)
+ debug("-----------\n");
+
+#if RLEXTRAS_PATCH
+#define RLEVEL_RANKX_EXTRAS_INCR 0
+ // if there are unused entries to be filled
+ if ((rank_mask & 0x0f) != 0x0f) {
+ // copy the current rank
+ union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank;
+
+ if (rankx < 3) {
+#if RLEVEL_RANKX_EXTRAS_INCR > 0
+ int byte, delay;
+
+ // modify the copy in prep for writing to empty slot(s)
+ for (byte = 0; byte < 9; byte++) {
+ delay = get_rl_rank(&temp_rl_rank, byte) +
+ RLEVEL_RANKX_EXTRAS_INCR;
+ if (delay > RLEVEL_BYTE_MSK)
+ delay = RLEVEL_BYTE_MSK;
+ upd_rl_rank(&temp_rl_rank, byte, delay);
+ }
+#endif
+
+ // if rank 0, write rank 1 and rank 2 here if empty
+ if (rankx == 0) {
+ // check that rank 1 is empty
+ if (!(rank_mask & (1 << 1))) {
+ debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 1);
+ lmc_wr(priv,
+ CVMX_LMCX_RLEVEL_RANKX(1,
+ if_num),
+ temp_rl_rank.u64);
+ }
+
+ // check that rank 2 is empty
+ if (!(rank_mask & (1 << 2))) {
+ debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 2);
+ lmc_wr(priv,
+ CVMX_LMCX_RLEVEL_RANKX(2,
+ if_num),
+ temp_rl_rank.u64);
+ }
+ }
+
+ // if ranks 0, 1 or 2, write rank 3 here if empty
+ // check that rank 3 is empty
+ if (!(rank_mask & (1 << 3))) {
+ debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+ node, if_num, rankx, 3);
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num),
+ temp_rl_rank.u64);
+ }
+ }
+ }
+#endif /* RLEXTRAS_PATCH */
+}
+
+static void lmc_read_leveling(struct ddr_priv *priv)
+{
+ struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
+ union cvmx_lmcx_control ctl;
+ union cvmx_lmcx_config cfg;
+ int rankx;
+ char *s;
+ int i;
+
+ /*
+ * 4.8.10 LMC Read Leveling
+ *
+ * LMC supports an automatic read-leveling separately per byte-lane
+ * using the DDR3 multipurpose register predefined pattern for system
+ * calibration defined in the JEDEC DDR3 specifications.
+ *
+ * All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
+ * must be completed prior to starting this LMC read-leveling sequence.
+ *
+ * Software could simply write the desired read-leveling values into
+ * LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
+ * LMC's autoread-leveling capabilities.
+ *
+ * When LMC does the read-leveling sequence for a rank, it first enables
+ * the DDR3 multipurpose register predefined pattern for system
+ * calibration on the selected DRAM rank via a DDR3 MR3 write, then
+ * executes 64 RD operations at different internal delay settings, then
+ * disables the predefined pattern via another DDR3 MR3 write
+ * operation. LMC determines the pass or fail of each of the 64 settings
+ * independently for each byte lane, then writes appropriate
+ * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
+ *
+ * After read-leveling for a rank, software can read the 64 pass/fail
+ * indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK].
+ * Software can observe all pass/fail results for all byte lanes in a
+ * rank via separate read-leveling sequences on the rank with different
+ * LMC(0)_RLEVEL_CTL[BYTE] values.
+ *
+ * The 64 pass/fail results will typically have failures for the low
+ * delays, followed by a run of some passing settings, followed by more
+ * failures in the remaining high delays. LMC sets
+ * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
+ * First, LMC selects the longest run of successes in the 64 results.
+ * (In the unlikely event that there is more than one longest run, LMC
+ * selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
+ * the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
+ * LMC selects the last passing setting in the run minus
+ * LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting
+ * in the run (rounding earlier when necessary). We expect the
+ * read-leveling sequence to produce good results with the reset values
+ * LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
+ *
+ * The read-leveling sequence has the following steps:
+ *
+ * 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
+ * Do the remaining substeps 2-4 separately for each rank i with
+ * attached DRAM.
+ *
+ * 2. Without changing any other fields in LMC(0)_CONFIG,
+ *
+ * o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
+ *
+ * o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+ *
+ * o write LMC(0)_SEQ_CTL[INIT_START] = 1
+ *
+ * This initiates the previously-described read-leveling.
+ *
+ * 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
+ *
+ * LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte
+ * lanes at this point.
+ *
+ * If ECC DRAM is not present (i.e. when DRAM is not attached to the
+ * DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
+ * DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
+ * LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
+ * LMC(0)_RLEVEL_RANK*[BYTE0].
+ *
+ * 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
+ * LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
+ * LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify
+ * LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all
+ * BITMASKs can be observed.
+ *
+ * 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
+ *
+ * Let rank i be a rank with attached DRAM.
+ *
+ * For all ranks j that do not have attached DRAM, set
+ * LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
+ *
+ * This read-leveling sequence can help select the proper CN70XX ODT
+ * resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
+ * LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
+ * drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
+ * (for a used byte lane k) can indicate that the CN70XX ODT value is
+ * bad. It is possible to simultaneously optimize both
+ * LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
+ * performing this read-leveling sequence for several
+ * LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the
+ * best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
+ */
+
+ rl_rodt_err = 0;
+ rl_dbg_loops = 1;
+ saved_int_zqcs_dis = 0;
+ max_adj_rl_del_inc = 0;
+ rl_print = RLEVEL_PRINTALL_DEFAULT;
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+ part_number[21] = {0};
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+#if PERFECT_BITMASK_COUNTING
+ pbm_lowsum_limit = 5; // FIXME: is this a good default?
+ // FIXME: PBM skip for RODT 240 and 34
+ pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) |
+ (1U << ddr4_rodt_ctl_34_ohm);
+#endif /* PERFECT_BITMASK_COUNTING */
+
+ disable_rank_majority = 0; // control rank majority processing
+
+ // default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+ // for DDR3
+ rldelay_bump_incr = 0;
+ disable_rlv_bump_this_byte = 0;
+
+ enable_rldelay_bump = (ddr_type == DDR4_DRAM) ?
+ ((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0;
+
+ s = lookup_env(priv, "ddr_disable_rank_majority");
+ if (s)
+ disable_rank_majority = !!simple_strtoul(s, NULL, 0);
+
+#if PERFECT_BITMASK_COUNTING
+ s = lookup_env(priv, "ddr_pbm_lowsum_limit");
+ if (s)
+ pbm_lowsum_limit = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_pbm_rodt_skip");
+ if (s)
+ pbm_rodt_skip = simple_strtoul(s, NULL, 0);
+ memset(rank_perf, 0, sizeof(rank_perf));
+#endif /* PERFECT_BITMASK_COUNTING */
+
+ ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ save_ddr2t = ctl.cn78xx.ddr2t;
+
+ cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+ ecc_ena = cfg.cn78xx.ecc_ena;
+
+ s = lookup_env(priv, "ddr_rlevel_2t");
+ if (s)
+ ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0);
+
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+ debug("LMC%d: Performing Read-Leveling\n", if_num);
+
+ rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+
+ rl_samples = c_cfg->rlevel_average_loops;
+ if (rl_samples == 0) {
+ rl_samples = RLEVEL_SAMPLES_DEFAULT;
+ // up the samples for these cases
+ if (dimm_count == 1 || num_ranks == 1)
+ rl_samples = rl_samples * 2 + 1;
+ }
+
+ rl_compute = c_cfg->rlevel_compute;
+ rl_ctl.cn78xx.offset_en = c_cfg->offset_en;
+ rl_ctl.cn78xx.offset = spd_rdimm
+ ? c_cfg->offset_rdimm
+ : c_cfg->offset_udimm;
+
+ int value = 1; // should ALWAYS be set
+
+ s = lookup_env(priv, "ddr_rlevel_delay_unload");
+ if (s)
+ value = !!simple_strtoul(s, NULL, 0);
+ rl_ctl.cn78xx.delay_unload_0 = value;
+ rl_ctl.cn78xx.delay_unload_1 = value;
+ rl_ctl.cn78xx.delay_unload_2 = value;
+ rl_ctl.cn78xx.delay_unload_3 = value;
+
+ // use OR_DIS=1 to try for better results
+ rl_ctl.cn78xx.or_dis = 1;
+
+ /*
+ * If we will be switching to 32bit mode level based on only
+ * four bits because there are only 4 ECC bits.
+ */
+ rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F;
+
+ // allow overrides
+ s = lookup_env(priv, "ddr_rlevel_ctl_or_dis");
+ if (s)
+ rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_ctl_bitmask");
+ if (s)
+ rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0);
+
+ rl_comp_offs = spd_rdimm
+ ? c_cfg->rlevel_comp_offset_rdimm
+ : c_cfg->rlevel_comp_offset_udimm;
+ s = lookup_env(priv, "ddr_rlevel_comp_offset");
+ if (s)
+ rl_comp_offs = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_offset");
+ if (s)
+ rl_ctl.cn78xx.offset = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_offset_en");
+ if (s)
+ rl_ctl.cn78xx.offset_en = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_ctl");
+ if (s)
+ rl_ctl.u64 = simple_strtoul(s, NULL, 0);
+
+ lmc_wr(priv,
+ CVMX_LMCX_RLEVEL_CTL(if_num),
+ rl_ctl.u64);
+
+ // do this here so we can look at final RLEVEL_CTL[offset] setting...
+ s = lookup_env(priv, "ddr_enable_rldelay_bump");
+ if (s) {
+ // also use as mask bits
+ enable_rldelay_bump = strtoul(s, NULL, 0);
+ }
+
+ if (enable_rldelay_bump != 0)
+ rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1;
+
+ s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num);
+ if (s)
+ rl_dbg_loops = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rtt_nom_auto");
+ if (s)
+ ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_average");
+ if (s)
+ rl_samples = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_compute");
+ if (s)
+ rl_compute = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_rlevel_printall");
+ if (s)
+ rl_print = simple_strtoul(s, NULL, 0);
+
+ debug("RLEVEL_CTL : 0x%016llx\n",
+ rl_ctl.u64);
+ debug("RLEVEL_OFFSET : %6d\n",
+ rl_ctl.cn78xx.offset);
+ debug("RLEVEL_OFFSET_EN : %6d\n",
+ rl_ctl.cn78xx.offset_en);
+
+ /*
+ * The purpose for the indexed table is to sort the settings
+ * by the ohm value to simplify the testing when incrementing
+ * through the settings. (index => ohms) 1=120, 2=60, 3=40,
+ * 4=30, 5=20
+ */
+ min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ?
+ 1 : c_cfg->min_rtt_nom_idx;
+ max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ?
+ 5 : c_cfg->max_rtt_nom_idx;
+
+ min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl;
+ max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl;
+
+ s = lookup_env(priv, "ddr_min_rodt_ctl");
+ if (s)
+ min_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_max_rodt_ctl");
+ if (s)
+ max_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_min_rtt_nom_idx");
+ if (s)
+ min_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_max_rtt_nom_idx");
+ if (s)
+ max_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+ if (c_cfg->rl_tbl) {
+ /* Check for hard-coded read-leveling settings */
+ get_dimm_part_number(part_number, &dimm_config_table[0],
+ 0, ddr_type);
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ rl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+
+ i = 0;
+ while (c_cfg->rl_tbl[i].part) {
+ debug("DIMM part number:\"%s\", SPD: \"%s\"\n",
+ c_cfg->rl_tbl[i].part, part_number);
+ if ((strcmp(part_number,
+ c_cfg->rl_tbl[i].part) == 0) &&
+ (abs(c_cfg->rl_tbl[i].speed -
+ 2 * ddr_hertz / (1000 * 1000)) < 10)) {
+ debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n",
+ part_number);
+ rl_rank.u64 =
+ c_cfg->rl_tbl[i].rl_rank[if_num][rankx];
+ lmc_wr(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num),
+ rl_rank.u64);
+ rl_rank.u64 =
+ lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ display_rl(if_num, rl_rank, rankx);
+ /* Disable h/w read-leveling */
+ rl_dbg_loops = 0;
+ break;
+ }
+ ++i;
+ }
+ }
+ }
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+ max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment;
+ s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment");
+ if (s)
+ max_adj_rl_del_inc = strtoul(s, NULL, 0);
+
+ while (rl_dbg_loops--) {
+ union cvmx_lmcx_modereg_params1 mp1;
+ union cvmx_lmcx_comp_ctl2 cc2;
+
+ /* Initialize the error scoreboard */
+ memset(rl_score, 0, sizeof(rl_score));
+
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ saved_ddr__ptune = cc2.cn78xx.ddr__ptune;
+ saved_ddr__ntune = cc2.cn78xx.ddr__ntune;
+
+ /* Disable dynamic compensation settings */
+ if (rl_comp_offs != 0) {
+ cc2.cn78xx.ptune = saved_ddr__ptune;
+ cc2.cn78xx.ntune = saved_ddr__ntune;
+
+ /*
+ * Round up the ptune calculation to bias the odd
+ * cases toward ptune
+ */
+ cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2);
+ cc2.cn78xx.ntune -= rl_comp_offs / 2;
+
+ ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+ /* Disable ZQCS while in bypass. */
+ ctl.s.int_zqcs_dis = 1;
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+ cc2.cn78xx.byp = 1; /* Enable bypass mode */
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+ lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ /* Read again */
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
+ cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+ }
+
+ mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+ for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+ ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+ /*
+ * When the read ODT mask is zero the dyn_rtt_nom_mask
+ * is zero than RTT_NOM will not be changing during
+ * read-leveling. Since the value is fixed we only need
+ * to test it once.
+ */
+ if (dyn_rtt_nom_mask == 0) {
+ // flag not to print NOM ohms
+ print_nom_ohms = -1;
+ } else {
+ if (dyn_rtt_nom_mask & 1)
+ mp1.s.rtt_nom_00 = rtt_nom;
+ if (dyn_rtt_nom_mask & 2)
+ mp1.s.rtt_nom_01 = rtt_nom;
+ if (dyn_rtt_nom_mask & 4)
+ mp1.s.rtt_nom_10 = rtt_nom;
+ if (dyn_rtt_nom_mask & 8)
+ mp1.s.rtt_nom_11 = rtt_nom;
+ // FIXME? rank 0 ohms always?
+ print_nom_ohms =
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00];
+ }
+
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+ mp1.u64);
+
+ if (print_nom_ohms >= 0 && rl_print > 1) {
+ debug("\n");
+ debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+ mp1.s.rtt_nom_11,
+ mp1.s.rtt_nom_10,
+ mp1.s.rtt_nom_01,
+ mp1.s.rtt_nom_00);
+ }
+
+ ddr_init_seq(priv, rank_mask, if_num);
+
+ // Try RANK outside RODT to rearrange the output...
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ for (rodt_ctl = max_rodt_ctl;
+ rodt_ctl >= min_rodt_ctl; --rodt_ctl)
+ rodt_loop(priv, rankx, rl_score);
+ }
+ }
+
+ /* Re-enable dynamic compensation settings. */
+ if (rl_comp_offs != 0) {
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+ cc2.cn78xx.ptune = 0;
+ cc2.cn78xx.ntune = 0;
+ cc2.cn78xx.byp = 0; /* Disable bypass mode */
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+ /* Read once */
+ lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+ /* Read again */
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
+ cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+
+ ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ /* Restore original setting */
+ ctl.s.int_zqcs_dis = saved_int_zqcs_dis;
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+ }
+
+ int override_compensation = 0;
+
+ s = lookup_env(priv, "ddr__ptune");
+ if (s)
+ saved_ddr__ptune = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr__ntune");
+ if (s) {
+ saved_ddr__ntune = strtoul(s, NULL, 0);
+ override_compensation = 1;
+ }
+
+ if (override_compensation) {
+ cc2.cn78xx.ptune = saved_ddr__ptune;
+ cc2.cn78xx.ntune = saved_ddr__ntune;
+
+ ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+ /* Disable ZQCS while in bypass. */
+ ctl.s.int_zqcs_dis = 1;
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+ cc2.cn78xx.byp = 1; /* Enable bypass mode */
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+ /* Read again */
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+ debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
+ cc2.cn78xx.ptune, cc2.cn78xx.ntune);
+ }
+
+ /* Evaluation block */
+ /* Still at initial value? */
+ int best_rodt_score = DEFAULT_BEST_RANK_SCORE;
+ int auto_rodt_ctl = 0;
+ int auto_rtt_nom = 0;
+ int rodt_score;
+
+ rodt_row_skip_mask = 0;
+
+ // just add specific RODT rows to the skip mask for DDR4
+ // at this time...
+ if (ddr_type == DDR4_DRAM) {
+ // skip RODT row 34 ohms for all DDR4 types
+ rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm);
+ // skip RODT row 40 ohms for all DDR4 types
+ rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm);
+#if ADD_48_OHM_SKIP
+ // skip RODT row 48 ohms for all DDR4 types
+ rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_48_ohm);
+#endif /* ADD_48OHM_SKIP */
+#if NOSKIP_40_48_OHM
+ // For now, do not skip RODT row 40 or 48 ohm when
+ // ddr_hertz is above 1075 MHz
+ if (ddr_hertz > 1075000000) {
+ // noskip RODT row 40 ohms
+ rodt_row_skip_mask &=
+ ~(1 << ddr4_rodt_ctl_40_ohm);
+ // noskip RODT row 48 ohms
+ rodt_row_skip_mask &=
+ ~(1 << ddr4_rodt_ctl_48_ohm);
+ }
+#endif /* NOSKIP_40_48_OHM */
+#if NOSKIP_48_STACKED
+ // For now, do not skip RODT row 48 ohm for 2Rx4
+ // stacked die DIMMs
+ if (is_stacked_die && num_ranks == 2 &&
+ dram_width == 4) {
+ // noskip RODT row 48 ohms
+ rodt_row_skip_mask &=
+ ~(1 << ddr4_rodt_ctl_48_ohm);
+ }
+#endif /* NOSKIP_48_STACKED */
+#if NOSKIP_FOR_MINI
+ // for now, leave all rows eligible when we have
+ // mini-DIMMs...
+ if (spd_dimm_type == 5 || spd_dimm_type == 6)
+ rodt_row_skip_mask = 0;
+#endif /* NOSKIP_FOR_MINI */
+#if NOSKIP_FOR_2S_1R
+ // for now, leave all rows eligible when we have
+ // a 2-slot 1-rank config
+ if (dimm_count == 2 && num_ranks == 1)
+ rodt_row_skip_mask = 0;
+#endif /* NOSKIP_FOR_2S_1R */
+
+ debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
+ for (rtt_idx = min_rtt_nom_idx;
+ rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+ rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+ for (rodt_ctl = max_rodt_ctl;
+ rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+ rodt_score = 0;
+ for (rankx = 0; rankx < dimm_count * 4;
+ rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
+ rtt_nom, rodt_ctl, rankx,
+ rl_score[rtt_nom][rodt_ctl][rankx].score);
+ rodt_score +=
+ rl_score[rtt_nom][rodt_ctl][rankx].score;
+ }
+ // FIXME: do we need to skip RODT rows
+ // here, like we do below in the
+ // by-RANK settings?
+
+ /*
+ * When using automatic ODT settings use
+ * the ODT settings associated with the
+ * best score for all of the tested ODT
+ * combinations.
+ */
+
+ if (rodt_score < best_rodt_score ||
+ (rodt_score == best_rodt_score &&
+ (imp_val->rodt_ohms[rodt_ctl] >
+ imp_val->rodt_ohms[auto_rodt_ctl]))) {
+ debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n",
+ rodt_ctl,
+ imp_val->rodt_ohms[rodt_ctl],
+ rodt_score,
+ best_rodt_score);
+ best_rodt_score = rodt_score;
+ auto_rodt_ctl = rodt_ctl;
+ auto_rtt_nom = rtt_nom;
+ }
+ }
+ }
+
+ mp1.u64 = lmc_rd(priv,
+ CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+ if (ddr_rtt_nom_auto) {
+ /* Store the automatically set RTT_NOM value */
+ if (dyn_rtt_nom_mask & 1)
+ mp1.s.rtt_nom_00 = auto_rtt_nom;
+ if (dyn_rtt_nom_mask & 2)
+ mp1.s.rtt_nom_01 = auto_rtt_nom;
+ if (dyn_rtt_nom_mask & 4)
+ mp1.s.rtt_nom_10 = auto_rtt_nom;
+ if (dyn_rtt_nom_mask & 8)
+ mp1.s.rtt_nom_11 = auto_rtt_nom;
+ } else {
+ /*
+ * restore the manual settings to the register
+ */
+ mp1.s.rtt_nom_00 = default_rtt_nom[0];
+ mp1.s.rtt_nom_01 = default_rtt_nom[1];
+ mp1.s.rtt_nom_10 = default_rtt_nom[2];
+ mp1.s.rtt_nom_11 = default_rtt_nom[3];
+ }
+
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+ mp1.u64);
+ debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+ imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+ mp1.s.rtt_nom_11,
+ mp1.s.rtt_nom_10,
+ mp1.s.rtt_nom_01,
+ mp1.s.rtt_nom_00);
+
+ debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+ imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+ extr_wr(mp1.u64, 3),
+ extr_wr(mp1.u64, 2),
+ extr_wr(mp1.u64, 1),
+ extr_wr(mp1.u64, 0));
+
+ debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->dic_ohms[mp1.s.dic_11],
+ imp_val->dic_ohms[mp1.s.dic_10],
+ imp_val->dic_ohms[mp1.s.dic_01],
+ imp_val->dic_ohms[mp1.s.dic_00],
+ mp1.s.dic_11,
+ mp1.s.dic_10,
+ mp1.s.dic_01,
+ mp1.s.dic_00);
+
+ if (ddr_type == DDR4_DRAM) {
+ union cvmx_lmcx_modereg_params2 mp2;
+ /*
+ * We must read the CSR, and not depend on
+ * odt_config[odt_idx].odt_mask2, since we could
+ * have overridden values with envvars.
+ * NOTE: this corrects the printout, since the
+ * CSR is not written with the old values...
+ */
+ mp2.u64 = lmc_rd(priv,
+ CVMX_LMCX_MODEREG_PARAMS2(if_num));
+
+ debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+ imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+ mp2.s.rtt_park_11,
+ mp2.s.rtt_park_10,
+ mp2.s.rtt_park_01,
+ mp2.s.rtt_park_00);
+
+ debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n",
+ "VREF_RANGE",
+ mp2.s.vref_range_11,
+ mp2.s.vref_range_10,
+ mp2.s.vref_range_01,
+ mp2.s.vref_range_00);
+
+ debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n",
+ "VREF_VALUE",
+ mp2.s.vref_value_11,
+ mp2.s.vref_value_10,
+ mp2.s.vref_value_01,
+ mp2.s.vref_value_00);
+ }
+
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ if (ddr_rodt_ctl_auto) {
+ cc2.cn78xx.rodt_ctl = auto_rodt_ctl;
+ } else {
+ // back to the original setting
+ cc2.cn78xx.rodt_ctl = default_rodt_ctl;
+ }
+ lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+ cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+ debug("Read ODT_CTL : 0x%x (%d ohms)\n",
+ cc2.cn78xx.rodt_ctl,
+ imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+ /*
+ * Use the delays associated with the best score for
+ * each individual rank
+ */
+ debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n");
+
+ // this is the the RANK MAJOR LOOP
+ for (rankx = 0; rankx < dimm_count * 4; rankx++)
+ rank_major_loop(priv, rankx, rl_score);
+ } /* Evaluation block */
+ } /* while(rl_dbg_loops--) */
+
+ ctl.cn78xx.ddr2t = save_ddr2t;
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+ ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ /* Display final 2T value */
+ debug("DDR2T : %6d\n",
+ ctl.cn78xx.ddr2t);
+
+ ddr_init_seq(priv, rank_mask, if_num);
+
+ for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+ u64 value;
+ int parameter_set = 0;
+
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+
+ for (i = 0; i < 9; ++i) {
+ s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d",
+ if_num, rankx, i);
+ if (s) {
+ parameter_set |= 1;
+ value = simple_strtoul(s, NULL, 0);
+
+ upd_rl_rank(&rl_rank, i, value);
+ }
+ }
+
+ s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx);
+ if (s) {
+ parameter_set |= 1;
+ value = simple_strtoull(s, NULL, 0);
+ rl_rank.u64 = value;
+ }
+
+ if (parameter_set) {
+ lmc_wr(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+ rl_rank.u64);
+ rl_rank.u64 = lmc_rd(priv,
+ CVMX_LMCX_RLEVEL_RANKX(rankx,
+ if_num));
+ display_rl(if_num, rl_rank, rankx);
+ }
+ }
+}
+
+int init_octeon3_ddr3_interface(struct ddr_priv *priv,
+ struct ddr_conf *_ddr_conf, u32 _ddr_hertz,
+ u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num,
+ u32 _if_mask)
+{
+ union cvmx_lmcx_control ctrl;
+ int ret;
+ char *s;
+ int i;
+
+ if_num = _if_num;
+ ddr_hertz = _ddr_hertz;
+ ddr_conf = _ddr_conf;
+ if_mask = _if_mask;
+ odt_1rank_config = ddr_conf->odt_1rank_config;
+ odt_2rank_config = ddr_conf->odt_2rank_config;
+ odt_4rank_config = ddr_conf->odt_4rank_config;
+ dimm_config_table = ddr_conf->dimm_config_table;
+ c_cfg = &ddr_conf->custom_lmc_config;
+
+ /*
+ * Compute clock rates to the nearest picosecond.
+ */
+ tclk_psecs = hertz_to_psecs(ddr_hertz); /* Clock in psecs */
+ eclk_psecs = hertz_to_psecs(cpu_hertz); /* Clock in psecs */
+
+ dimm_count = 0;
+ /* Accumulate and report all the errors before giving up */
+ fatal_error = 0;
+
+ /* Flag that indicates safe DDR settings should be used */
+ safe_ddr_flag = 0;
+ if_64b = 1; /* Octeon II Default: 64bit interface width */
+ mem_size_mbytes = 0;
+ bank_bits = 0;
+ column_bits_start = 1;
+ use_ecc = 1;
+ min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
+ spd_package = 0;
+ spd_rawcard = 0;
+ spd_rawcard_aorb = 0;
+ spd_rdimm_registers = 0;
+ is_stacked_die = 0;
+ is_3ds_dimm = 0; // 3DS
+ lranks_per_prank = 1; // 3DS: logical ranks per package rank
+ lranks_bits = 0; // 3DS: logical ranks bits
+ die_capacity = 0; // in Mbits; only used for 3DS
+
+ wl_mask_err = 0;
+ dyn_rtt_nom_mask = 0;
+ ddr_disable_chip_reset = 1;
+ match_wl_rtt_nom = 0;
+
+ internal_retries = 0;
+
+ disable_deskew_training = 0;
+ restart_if_dsk_incomplete = 0;
+ last_lane = ((if_64b) ? 8 : 4) + use_ecc;
+
+ disable_sequential_delay_check = 0;
+ wl_print = WLEVEL_PRINTALL_DEFAULT;
+
+#if ALLOW_BY_RANK_INIT
+ enable_by_rank_init = 1; // FIXME: default by-rank ON
+ saved_rank_mask = 0;
+#endif /* ALLOW_BY_RANK_INIT */
+
+ node = 0;
+
+#if SWL_TRY_HWL_ALT
+ memset(hwl_alts, 0, sizeof(hwl_alts));
+#endif
+
+ /*
+ * Initialize these to shut up the compiler. They are configured
+ * and used only for DDR4
+ */
+ ddr4_trrd_lmin = 6000;
+ ddr4_tccd_lmin = 6000;
+
+ debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n",
+ node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid());
+
+ if (dimm_config_table[0].spd_addrs[0] == 0 &&
+ !dimm_config_table[0].spd_ptrs[0]) {
+ printf("ERROR: No dimms specified in the dimm_config_table.\n");
+ return -1;
+ }
+
+ // allow some overrides to be done
+
+ // this one controls several things related to DIMM geometry: HWL and RL
+ disable_sequential_delay_check = c_cfg->disable_sequential_delay_check;
+ s = lookup_env(priv, "ddr_disable_sequential_delay_check");
+ if (s)
+ disable_sequential_delay_check = strtoul(s, NULL, 0);
+
+ // this one controls whether chip RESET is done, or LMC init restarted
+ // from step 6.9.6
+ s = lookup_env(priv, "ddr_disable_chip_reset");
+ if (s)
+ ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
+
+ // this one controls whether Deskew Training is performed
+ s = lookup_env(priv, "ddr_disable_deskew_training");
+ if (s)
+ disable_deskew_training = !!strtoul(s, NULL, 0);
+
+ if (ddr_verbose(priv)) {
+ printf("DDR SPD Table:");
+ for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+ if (dimm_config_table[didx].spd_addrs[0] == 0)
+ break;
+
+ printf(" --ddr%dspd=0x%02x", if_num,
+ dimm_config_table[didx].spd_addrs[0]);
+ if (dimm_config_table[didx].spd_addrs[1] != 0)
+ printf(",0x%02x",
+ dimm_config_table[didx].spd_addrs[1]);
+ }
+ printf("\n");
+ }
+
+ /*
+ * Walk the DRAM Socket Configuration Table to see what is installed.
+ */
+ for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+ /* Check for lower DIMM socket populated */
+ if (validate_dimm(priv, &dimm_config_table[didx], 0)) {
+ if (ddr_verbose(priv))
+ report_dimm(&dimm_config_table[didx], 0,
+ dimm_count, if_num);
+ ++dimm_count;
+ } else {
+ break;
+ } /* Finished when there is no lower DIMM */
+ }
+
+ initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz,
+ ddr_ref_hertz, if_num, if_mask);
+
+ if (!odt_1rank_config)
+ odt_1rank_config = disable_odt_config;
+ if (!odt_2rank_config)
+ odt_2rank_config = disable_odt_config;
+ if (!odt_4rank_config)
+ odt_4rank_config = disable_odt_config;
+
+ s = env_get("ddr_safe");
+ if (s) {
+ safe_ddr_flag = !!simple_strtoul(s, NULL, 0);
+ printf("Parameter found in environment. ddr_safe = %d\n",
+ safe_ddr_flag);
+ }
+
+ if (dimm_count == 0) {
+ printf("ERROR: DIMM 0 not detected.\n");
+ return (-1);
+ }
+
+ if (c_cfg->mode32b)
+ if_64b = 0;
+
+ s = lookup_env(priv, "if_64b");
+ if (s)
+ if_64b = !!simple_strtoul(s, NULL, 0);
+
+ if (if_64b == 1) {
+ if (octeon_is_cpuid(OCTEON_CN70XX)) {
+ printf("64-bit interface width is not supported for this Octeon model\n");
+ ++fatal_error;
+ }
+ }
+
+ /* ddr_type only indicates DDR4 or DDR3 */
+ ddr_type = (read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3;
+ debug("DRAM Device Type: DDR%d\n", ddr_type);
+
+ if (ddr_type == DDR4_DRAM) {
+ int spd_module_type;
+ int asymmetric;
+ const char *signal_load[4] = { "", "MLS", "3DS", "RSV" };
+
+ imp_val = &ddr4_impedence_val;
+
+ spd_addr =
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_ADDRESSING_ROW_COL_BITS);
+ spd_org =
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MODULE_ORGANIZATION);
+ spd_banks =
+ 0xFF & read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_DENSITY_BANKS);
+
+ bank_bits =
+ (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
+ /* Controller can only address 4 bits. */
+ bank_bits = min((int)bank_bits, 4);
+
+ spd_package =
+ 0XFF & read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_PACKAGE_TYPE);
+ if (spd_package & 0x80) { // non-monolithic device
+ is_stacked_die = ((spd_package & 0x73) == 0x11);
+ debug("DDR4: Package Type 0x%02x (%s), %d die\n",
+ spd_package, signal_load[(spd_package & 3)],
+ ((spd_package >> 4) & 7) + 1);
+ is_3ds_dimm = ((spd_package & 3) == 2); // is it 3DS?
+ if (is_3ds_dimm) { // is it 3DS?
+ lranks_per_prank = ((spd_package >> 4) & 7) + 1;
+ // FIXME: should make sure it is only 2H or 4H
+ // or 8H?
+ lranks_bits = lranks_per_prank >> 1;
+ if (lranks_bits == 4)
+ lranks_bits = 3;
+ }
+ } else if (spd_package != 0) {
+ // FIXME: print non-zero monolithic device definition
+ debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
+ ((spd_package >> 4) & 7) + 1, (spd_package & 3));
+ }
+
+ asymmetric = (spd_org >> 6) & 1;
+ if (asymmetric) {
+ int spd_secondary_pkg =
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_SECONDARY_PACKAGE_TYPE);
+ debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n",
+ spd_secondary_pkg);
+ } else {
+ u64 bus_width =
+ 8 << (0x07 &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
+ u64 ddr_width = 4 << ((spd_org >> 0) & 0x7);
+ u64 module_cap;
+ int shift = (spd_banks & 0x0F);
+
+ die_capacity = (shift < 8) ? (256UL << shift) :
+ ((12UL << (shift & 1)) << 10);
+ debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
+ (die_capacity > 512) ? (die_capacity >> 10) :
+ die_capacity, (die_capacity > 512) ? 'G' : 'M');
+ module_cap = ((u64)die_capacity << 20) / 8UL *
+ bus_width / ddr_width *
+ (1UL + ((spd_org >> 3) & 0x7));
+
+ // is it 3DS?
+ if (is_3ds_dimm) {
+ module_cap *= (u64)(((spd_package >> 4) & 7) +
+ 1);
+ }
+ debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
+ module_cap >> 30);
+ }
+
+ spd_rawcard =
+ 0xFF & read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_REFERENCE_RAW_CARD);
+ debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard);
+
+ spd_module_type =
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_KEY_BYTE_MODULE_TYPE);
+ if (spd_module_type & 0x80) { // HYBRID module
+ debug("DDR4: HYBRID module, type %s\n",
+ ((spd_module_type & 0x70) ==
+ 0x10) ? "NVDIMM" : "UNKNOWN");
+ }
+ spd_thermal_sensor =
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MODULE_THERMAL_SENSOR);
+ spd_dimm_type = spd_module_type & 0x0F;
+ spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+ (spd_dimm_type == 8);
+ if (spd_rdimm) {
+ u16 spd_mfgr_id, spd_register_rev, spd_mod_attr;
+ static const u16 manu_ids[4] = {
+ 0xb380, 0x3286, 0x9780, 0xb304
+ };
+ static const char *manu_names[4] = {
+ "XXX", "XXXXXXX", "XX", "XXXXX"
+ };
+ int mc;
+
+ spd_mfgr_id =
+ (0xFFU &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+ ((0xFFU &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB))
+ << 8);
+ spd_register_rev =
+ 0xFFU & read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_REGISTER_REVISION_NUMBER);
+ for (mc = 0; mc < 4; mc++)
+ if (manu_ids[mc] == spd_mfgr_id)
+ break;
+
+ debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n",
+ (mc >= 4) ? "UNKNOWN" : manu_names[mc],
+ spd_register_rev);
+
+ // RAWCARD A or B must be bit 7=0 and bits 4-0
+ // either 00000(A) or 00001(B)
+ spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1);
+ // RDIMM Module Attributes
+ spd_mod_attr =
+ 0xFFU & read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE);
+ spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+ debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n",
+ spd_mod_attr, (spd_mod_attr >> 4) + 1,
+ ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+ spd_rdimm_registers);
+ }
+ dimm_type_name = ddr4_dimm_types[spd_dimm_type];
+ } else { /* if (ddr_type == DDR4_DRAM) */
+ const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" };
+
+ imp_val = &ddr3_impedence_val;
+
+ spd_addr =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_ADDRESSING_ROW_COL_BITS);
+ spd_org =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MODULE_ORGANIZATION);
+ spd_banks =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_DENSITY_BANKS) & 0xff;
+
+ bank_bits = 3 + ((spd_banks >> 4) & 0x7);
+ /* Controller can only address 3 bits. */
+ bank_bits = min((int)bank_bits, 3);
+ spd_dimm_type =
+ 0x0f & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_KEY_BYTE_MODULE_TYPE);
+ spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+ (spd_dimm_type == 9);
+
+ spd_package =
+ 0xFF & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_SDRAM_DEVICE_TYPE);
+ if (spd_package & 0x80) { // non-standard device
+ debug("DDR3: Device Type 0x%02x (%s), %d die\n",
+ spd_package, signal_load[(spd_package & 3)],
+ ((1 << ((spd_package >> 4) & 7)) >> 1));
+ } else if (spd_package != 0) {
+ // FIXME: print non-zero monolithic device definition
+ debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n",
+ ((1 << (spd_package >> 4) & 7) >> 1),
+ (spd_package & 3));
+ }
+
+ spd_rawcard =
+ 0xFF & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_REFERENCE_RAW_CARD);
+ debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard);
+ spd_thermal_sensor =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MODULE_THERMAL_SENSOR);
+
+ if (spd_rdimm) {
+ int spd_mfgr_id, spd_register_rev, spd_mod_attr;
+
+ spd_mfgr_id =
+ (0xFFU &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+ ((0xFFU &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB))
+ << 8);
+ spd_register_rev =
+ 0xFFU & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_REGISTER_REVISION_NUMBER);
+ debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n",
+ spd_mfgr_id, spd_register_rev);
+ // Module Attributes
+ spd_mod_attr =
+ 0xFFU & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_ADDRESS_MAPPING);
+ spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+ debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n",
+ spd_mod_attr,
+ ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+ spd_rdimm_registers);
+ }
+ dimm_type_name = ddr3_dimm_types[spd_dimm_type];
+ }
+
+ if (spd_thermal_sensor & 0x80) {
+ debug("DDR%d: SPD: Thermal Sensor PRESENT\n",
+ (ddr_type == DDR4_DRAM) ? 4 : 3);
+ }
+
+ debug("spd_addr : %#06x\n", spd_addr);
+ debug("spd_org : %#06x\n", spd_org);
+ debug("spd_banks : %#06x\n", spd_banks);
+
+ row_bits = 12 + ((spd_addr >> 3) & 0x7);
+ col_bits = 9 + ((spd_addr >> 0) & 0x7);
+
+ num_ranks = 1 + ((spd_org >> 3) & 0x7);
+ dram_width = 4 << ((spd_org >> 0) & 0x7);
+ num_banks = 1 << bank_bits;
+
+ s = lookup_env(priv, "ddr_num_ranks");
+ if (s)
+ num_ranks = simple_strtoul(s, NULL, 0);
+
+#if ALLOW_BY_RANK_INIT
+ s = lookup_env(priv, "ddr_enable_by_rank_init");
+ if (s)
+ enable_by_rank_init = !!simple_strtoul(s, NULL, 0);
+
+ // FIXME: for now, we can only handle a DDR4 2rank-1slot config
+ // FIXME: also, by-rank init does not work correctly if 32-bit mode...
+ if (enable_by_rank_init && (ddr_type != DDR4_DRAM ||
+ dimm_count != 1 || if_64b != 1 ||
+ num_ranks != 2))
+ enable_by_rank_init = 0;
+
+ if (enable_by_rank_init) {
+ struct dimm_odt_config *odt_config;
+ union cvmx_lmcx_modereg_params1 mp1;
+ union cvmx_lmcx_modereg_params2 modereg_params2;
+ int by_rank_rodt, by_rank_wr, by_rank_park;
+
+ // Do ODT settings changes which work best for 2R-1S configs
+ debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n");
+
+ // setup for modifying config table values - 2 ranks and 1 DIMM
+ odt_config =
+ (struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0];
+
+ // original was 80, first try was 60
+ by_rank_rodt = ddr4_rodt_ctl_48_ohm;
+ s = lookup_env(priv, "ddr_by_rank_rodt");
+ if (s)
+ by_rank_rodt = strtoul(s, NULL, 0);
+
+ odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt;
+
+ // this is for MODEREG_PARAMS1 fields
+ // fetch the original settings
+ mp1.u64 = odt_config->modereg_params1.u64;
+
+ by_rank_wr = ddr4_rttwr_80ohm; // originals were 240
+ s = lookup_env(priv, "ddr_by_rank_wr");
+ if (s)
+ by_rank_wr = simple_strtoul(s, NULL, 0);
+
+ // change specific settings here...
+ insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr);
+ insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr);
+
+ // save final settings
+ odt_config->modereg_params1.u64 = mp1.u64;
+
+ // this is for MODEREG_PARAMS2 fields
+ // fetch the original settings
+ modereg_params2.u64 = odt_config->modereg_params2.u64;
+
+ by_rank_park = ddr4_rttpark_none; // originals were 120
+ s = lookup_env(priv, "ddr_by_rank_park");
+ if (s)
+ by_rank_park = simple_strtoul(s, NULL, 0);
+
+ // change specific settings here...
+ modereg_params2.s.rtt_park_00 = by_rank_park;
+ modereg_params2.s.rtt_park_01 = by_rank_park;
+
+ // save final settings
+ odt_config->modereg_params2.u64 = modereg_params2.u64;
+ }
+#endif /* ALLOW_BY_RANK_INIT */
+
+ /*
+ * FIX
+ * Check that values are within some theoretical limits.
+ * col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) =
+ * 14 - 3 - 4 = 7
+ * col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) =
+ * 18 - 2 - 3 = 13
+ */
+ if (col_bits > 13 || col_bits < 7) {
+ printf("Unsupported number of Col Bits: %d\n", col_bits);
+ ++fatal_error;
+ }
+
+ /*
+ * FIX
+ * Check that values are within some theoretical limits.
+ * row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits =
+ * 26 - 18 - 1 = 7
+ * row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits =
+ * 33 - 14 - 1 = 18
+ */
+ if (row_bits > 18 || row_bits < 7) {
+ printf("Unsupported number of Row Bits: %d\n", row_bits);
+ ++fatal_error;
+ }
+
+ s = lookup_env(priv, "ddr_rdimm_ena");
+ if (s)
+ spd_rdimm = !!simple_strtoul(s, NULL, 0);
+
+ wl_loops = WLEVEL_LOOPS_DEFAULT;
+ // accept generic or interface-specific override
+ s = lookup_env(priv, "ddr_wlevel_loops");
+ if (!s)
+ s = lookup_env(priv, "ddr%d_wlevel_loops", if_num);
+
+ if (s)
+ wl_loops = strtoul(s, NULL, 0);
+
+ s = lookup_env(priv, "ddr_ranks");
+ if (s)
+ num_ranks = simple_strtoul(s, NULL, 0);
+
+ bunk_enable = (num_ranks > 1);
+
+ if (octeon_is_cpuid(OCTEON_CN7XXX))
+ column_bits_start = 3;
+ else
+ printf("ERROR: Unsupported Octeon model: 0x%x\n",
+ read_c0_prid());
+
+ row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b);
+ debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n",
+ row_lsb);
+
+ pbank_lsb = row_lsb + row_bits + bunk_enable;
+ debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
+
+ if (lranks_per_prank > 1) {
+ pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
+ debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
+ row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
+ }
+
+ mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
+ if (num_ranks == 4) {
+ /*
+ * Quad rank dimm capacity is equivalent to two dual-rank
+ * dimms.
+ */
+ mem_size_mbytes *= 2;
+ }
+
+ /*
+ * Mask with 1 bits set for for each active rank, allowing 2 bits
+ * per dimm. This makes later calculations simpler, as a variety
+ * of CSRs use this layout. This init needs to be updated for dual
+ * configs (ie non-identical DIMMs).
+ *
+ * Bit 0 = dimm0, rank 0
+ * Bit 1 = dimm0, rank 1
+ * Bit 2 = dimm1, rank 0
+ * Bit 3 = dimm1, rank 1
+ * ...
+ */
+ rank_mask = 0x1;
+ if (num_ranks > 1)
+ rank_mask = 0x3;
+ if (num_ranks > 2)
+ rank_mask = 0xf;
+
+ for (i = 1; i < dimm_count; i++)
+ rank_mask |= ((rank_mask & 0x3) << (2 * i));
+
+ /*
+ * If we are booting from RAM, the DRAM controller is
+ * already set up. Just return the memory size
+ */
+ if (priv->flags & FLAG_RAM_RESIDENT) {
+ debug("Ram Boot: Skipping LMC config\n");
+ return mem_size_mbytes;
+ }
+
+ if (ddr_type == DDR4_DRAM) {
+ spd_ecc =
+ !!(read_spd
+ (&dimm_config_table[0], 0,
+ DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8);
+ } else {
+ spd_ecc =
+ !!(read_spd
+ (&dimm_config_table[0], 0,
+ DDR3_SPD_MEMORY_BUS_WIDTH) & 8);
+ }
+
+ char rank_spec[8];
+
+ printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package);
+ debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n",
+ dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
+ rank_spec,
+ (spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits);
+
+ if (ddr_type == DDR4_DRAM) {
+ spd_cas_latency =
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
+ spd_cas_latency |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
+ spd_cas_latency |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
+ spd_cas_latency |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
+ } else {
+ spd_cas_latency =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_CAS_LATENCIES_LSB);
+ spd_cas_latency |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
+ }
+ debug("spd_cas_latency : %#06x\n", spd_cas_latency);
+
+ if (ddr_type == DDR4_DRAM) {
+ /*
+ * No other values for DDR4 MTB and FTB are specified at the
+ * current time so don't bother reading them. Can't speculate
+ * how new values will be represented.
+ */
+ int spdmtb = 125;
+ int spdftb = 1;
+
+ taamin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0],
+ 0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
+
+ ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
+
+ ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
+
+ ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
+
+ ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
+
+ ddr4_trasmin = spdmtb *
+ (((read_spd
+ (&dimm_config_table[0], 0,
+ DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
+ (read_spd
+ (&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
+
+ ddr4_trcmin = spdmtb *
+ ((((read_spd
+ (&dimm_config_table[0], 0,
+ DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) <<
+ 8) + (read_spd
+ (&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) &
+ 0xff))
+ + spdftb * (signed char)read_spd(&dimm_config_table[0],
+ 0,
+ DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
+
+ ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) <<
+ 8) + (read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
+
+ ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) <<
+ 8) + (read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
+
+ ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) <<
+ 8) + (read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
+
+ ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) <<
+ 8) + (read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
+
+ ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
+
+ ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
+
+ ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) +
+ spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
+
+ debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb);
+ debug("%-45s : %6d ps\n", "Fine Timebase (FTB)", spdftb);
+
+ debug("%-45s : %6d ps (%ld MT/s)\n",
+ "SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin,
+ pretty_psecs_to_mts(ddr4_tckavgmin));
+ debug("%-45s : %6d ps\n",
+ "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax);
+ debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)",
+ taamin);
+ debug("%-45s : %6d ps\n",
+ "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Active to Precharge Delay (tRASmin)",
+ ddr4_trasmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Active to Active/Refr. Delay (tRCmin)",
+ ddr4_trcmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Refresh Recovery Delay (tRFC1min)",
+ ddr4_trfc1min);
+ debug("%-45s : %6d ps\n",
+ "Minimum Refresh Recovery Delay (tRFC2min)",
+ ddr4_trfc2min);
+ debug("%-45s : %6d ps\n",
+ "Minimum Refresh Recovery Delay (tRFC4min)",
+ ddr4_trfc4min);
+ debug("%-45s : %6d ps\n",
+ "Minimum Four Activate Window Time (tFAWmin)",
+ ddr4_tfawmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin);
+ debug("%-45s : %6d ps\n",
+ "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin);
+ debug("%-45s : %6d ps\n",
+ "Minimum CAS to CAS Delay Time (tCCD_Lmin)",
+ ddr4_tccd_lmin);
+
+#define DDR4_TWR 15000
+#define DDR4_TWTR_S 2500
+
+ tckmin = ddr4_tckavgmin;
+ twr = DDR4_TWR;
+ trcd = ddr4_trdcmin;
+ trrd = ddr4_trrd_smin;
+ trp = ddr4_trpmin;
+ tras = ddr4_trasmin;
+ trc = ddr4_trcmin;
+ trfc = ddr4_trfc1min;
+ twtr = DDR4_TWTR_S;
+ tfaw = ddr4_tfawmin;
+
+ if (spd_rdimm) {
+ spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) &
+ 0x1;
+ } else {
+ spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+ DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
+ }
+ debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+ } else {
+ spd_mtb_dividend =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
+ spd_mtb_divisor =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
+ spd_tck_min =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
+ spd_taa_min =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
+
+ spd_twr =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
+ spd_trcd =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
+ spd_trrd =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
+ spd_trp =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
+ spd_tras =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
+ spd_tras |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8);
+ spd_trc =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
+ spd_trc |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4);
+ spd_trfc =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
+ spd_trfc |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) <<
+ 8);
+ spd_twtr =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
+ spd_trtp =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
+ spd_tfaw =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
+ spd_tfaw |=
+ ((0xff &
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8);
+ spd_addr_mirror =
+ 0xff & read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_ADDRESS_MAPPING) & 0x1;
+ /* Only address mirror unbuffered dimms. */
+ spd_addr_mirror = spd_addr_mirror && !spd_rdimm;
+ ftb_dividend =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
+ ftb_divisor =
+ read_spd(&dimm_config_table[0], 0,
+ DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
+ /* Make sure that it is not 0 */
+ ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor;
+
+ debug("spd_twr : %#06x\n", spd_twr);
+ debug("spd_trcd : %#06x\n", spd_trcd);
+ debug("spd_trrd : %#06x\n", spd_trrd);
+ debug("spd_trp : %#06x\n", spd_trp);
+ debug("spd_tras : %#06x\n", spd_tras);
+ debug("spd_trc : %#06x\n", spd_trc);
+ debug("spd_trfc : %#06x\n", spd_trfc);
+ debug("spd_twtr : %#06x\n", spd_twtr);
+ debug("spd_trtp : %#06x\n", spd_trtp);
+ debug("spd_tfaw : %#06x\n", spd_tfaw);
+ debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+
+ mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
+ taamin = mtb_psec * spd_taa_min;
+ taamin += ftb_dividend *
+ (signed char)read_spd(&dimm_config_table[0],
+ 0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) /
+ ftb_divisor;
+ tckmin = mtb_psec * spd_tck_min;
+ tckmin += ftb_dividend *
+ (signed char)read_spd(&dimm_config_table[0],
+ 0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) /
+ ftb_divisor;
+
+ twr = spd_twr * mtb_psec;
+ trcd = spd_trcd * mtb_psec;
+ trrd = spd_trrd * mtb_psec;
+ trp = spd_trp * mtb_psec;
+ tras = spd_tras * mtb_psec;
+ trc = spd_trc * mtb_psec;
+ trfc = spd_trfc * mtb_psec;
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) {
+ // default to this - because it works...
+ int new_trfc = 260000;
+
+ s = env_get("ddr_trfc");
+ if (s) {
+ new_trfc = simple_strtoul(s, NULL, 0);
+ printf("Parameter found in environment. ddr_trfc = %d\n",
+ new_trfc);
+ if (new_trfc < 160000 || new_trfc > 260000) {
+ // back to default if out of range
+ new_trfc = 260000;
+ }
+ }
+ debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n",
+ node, if_num, trfc, new_trfc);
+ trfc = new_trfc;
+ }
+
+ twtr = spd_twtr * mtb_psec;
+ trtp = spd_trtp * mtb_psec;
+ tfaw = spd_tfaw * mtb_psec;
+
+ debug("Medium Timebase (MTB) : %6d ps\n",
+ mtb_psec);
+ debug("Minimum Cycle Time (tckmin) : %6d ps (%ld MT/s)\n",
+ tckmin, pretty_psecs_to_mts(tckmin));
+ debug("Minimum CAS Latency Time (taamin) : %6d ps\n",
+ taamin);
+ debug("Write Recovery Time (tWR) : %6d ps\n",
+ twr);
+ debug("Minimum RAS to CAS delay (tRCD) : %6d ps\n",
+ trcd);
+ debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n",
+ trrd);
+ debug("Minimum Row Precharge Delay (tRP) : %6d ps\n",
+ trp);
+ debug("Minimum Active to Precharge (tRAS) : %6d ps\n",
+ tras);
+ debug("Minimum Active to Active/Refresh Delay (tRC) : %6d ps\n",
+ trc);
+ debug("Minimum Refresh Recovery Delay (tRFC) : %6d ps\n",
+ trfc);
+ debug("Internal write to read command delay (tWTR) : %6d ps\n",
+ twtr);
+ debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n",
+ trtp);
+ debug("Minimum Four Activate Window Delay (tFAW) : %6d ps\n",
+ tfaw);
+ }
+
+ /*
+ * When the cycle time is within 1 psec of the minimum accept it
+ * as a slight rounding error and adjust it to exactly the minimum
+ * cycle time. This avoids an unnecessary warning.
+ */
+ if (abs(tclk_psecs - tckmin) < 2)
+ tclk_psecs = tckmin;
+
+ if (tclk_psecs < (u64)tckmin) {
+ printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n",
+ tclk_psecs, (ulong)tckmin);
+ }
+
+ debug("DDR Clock Rate (tCLK) : %6ld ps\n",
+ tclk_psecs);
+ debug("Core Clock Rate (eCLK) : %6ld ps\n",
+ eclk_psecs);
+
+ s = env_get("ddr_use_ecc");
+ if (s) {
+ use_ecc = !!simple_strtoul(s, NULL, 0);
+ printf("Parameter found in environment. ddr_use_ecc = %d\n",
+ use_ecc);
+ }
+ use_ecc = use_ecc && spd_ecc;
+
+ if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff)
+ : (use_ecc ? 0x01f : 0x0f);
+
+ debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n",
+ if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask);
+
+ debug("\n------ Board Custom Configuration Settings ------\n");
+ debug("%-45s : %d\n", "MIN_RTT_NOM_IDX ", c_cfg->min_rtt_nom_idx);
+ debug("%-45s : %d\n", "MAX_RTT_NOM_IDX ", c_cfg->max_rtt_nom_idx);
+ debug("%-45s : %d\n", "MIN_RODT_CTL ", c_cfg->min_rodt_ctl);
+ debug("%-45s : %d\n", "MAX_RODT_CTL ", c_cfg->max_rodt_ctl);
+ debug("%-45s : %d\n", "MIN_CAS_LATENCY ", c_cfg->min_cas_latency);
+ debug("%-45s : %d\n", "OFFSET_EN ", c_cfg->offset_en);
+ debug("%-45s : %d\n", "OFFSET_UDIMM ", c_cfg->offset_udimm);
+ debug("%-45s : %d\n", "OFFSET_RDIMM ", c_cfg->offset_rdimm);
+ debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO ", c_cfg->ddr_rtt_nom_auto);
+ debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto);
+ if (spd_rdimm)
+ debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+ c_cfg->rlevel_comp_offset_rdimm);
+ else
+ debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+ c_cfg->rlevel_comp_offset_udimm);
+ debug("%-45s : %d\n", "RLEVEL_COMPUTE ", c_cfg->rlevel_compute);
+ debug("%-45s : %d\n", "DDR2T_UDIMM ", c_cfg->ddr2t_udimm);
+ debug("%-45s : %d\n", "DDR2T_RDIMM ", c_cfg->ddr2t_rdimm);
+ debug("%-45s : %d\n", "FPRCH2 ", c_cfg->fprch2);
+ debug("%-45s : %d\n", "PTUNE_OFFSET ", c_cfg->ptune_offset);
+ debug("%-45s : %d\n", "NTUNE_OFFSET ", c_cfg->ntune_offset);
+ debug("-------------------------------------------------\n");
+
+ cl = divide_roundup(taamin, tclk_psecs);
+
+ debug("Desired CAS Latency : %6d\n", cl);
+
+ min_cas_latency = c_cfg->min_cas_latency;
+
+ s = lookup_env(priv, "ddr_min_cas_latency");
+ if (s)
+ min_cas_latency = simple_strtoul(s, NULL, 0);
+
+ debug("CAS Latencies supported in DIMM :");
+ base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4;
+ for (i = 0; i < 32; ++i) {
+ if ((spd_cas_latency >> i) & 1) {
+ debug(" %d", i + base_cl);
+ max_cas_latency = i + base_cl;
+ if (min_cas_latency == 0)
+ min_cas_latency = i + base_cl;
+ }
+ }
+ debug("\n");
+
+ /*
+ * Use relaxed timing when running slower than the minimum
+ * supported speed. Adjust timing to match the smallest supported
+ * CAS Latency.
+ */
+ if (min_cas_latency > cl) {
+ ulong adjusted_tclk = taamin / min_cas_latency;
+
+ cl = min_cas_latency;
+ debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n",
+ tclk_psecs, adjusted_tclk);
+ tclk_psecs = adjusted_tclk;
+ }
+
+ s = env_get("ddr_cas_latency");
+ if (s) {
+ override_cas_latency = simple_strtoul(s, NULL, 0);
+ printf("Parameter found in environment. ddr_cas_latency = %d\n",
+ override_cas_latency);
+ }
+
+ /* Make sure that the selected cas latency is legal */
+ for (i = (cl - base_cl); i < 32; ++i) {
+ if ((spd_cas_latency >> i) & 1) {
+ cl = i + base_cl;
+ break;
+ }
+ }
+
+ if (max_cas_latency < cl)
+ cl = max_cas_latency;
+
+ if (override_cas_latency != 0)
+ cl = override_cas_latency;
+
+ debug("CAS Latency : %6d\n", cl);
+
+ if ((cl * tckmin) > 20000) {
+ debug("(CLactual * tckmin) = %d exceeds 20 ns\n",
+ (cl * tckmin));
+ }
+
+ if (tclk_psecs < (ulong)tckmin) {
+ printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n",
+ tclk_psecs, (ulong)tckmin);
+ }
+
+ if (num_banks != 4 && num_banks != 8 && num_banks != 16) {
+ printf("Unsupported number of banks %d. Must be 4 or 8.\n",
+ num_banks);
+ ++fatal_error;
+ }
+
+ if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) {
+ printf("Unsupported number of ranks: %d\n", num_ranks);
+ ++fatal_error;
+ }
+
+ if (octeon_is_cpuid(OCTEON_CN78XX) ||
+ octeon_is_cpuid(OCTEON_CN73XX) ||
+ octeon_is_cpuid(OCTEON_CNF75XX)) {
+ if (dram_width != 8 && dram_width != 16 && dram_width != 4) {
+ printf("Unsupported SDRAM Width, %d. Must be 4, 8 or 16.\n",
+ dram_width);
+ ++fatal_error;
+ }
+ } else if (dram_width != 8 && dram_width != 16) {
+ printf("Unsupported SDRAM Width, %d. Must be 8 or 16.\n",
+ dram_width);
+ ++fatal_error;
+ }
+
+ /*
+ ** Bail out here if things are not copasetic.
+ */
+ if (fatal_error)
+ return (-1);
+
+ /*
+ * 4.8.4 LMC RESET Initialization
+ *
+ * The purpose of this step is to assert/deassert the RESET# pin at the
+ * DDR3/DDR4 parts.
+ *
+ * This LMC RESET step is done for all enabled LMCs.
+ */
+ perform_lmc_reset(priv, node, if_num);
+
+ // Make sure scrambling is disabled during init...
+ ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+ ctrl.s.scramble_ena = 0;
+ lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0);
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0);
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+ lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0);
+
+ odt_idx = min(dimm_count - 1, 3);
+
+ switch (num_ranks) {
+ case 1:
+ odt_config = odt_1rank_config;
+ break;
+ case 2:
+ odt_config = odt_2rank_config;
+ break;
+ case 4:
+ odt_config = odt_4rank_config;
+ break;
+ default:
+ odt_config = disable_odt_config;
+ printf("Unsupported number of ranks: %d\n", num_ranks);
+ ++fatal_error;
+ }
+
+ /*
+ * 4.8.5 Early LMC Initialization
+ *
+ * All of DDR PLL, LMC CK, and LMC DRESET initializations must be
+ * completed prior to starting this LMC initialization sequence.
+ *
+ * Perform the following five substeps for early LMC initialization:
+ *
+ * 1. Software must ensure there are no pending DRAM transactions.
+ *
+ * 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
+ * LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
+ * LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
+ * LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
+ * LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
+ * appropriate values. All sections in this chapter can be used to
+ * derive proper register settings.
+ */
+
+ /* LMC(0)_CONFIG */
+ lmc_config(priv);
+
+ /* LMC(0)_CONTROL */
+ lmc_control(priv);
+
+ /* LMC(0)_TIMING_PARAMS0 */
+ lmc_timing_params0(priv);
+
+ /* LMC(0)_TIMING_PARAMS1 */
+ lmc_timing_params1(priv);
+
+ /* LMC(0)_TIMING_PARAMS2 */
+ lmc_timing_params2(priv);
+
+ /* LMC(0)_MODEREG_PARAMS0 */
+ lmc_modereg_params0(priv);
+
+ /* LMC(0)_MODEREG_PARAMS1 */
+ lmc_modereg_params1(priv);
+
+ /* LMC(0)_MODEREG_PARAMS2 */
+ lmc_modereg_params2(priv);
+
+ /* LMC(0)_MODEREG_PARAMS3 */
+ lmc_modereg_params3(priv);
+
+ /* LMC(0)_NXM */
+ lmc_nxm(priv);
+
+ /* LMC(0)_WODT_MASK */
+ lmc_wodt_mask(priv);
+
+ /* LMC(0)_RODT_MASK */
+ lmc_rodt_mask(priv);
+
+ /* LMC(0)_COMP_CTL2 */
+ lmc_comp_ctl2(priv);
+
+ /* LMC(0)_PHY_CTL */
+ lmc_phy_ctl(priv);
+
+ /* LMC(0)_EXT_CONFIG */
+ lmc_ext_config(priv);
+
+ /* LMC(0)_EXT_CONFIG2 */
+ lmc_ext_config2(priv);
+
+ /* LMC(0)_DIMM0/1_PARAMS */
+ lmc_dimm01_params(priv);
+
+ ret = lmc_rank_init(priv);
+ if (ret < 0)
+ return 0; /* 0 indicates problem */
+
+ lmc_config_2(priv);
+
+ lmc_write_leveling(priv);
+
+ lmc_read_leveling(priv);
+
+ lmc_workaround(priv);
+
+ ret = lmc_sw_write_leveling(priv);
+ if (ret < 0)
+ return 0; /* 0 indicates problem */
+
+ // this sometimes causes stack overflow crashes..
+ // display only for DDR4 RDIMMs.
+ if (ddr_type == DDR4_DRAM && spd_rdimm) {
+ int i;
+
+ for (i = 0; i < 3; i += 2) // just pages 0 and 2 for now..
+ display_mpr_page(priv, rank_mask, if_num, i);
+ }
+
+ lmc_dll(priv);
+
+ lmc_workaround_2(priv);
+
+ lmc_final(priv);
+
+ lmc_scrambling(priv);
+
+ return mem_size_mbytes;
+}
+
+///// HW-assist byte DLL offset tuning //////
+
+static int cvmx_dram_get_num_lmc(struct ddr_priv *priv)
+{
+ union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+
+ if (octeon_is_cpuid(OCTEON_CN70XX))
+ return 1;
+
+ if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) {
+ // sample LMC1
+ lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1));
+ if (lmcx_dll_ctl2.cn78xx.intf_en)
+ return 2;
+ else
+ return 1;
+ }
+
+ // for CN78XX, LMCs are always active in pairs, and always LMC0/1
+ // so, we sample LMC2 to see if 2 and 3 are active
+ lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2));
+ if (lmcx_dll_ctl2.cn78xx.intf_en)
+ return 4;
+ else
+ return 2;
+}
+
+// got to do these here, even though already defined in BDK
+
+// all DDR3, and DDR4 x16 today, use only 3 bank bits;
+// DDR4 x4 and x8 always have 4 bank bits
+// NOTE: this will change in the future, when DDR4 x16 devices can
+// come with 16 banks!! FIXME!!
+static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc)
+{
+ union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+ union cvmx_lmcx_config lmcx_config;
+ union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl;
+ int bank_width;
+
+ // can always read this
+ lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+
+ if (lmcx_dll_ctl2.cn78xx.dreset) // check LMCn
+ return 0;
+
+ lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+ lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc));
+
+ bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) &&
+ (lmcx_config.s.bg2_enable)) ? 4 : 3;
+
+ return bank_width;
+}
+
+#define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
+#define ADDRESS_HOLE 0x10000000ULL
+
+static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address,
+ int *node, int *lmc, int *dimm,
+ int *prank, int *lrank, int *bank,
+ int *row, int *col)
+{
+ int bank_lsb, xbits;
+ union cvmx_l2c_ctl l2c_ctl;
+ union cvmx_lmcx_config lmcx_config;
+ union cvmx_lmcx_control lmcx_control;
+ union cvmx_lmcx_ext_config ext_config;
+ int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+ int bank_width;
+ int dimm_lsb;
+ int dimm_width;
+ int prank_lsb, lrank_lsb;
+ int prank_width, lrank_width;
+ int row_lsb;
+ int row_width;
+ int col_hi_lsb;
+ int col_hi_width;
+ int col_hi;
+
+ if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+ bitno = 18;
+
+ *node = EXTRACT(address, 40, 2); /* Address bits [41:40] */
+
+ address &= (1ULL << 40) - 1; // lop off any node bits or above
+ if (address >= ADDRESS_HOLE) // adjust down if at HOLE or above
+ address -= ADDRESS_HOLE;
+
+ /* Determine the LMC controllers */
+ l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+
+ /* xbits depends on number of LMCs */
+ xbits = cvmx_dram_get_num_lmc(priv) >> 1; // 4->2, 2->1, 1->0
+ bank_lsb = 7 + xbits;
+
+ /* LMC number is probably aliased */
+ if (l2c_ctl.s.disidxalias) {
+ *lmc = EXTRACT(address, 7, xbits);
+ } else {
+ *lmc = EXTRACT(address, 7, xbits) ^
+ EXTRACT(address, bitno, xbits) ^
+ EXTRACT(address, 12, xbits);
+ }
+
+ /* Figure out the bank field width */
+ lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc));
+ ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc));
+ bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc);
+
+ /* Extract additional info from the LMC_CONFIG CSR */
+ dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits;
+ dimm_width = 40 - dimm_lsb;
+ prank_lsb = dimm_lsb - lmcx_config.s.rank_ena;
+ prank_width = dimm_lsb - prank_lsb;
+ lrank_lsb = prank_lsb - ext_config.s.dimm0_cid;
+ lrank_width = prank_lsb - lrank_lsb;
+ row_lsb = 14 + lmcx_config.s.row_lsb + xbits;
+ row_width = lrank_lsb - row_lsb;
+ col_hi_lsb = bank_lsb + bank_width;
+ col_hi_width = row_lsb - col_hi_lsb;
+
+ /* Extract the parts of the address */
+ *dimm = EXTRACT(address, dimm_lsb, dimm_width);
+ *prank = EXTRACT(address, prank_lsb, prank_width);
+ *lrank = EXTRACT(address, lrank_lsb, lrank_width);
+ *row = EXTRACT(address, row_lsb, row_width);
+
+ /* bank calculation may be aliased... */
+ lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc));
+ if (lmcx_control.s.xor_bank) {
+ *bank = EXTRACT(address, bank_lsb, bank_width) ^
+ EXTRACT(address, 12 + xbits, bank_width);
+ } else {
+ *bank = EXTRACT(address, bank_lsb, bank_width);
+ }
+
+ /* LMC number already extracted */
+ col_hi = EXTRACT(address, col_hi_lsb, col_hi_width);
+ *col = EXTRACT(address, 3, 4) | (col_hi << 4);
+ /* Bus byte is address bits [2:0]. Unused here */
+}
+
+// end of added workarounds
+
+// NOTE: "mode" argument:
+// DBTRAIN_TEST: for testing using GP patterns, includes ECC
+// DBTRAIN_DBI: for DBI deskew training behavior (uses GP patterns)
+// DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC
+// NOTE: trust the caller to specify the correct/supported mode
+//
+static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p,
+ int mode, u64 *xor_data)
+{
+ u64 p1;
+ u64 k;
+ int errors = 0;
+
+ u64 mpr_data0, mpr_data1;
+ u64 bad_bits[2] = { 0, 0 };
+
+ int node_address, lmc, dimm;
+ int prank, lrank;
+ int bank, row, col;
+ int save_or_dis;
+ int byte;
+ int ba_loop, ba_bits;
+
+ union cvmx_lmcx_rlevel_ctl rlevel_ctl;
+ union cvmx_lmcx_dbtrain_ctl dbtrain_ctl;
+ union cvmx_lmcx_phy_ctl phy_ctl;
+
+ int biter_errs;
+
+ // FIXME: K iterations set to 4 for now.
+ // FIXME: decrement to increase interations.
+ // FIXME: must be no less than 22 to stay above an LMC hash field.
+ int kshift = 27;
+
+ const char *s;
+ int node = 0;
+
+ // allow override default setting for kshift
+ s = env_get("ddr_tune_set_kshift");
+ if (s) {
+ int temp = simple_strtoul(s, NULL, 0);
+
+ if (temp < 22 || temp > 28) {
+ debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n",
+ node, if_num, temp, kshift);
+ } else {
+ debug("N%d.LMC%d: overriding kshift (%d) to %d\n",
+ node, if_num, kshift, temp);
+ kshift = temp;
+ }
+ }
+
+ /*
+ * 1) Make sure that RLEVEL_CTL[OR_DIS] = 0.
+ */
+ rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+ save_or_dis = rlevel_ctl.s.or_dis;
+ /* or_dis must be disabled for this sequence */
+ rlevel_ctl.s.or_dis = 0;
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+ /*
+ * NOTE: this step done in the calling routine(s)...
+ * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+ * of choice.
+ * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower
+ * (rising edge) 64 bits of data.
+ * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper
+ * (falling edge) 64 bits of data.
+ * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower
+ * (rising edge <7:0>) and upper (falling edge <15:8>) ECC data.
+ */
+
+ // final address must include LMC and node
+ p |= (if_num << 7); /* Map address into proper interface */
+ p |= (u64)node << CVMX_NODE_MEM_SHIFT; // map to node
+
+ /*
+ * Add base offset to both test regions to not clobber u-boot stuff
+ * when running from L2 for NAND boot.
+ */
+ p += 0x20000000; // offset to 512MB, ie above THE HOLE!!!
+ p |= 1ull << 63; // needed for OCTEON
+
+ errors = 0;
+
+ cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm,
+ &prank, &lrank, &bank, &row, &col);
+ debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n",
+ __func__, p, node_address, lmc, dimm, prank, lrank, bank,
+ row, col);
+
+ // only check once per call, and ignore if no match...
+ if ((int)node != node_address) {
+ printf("ERROR: Node address mismatch\n");
+ return 0;
+ }
+ if (lmc != if_num) {
+ printf("ERROR: LMC address mismatch\n");
+ return 0;
+ }
+
+ /*
+ * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as
+ * it’s a one-shot operation). This is to get into the habit of
+ * resetting PHY’s SILO to the original 0 location.
+ */
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.phy_reset = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ /*
+ * Walk through a range of addresses avoiding bits that alias
+ * interfaces on the CN88XX.
+ */
+
+ // FIXME: want to try to keep the K increment from affecting the
+ // LMC via hash, so keep it above bit 21 we also want to keep k
+ // less than the base offset of bit 29 (512MB)
+
+ for (k = 0; k < (1UL << 29); k += (1UL << kshift)) {
+ // FIXME: the sequence will interate over 1/2 cacheline
+ // FIXME: for each unit specified in "read_cmd_count",
+ // FIXME: so, we setup each sequence to do the max cachelines
+ // it can
+
+ p1 = p + k;
+
+ cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc,
+ &dimm, &prank, &lrank, &bank,
+ &row, &col);
+
+ /*
+ * 2) Setup the fields of the CSR DBTRAIN_CTL as follows:
+ * a. COL, ROW, BA, BG, PRANK points to the starting point
+ * of the address.
+ * You can just set them to all 0.
+ * b. RW_TRAIN – set this to 1.
+ * c. TCCD_L – set this to 0.
+ * d. READ_CMD_COUNT – instruct the sequence to the how many
+ * writes/reads.
+ * It is 5 bits field, so set to 31 of maximum # of r/w.
+ */
+ dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num));
+ dbtrain_ctl.s.column_a = col;
+ dbtrain_ctl.s.row_a = row;
+ dbtrain_ctl.s.bg = (bank >> 2) & 3;
+ dbtrain_ctl.s.prank = (dimm * 2) + prank; // FIXME?
+ dbtrain_ctl.s.lrank = lrank; // FIXME?
+ dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI);
+ dbtrain_ctl.s.write_ena = 1;
+ dbtrain_ctl.s.read_cmd_count = 31; // max count pass 1.x
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+ octeon_is_cpuid(OCTEON_CNF75XX)) {
+ // max count on chips that support it
+ dbtrain_ctl.s.cmd_count_ext = 3;
+ } else {
+ // max count pass 1.x
+ dbtrain_ctl.s.cmd_count_ext = 0;
+ }
+
+ dbtrain_ctl.s.rw_train = 1;
+ dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI);
+ // LFSR should only be on when chip supports it...
+ dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0;
+
+ biter_errs = 0;
+
+ // for each address, iterate over the 4 "banks" in the BA
+ for (ba_loop = 0, ba_bits = bank & 3;
+ ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) {
+ dbtrain_ctl.s.ba = ba_bits;
+ lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num),
+ dbtrain_ctl.u64);
+
+ /*
+ * We will use the RW_TRAINING sequence (14) for
+ * this task.
+ *
+ * 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14,
+ * SEQ_CTL[INIT_START] = 1).
+ * 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion.
+ */
+ oct3_ddr3_seq(priv, prank, if_num, 14);
+
+ /*
+ * 6) Read MPR_DATA0 and MPR_DATA1 for results.
+ * a. MPR_DATA0[MPR_DATA<63:0>] – comparison results
+ * for DQ63:DQ0. (1 means MATCH, 0 means FAIL).
+ * b. MPR_DATA1[MPR_DATA<7:0>] – comparison results
+ * for ECC bit7:0.
+ */
+ mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+ mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num));
+
+ /*
+ * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically
+ * clears this as it’s a one-shot operation).
+ * This is to get into the habit of resetting PHY’s
+ * SILO to the original 0 location.
+ */
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+ phy_ctl.s.phy_reset = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+ // bypass any error checking or updating when DBI mode
+ if (mode == DBTRAIN_DBI)
+ continue;
+
+ // data bytes
+ if (~mpr_data0) {
+ for (byte = 0; byte < 8; byte++) {
+ if ((~mpr_data0 >> (8 * byte)) & 0xffUL)
+ biter_errs |= (1 << byte);
+ }
+ // accumulate bad bits
+ bad_bits[0] |= ~mpr_data0;
+ }
+
+ // include ECC byte errors
+ if (~mpr_data1 & 0xffUL) {
+ biter_errs |= (1 << 8);
+ bad_bits[1] |= ~mpr_data1 & 0xffUL;
+ }
+ }
+
+ errors |= biter_errs;
+ } /* end for (k=...) */
+
+ rlevel_ctl.s.or_dis = save_or_dis;
+ lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+ // send the bad bits back...
+ if (mode != DBTRAIN_DBI && xor_data) {
+ xor_data[0] = bad_bits[0];
+ xor_data[1] = bad_bits[1];
+ }
+
+ return errors;
+}
+
+// setup default for byte test pattern array
+// take these from the HRM section 6.9.13
+static const u64 byte_pattern_0[] = {
+ 0xFFAAFFFFFF55FFFFULL, // GP0
+ 0x55555555AAAAAAAAULL, // GP1
+ 0xAA55AAAAULL, // GP2
+};
+
+static const u64 byte_pattern_1[] = {
+ 0xFBF7EFDFBF7FFEFDULL, // GP0
+ 0x0F1E3C78F0E1C387ULL, // GP1
+ 0xF0E1BF7FULL, // GP2
+};
+
+// this is from Andrew via LFSR with PRBS=0xFFFFAAAA
+static const u64 byte_pattern_2[] = {
+ 0xEE55AADDEE55AADDULL, // GP0
+ 0x55AADDEE55AADDEEULL, // GP1
+ 0x55EEULL, // GP2
+};
+
+// this is from Mike via LFSR with PRBS=0x4A519909
+static const u64 byte_pattern_3[] = {
+ 0x0088CCEE0088CCEEULL, // GP0
+ 0xBB552211BB552211ULL, // GP1
+ 0xBB00ULL, // GP2
+};
+
+static const u64 *byte_patterns[4] = {
+ byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3
+};
+
+static const u32 lfsr_patterns[4] = {
+ 0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL
+};
+
+#define NUM_BYTE_PATTERNS 4
+
+#define DEFAULT_BYTE_BURSTS 32 // compromise between time and rigor
+
+static void setup_hw_pattern(struct ddr_priv *priv, int lmc,
+ const u64 *pattern_p)
+{
+ /*
+ * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+ * of choice.
+ * a. GENERAL_PURPOSE0[DATA<63:0>] â sets the initial lower
+ * (rising edge) 64 bits of data.
+ * b. GENERAL_PURPOSE1[DATA<63:0>] â sets the initial upper
+ * (falling edge) 64 bits of data.
+ * c. GENERAL_PURPOSE2[DATA<15:0>] â sets the initial lower
+ * (rising edge <7:0>) and upper
+ * (falling edge <15:8>) ECC data.
+ */
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
+}
+
+static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data)
+{
+ union cvmx_lmcx_char_ctl char_ctl;
+ u32 prbs;
+ const char *s;
+
+ s = env_get("ddr_lfsr_prbs");
+ if (s)
+ prbs = simple_strtoul(s, NULL, 0);
+ else
+ prbs = data;
+
+ /*
+ * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+ * here data comes from the LFSR generating a PRBS pattern
+ * CHAR_CTL.EN = 0
+ * CHAR_CTL.SEL = 0; // for PRBS
+ * CHAR_CTL.DR = 1;
+ * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+ * CHAR_CTL.SKEW_ON = 1;
+ */
+ char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc));
+ char_ctl.s.en = 0;
+ char_ctl.s.sel = 0;
+ char_ctl.s.dr = 1;
+ char_ctl.s.prbs = prbs;
+ char_ctl.s.skew_on = 1;
+ lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64);
+}
+
+static int choose_best_hw_patterns(int lmc, int mode)
+{
+ int new_mode = mode;
+ const char *s;
+
+ switch (mode) {
+ case DBTRAIN_TEST: // always choose LFSR if chip supports it
+ if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+ int lfsr_enable = 1;
+
+ s = env_get("ddr_allow_lfsr");
+ if (s) {
+ // override?
+ lfsr_enable = !!strtoul(s, NULL, 0);
+ }
+
+ if (lfsr_enable)
+ new_mode = DBTRAIN_LFSR;
+ }
+ break;
+
+ case DBTRAIN_DBI: // possibly can allow LFSR use?
+ break;
+
+ case DBTRAIN_LFSR: // forced already
+ if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+ debug("ERROR: illegal HW assist mode %d\n", mode);
+ new_mode = DBTRAIN_TEST;
+ }
+ break;
+
+ default:
+ debug("ERROR: unknown HW assist mode %d\n", mode);
+ }
+
+ if (new_mode != mode)
+ debug("%s: changing mode %d to %d\n", __func__, mode, new_mode);
+
+ return new_mode;
+}
+
+int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+ int mode, u64 *xor_data)
+{
+ int pattern;
+ const u64 *pattern_p;
+ int errs, errors = 0;
+
+ // FIXME? always choose LFSR if chip supports it???
+ mode = choose_best_hw_patterns(lmc, mode);
+
+ for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+ if (mode == DBTRAIN_LFSR) {
+ setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+ } else {
+ pattern_p = byte_patterns[pattern];
+ setup_hw_pattern(priv, lmc, pattern_p);
+ }
+ errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data);
+
+ debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n",
+ __func__, pattern, phys_addr, errs);
+
+ errors |= errs;
+ }
+
+ return errors;
+}
+
+static void hw_assist_test_dll_offset(struct ddr_priv *priv,
+ int dll_offset_mode, int lmc,
+ int bytelane,
+ int if_64b,
+ u64 dram_tune_rank_offset,
+ int dram_tune_byte_bursts)
+{
+ int byte_offset, new_best_offset[9];
+ int rank_delay_start[4][9];
+ int rank_delay_count[4][9];
+ int rank_delay_best_start[4][9];
+ int rank_delay_best_count[4][9];
+ int errors[4], off_errors, tot_errors;
+ int rank_mask, rankx, active_ranks;
+ int pattern;
+ const u64 *pattern_p;
+ int byte;
+ char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
+ int pat_best_offset[9];
+ u64 phys_addr;
+ int pat_beg, pat_end;
+ int rank_beg, rank_end;
+ int byte_lo, byte_hi;
+ union cvmx_lmcx_config lmcx_config;
+ u64 hw_rank_offset;
+ int num_lmcs = cvmx_dram_get_num_lmc(priv);
+ // FIXME? always choose LFSR if chip supports it???
+ int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST);
+ int node = 0;
+
+ if (bytelane == 0x0A) { // all bytelanes
+ byte_lo = 0;
+ byte_hi = 8;
+ } else { // just 1
+ byte_lo = bytelane;
+ byte_hi = bytelane;
+ }
+
+ lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+ rank_mask = lmcx_config.s.init_status;
+
+ // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+ hw_rank_offset =
+ 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena +
+ (num_lmcs / 2));
+
+ debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n",
+ node, __func__, lmc, (unsigned long long)hw_rank_offset);
+
+ // start of pattern loop
+ // we do the set of tests for each pattern supplied...
+
+ memset(new_best_offset, 0, sizeof(new_best_offset));
+ for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+ memset(pat_best_offset, 0, sizeof(pat_best_offset));
+
+ if (mode == DBTRAIN_TEST) {
+ pattern_p = byte_patterns[pattern];
+ setup_hw_pattern(priv, lmc, pattern_p);
+ } else {
+ setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+ }
+
+ // now loop through all legal values for the DLL byte offset...
+
+#define BYTE_OFFSET_INCR 3 // FIXME: make this tunable?
+
+ tot_errors = 0;
+
+ memset(rank_delay_count, 0, sizeof(rank_delay_count));
+ memset(rank_delay_start, 0, sizeof(rank_delay_start));
+ memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
+ memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));
+
+ for (byte_offset = -63; byte_offset < 64;
+ byte_offset += BYTE_OFFSET_INCR) {
+ // do the setup on the active LMC
+ // set the bytelanes DLL offsets
+ change_dll_offset_enable(priv, lmc, 0);
+ // FIXME? bytelane?
+ load_dll_offset(priv, lmc, dll_offset_mode,
+ byte_offset, bytelane);
+ change_dll_offset_enable(priv, lmc, 1);
+
+ //bdk_watchdog_poke();
+
+ // run the test on each rank
+ // only 1 call per rank should be enough, let the
+ // bursts, loops, etc, control the load...
+
+ // errors for this byte_offset, all ranks
+ off_errors = 0;
+
+ active_ranks = 0;
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ phys_addr = hw_rank_offset * active_ranks;
+ // FIXME: now done by test_dram_byte_hw()
+ //phys_addr |= (lmc << 7);
+ //phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT;
+
+ active_ranks++;
+
+ // NOTE: return is a now a bitmask of the
+ // erroring bytelanes.
+ errors[rankx] =
+ test_dram_byte_hw(priv, lmc, phys_addr,
+ mode, NULL);
+
+ // process any errors in the bytelane(s) that
+ // are being tested
+ for (byte = byte_lo; byte <= byte_hi; byte++) {
+ // check errors
+ // yes, an error in the byte lane in
+ // this rank
+ if (errors[rankx] & (1 << byte)) {
+ off_errors |= (1 << byte);
+
+ debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n",
+ node, lmc, rankx, byte,
+ mode_str, byte_offset,
+ phys_addr);
+
+ // had started run
+ if (rank_delay_count
+ [rankx][byte] > 0) {
+ debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
+ node, lmc, rankx,
+ byte, mode_str,
+ byte_offset);
+ // stop now
+ rank_delay_count
+ [rankx][byte] =
+ 0;
+ }
+ // FIXME: else had not started
+ // run - nothing else to do?
+ } else {
+ // no error in the byte lane
+ // first success, set run start
+ if (rank_delay_count[rankx]
+ [byte] == 0) {
+ debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
+ node, lmc, rankx,
+ byte, mode_str,
+ byte_offset);
+ rank_delay_start[rankx]
+ [byte] =
+ byte_offset;
+ }
+ // bump run length
+ rank_delay_count[rankx][byte]
+ += BYTE_OFFSET_INCR;
+
+ // is this now the biggest
+ // window?
+ if (rank_delay_count[rankx]
+ [byte] >
+ rank_delay_best_count[rankx]
+ [byte]) {
+ rank_delay_best_count
+ [rankx][byte] =
+ rank_delay_count
+ [rankx][byte];
+ rank_delay_best_start
+ [rankx][byte] =
+ rank_delay_start
+ [rankx][byte];
+ debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
+ node, lmc, rankx,
+ byte, mode_str,
+ byte_offset,
+ rank_delay_best_start
+ [rankx][byte],
+ rank_delay_best_count
+ [rankx][byte]);
+ }
+ }
+ }
+ } /* for (rankx = 0; rankx < 4; rankx++) */
+
+ tot_errors |= off_errors;
+ }
+
+ // set the bytelanes DLL offsets all back to 0
+ change_dll_offset_enable(priv, lmc, 0);
+ load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane);
+ change_dll_offset_enable(priv, lmc, 1);
+
+ // now choose the best byte_offsets for this pattern
+ // according to the best windows of the tested ranks
+ // calculate offset by constructing an average window
+ // from the rank windows
+ for (byte = byte_lo; byte <= byte_hi; byte++) {
+ pat_beg = -999;
+ pat_end = 999;
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ rank_beg = rank_delay_best_start[rankx][byte];
+ pat_beg = max(pat_beg, rank_beg);
+ rank_end = rank_beg +
+ rank_delay_best_count[rankx][byte] -
+ BYTE_OFFSET_INCR;
+ pat_end = min(pat_end, rank_end);
+
+ debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test: Rank Window %3d:%3d\n",
+ node, lmc, rankx, byte, mode_str,
+ rank_beg, rank_end);
+
+ } /* for (rankx = 0; rankx < 4; rankx++) */
+
+ pat_best_offset[byte] = (pat_end + pat_beg) / 2;
+
+ // sum the pattern averages
+ new_best_offset[byte] += pat_best_offset[byte];
+ }
+
+ // now print them on 1 line, descending order...
+ debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :",
+ node, lmc, mode_str, pattern);
+ for (byte = byte_hi; byte >= byte_lo; --byte)
+ debug(" %4d", pat_best_offset[byte]);
+ debug("\n");
+ }
+ // end of pattern loop
+
+ debug("N%d.LMC%d: HW DLL %s Offset Average : ", node, lmc, mode_str);
+
+ // print in decending byte index order
+ for (byte = byte_hi; byte >= byte_lo; --byte) {
+ // create the new average NINT
+ new_best_offset[byte] = divide_nint(new_best_offset[byte],
+ NUM_BYTE_PATTERNS);
+
+ // print the best offsets from all patterns
+
+ // print just the offset of all the bytes
+ if (bytelane == 0x0A)
+ debug("%4d ", new_best_offset[byte]);
+ else // print the bytelanes also
+ debug("(byte %d) %4d ", byte, new_best_offset[byte]);
+
+ // done with testing, load up the best offsets we found...
+ // disable offsets while we load...
+ change_dll_offset_enable(priv, lmc, 0);
+ load_dll_offset(priv, lmc, dll_offset_mode,
+ new_best_offset[byte], byte);
+ // re-enable the offsets now that we are done loading
+ change_dll_offset_enable(priv, lmc, 1);
+ }
+
+ debug("\n");
+}
+
+/*
+ * Automatically adjust the DLL offset for the selected bytelane using
+ * hardware-assist
+ */
+static int perform_HW_dll_offset_tuning(struct ddr_priv *priv,
+ int dll_offset_mode, int bytelane)
+{
+ int if_64b;
+ int save_ecc_ena[4];
+ union cvmx_lmcx_config lmc_config;
+ int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv);
+ const char *s;
+ int loops = 1, loop;
+ int by;
+ u64 dram_tune_rank_offset;
+ int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
+ int node = 0;
+
+ // see if we want to do the tuning more than once per LMC...
+ s = env_get("ddr_tune_ecc_loops");
+ if (s)
+ loops = strtoul(s, NULL, 0);
+
+ // allow override of the test repeats (bursts)
+ s = env_get("ddr_tune_byte_bursts");
+ if (s)
+ dram_tune_byte_bursts = strtoul(s, NULL, 10);
+
+ // print current working values
+ debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
+ node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS);
+
+ // FIXME? get flag from LMC0 only
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));
+ if_64b = !lmc_config.s.mode32b;
+
+ // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+ dram_tune_rank_offset =
+ 1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena +
+ (num_lmcs / 2));
+
+ // do once for each active LMC
+
+ for (lmc = 0; lmc < num_lmcs; lmc++) {
+ debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n",
+ node, lmc, bytelane);
+
+ /* Enable ECC for the HW tests */
+ // NOTE: we do enable ECC, but the HW tests used will not
+ // generate "visible" errors
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+ save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
+ lmc_config.s.ecc_ena = 1;
+ lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+ // testing is done on a single LMC at a time
+ // FIXME: for now, loop here to show what happens multiple times
+ for (loop = 0; loop < loops; loop++) {
+ /* Perform DLL offset tuning */
+ hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc,
+ bytelane,
+ if_64b, dram_tune_rank_offset,
+ dram_tune_byte_bursts);
+ }
+
+ // perform cleanup on active LMC
+ debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n",
+ node, lmc, bytelane);
+
+ /* Restore ECC for DRAM tests */
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+ lmc_config.s.ecc_ena = save_ecc_ena[lmc];
+ lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+ // finally, see if there are any read offset overrides
+ // after tuning
+ for (by = 0; by < 9; by++) {
+ s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by);
+ if (s) {
+ int dllro = strtoul(s, NULL, 10);
+
+ change_dll_offset_enable(priv, lmc, 0);
+ load_dll_offset(priv, lmc, 2, dllro, by);
+ change_dll_offset_enable(priv, lmc, 1);
+ }
+ }
+
+ } /* for (lmc = 0; lmc < num_lmcs; lmc++) */
+
+ // finish up...
+
+ return 0;
+
+} /* perform_HW_dll_offset_tuning */
+
+// this routine simply makes the calls to the tuning routine and returns
+// any errors
+static int cvmx_tune_node(struct ddr_priv *priv)
+{
+ int errs, tot_errs;
+ int do_dllwo = 0; // default to NO
+ const char *str;
+ int node = 0;
+
+ // Automatically tune the data and ECC byte DLL read offsets
+ debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node);
+ errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */);
+ debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n",
+ node, errs);
+ tot_errs = errs;
+
+ // disabled by default for now, does not seem to be needed?
+ // Automatically tune the data and ECC byte DLL write offsets
+ // allow override of default setting
+ str = env_get("ddr_tune_write_offsets");
+ if (str)
+ do_dllwo = !!strtoul(str, NULL, 0);
+ if (do_dllwo) {
+ debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node);
+ errs =
+ perform_HW_dll_offset_tuning(priv, 1,
+ 0x0A /* all bytelanes */);
+ debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n",
+ node, errs);
+ tot_errs += errs;
+ }
+
+ return tot_errs;
+}
+
+// this routine makes the calls to the tuning routines when criteria are met
+// intended to be called for automated tuning, to apply filtering...
+
+#define IS_DDR4 1
+#define IS_DDR3 0
+#define IS_RDIMM 1
+#define IS_UDIMM 0
+#define IS_1SLOT 1
+#define IS_2SLOT 0
+
+// FIXME: DDR3 is not tuned
+static const u32 ddr_speed_filter[2][2][2] = {
+ [IS_DDR4] = {
+ [IS_RDIMM] = {
+ [IS_1SLOT] = 940,
+ [IS_2SLOT] = 800},
+ [IS_UDIMM] = {
+ [IS_1SLOT] = 1050,
+ [IS_2SLOT] = 940},
+ },
+ [IS_DDR3] = {
+ [IS_RDIMM] = {
+ [IS_1SLOT] = 0, // disabled
+ [IS_2SLOT] = 0 // disabled
+ },
+ [IS_UDIMM] = {
+ [IS_1SLOT] = 0, // disabled
+ [IS_2SLOT] = 0 // disabled
+ }
+ }
+};
+
+void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed)
+{
+ const char *s;
+ union cvmx_lmcx_config lmc_config;
+ union cvmx_lmcx_control lmc_control;
+ union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl;
+ int is_ddr4;
+ int is_rdimm;
+ int is_1slot;
+ int do_tune = 0;
+ u32 ddr_min_speed;
+ int node = 0;
+
+ // scale it down from Hz to MHz
+ ddr_speed = divide_nint(ddr_speed, 1000000);
+
+ // FIXME: allow an override here so that all configs can be tuned
+ // or none
+ // If the envvar is defined, always either force it or avoid it
+ // accordingly
+ s = env_get("ddr_tune_all_configs");
+ if (s) {
+ do_tune = !!strtoul(s, NULL, 0);
+ printf("N%d: DRAM auto-tuning %s.\n", node,
+ (do_tune) ? "forced" : "disabled");
+ if (do_tune)
+ cvmx_tune_node(priv);
+
+ return;
+ }
+
+ // filter the tuning calls here...
+ // determine if we should/can run automatically for this configuration
+ //
+ // FIXME: tune only when the configuration indicates it will help:
+ // DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed
+ //
+ lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0)); // sample LMC0
+ lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0)); // sample LMC0
+ // sample LMC0
+ lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+ is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0);
+ is_rdimm = (lmc_control.s.rdimm_ena != 0);
+ // HACK, should do better
+ is_1slot = (lmc_config.s.init_status < 4);
+
+ ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot];
+ do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed));
+
+ debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n",
+ node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U',
+ (is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not");
+
+ // call the tuning routine, filtering is done...
+ if (do_tune)
+ cvmx_tune_node(priv);
+}
+
+/*
+ * first pattern example:
+ * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE0.DATA == 16'h0000;
+ */
+
+static const u64 dbi_pattern[3] = {
+ 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL };
+
+// Perform switchover to DBI
+static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc)
+{
+ union cvmx_lmcx_modereg_params0 modereg_params0;
+ union cvmx_lmcx_modereg_params3 modereg_params3;
+ union cvmx_lmcx_phy_ctl phy_ctl;
+ union cvmx_lmcx_config lmcx_config;
+ union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
+ int rank_mask, rankx, active_ranks;
+ u64 phys_addr, rank_offset;
+ int num_lmcs, errors;
+ int dbi_settings[9], byte, unlocked, retries;
+ int ecc_ena;
+ int rank_max = 1; // FIXME: make this 4 to try all the ranks
+ int node = 0;
+
+ ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+ lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+ rank_mask = lmcx_config.s.init_status;
+ ecc_ena = lmcx_config.s.ecc_ena;
+
+ // FIXME: must filter out any non-supported configs
+ // ie, no DDR3, no x4 devices
+ if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) {
+ debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n",
+ node, lmc);
+ return;
+ }
+
+ // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+ num_lmcs = cvmx_dram_get_num_lmc(priv);
+ rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb -
+ lmcx_config.s.rank_ena + (num_lmcs / 2));
+
+ debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n",
+ node, lmc, rank_mask, (unsigned long long)rank_offset);
+
+ /*
+ * 1. conduct the current init sequence as usual all the way
+ * after software write leveling.
+ */
+
+ read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+ display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+ " INIT");
+
+ /*
+ * 2. set DBI related CSRs as below and issue MR write.
+ * MODEREG_PARAMS3.WR_DBI=1
+ * MODEREG_PARAMS3.RD_DBI=1
+ * PHY_CTL.DBI_MODE_ENA=1
+ */
+ modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc));
+
+ modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc));
+ modereg_params3.s.wr_dbi = 1;
+ modereg_params3.s.rd_dbi = 1;
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64);
+
+ phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc));
+ phy_ctl.s.dbi_mode_ena = 1;
+ lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64);
+
+ /*
+ * there are two options for data to send. Lets start with (1)
+ * and could move to (2) in the future:
+ *
+ * 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where
+ * this does not exist) set data directly in these reigsters.
+ * this will yield a clk/2 pattern:
+ * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE0.DATA == 16'h0000;
+ * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+ * here data comes from the LFSR generating a PRBS pattern
+ * CHAR_CTL.EN = 0
+ * CHAR_CTL.SEL = 0; // for PRBS
+ * CHAR_CTL.DR = 1;
+ * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+ * CHAR_CTL.SKEW_ON = 1;
+ */
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]);
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]);
+ lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]);
+
+ /*
+ * 3. adjust cas_latency (only necessary if RD_DBI is set).
+ * here is my code for doing this:
+ *
+ * if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin
+ * case (csr_model.MODEREG_PARAMS0.CL.value)
+ * 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2;
+ * // CL 9-13 -> 11-15
+ * 5: begin
+ * // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+ * if((csr_model.MODEREG_PARAMS0.CWL.value==1 ||
+ * csr_model.MODEREG_PARAMS0.CWL.value==3))
+ * csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16
+ * else
+ * csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17
+ * end
+ * 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18
+ * 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19
+ * 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21
+ * default:
+ * `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1,
+ * I am not sure what to do.",
+ * mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value))
+ * endcase
+ * end
+ */
+
+ if (modereg_params3.s.rd_dbi == 1) {
+ int old_cl, new_cl, old_cwl;
+
+ old_cl = modereg_params0.s.cl;
+ old_cwl = modereg_params0.s.cwl;
+
+ switch (old_cl) {
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ case 4:
+ new_cl = old_cl + 2;
+ break; // 9-13->11-15
+ // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+ case 5:
+ new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13;
+ break;
+ case 6:
+ new_cl = 8;
+ break; // 15->18
+ case 7:
+ new_cl = 14;
+ break; // 16->19
+ case 8:
+ new_cl = 15;
+ break; // 18->21
+ default:
+ printf("ERROR: Bad CL value (%d) for DBI switchover.\n",
+ old_cl);
+ // FIXME: need to error exit here...
+ old_cl = -1;
+ new_cl = -1;
+ break;
+ }
+ debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n",
+ node, lmc, old_cl, old_cwl, new_cl);
+ modereg_params0.s.cl = new_cl;
+ lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc),
+ modereg_params0.u64);
+ }
+
+ /*
+ * 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence
+ * SEQ_CTL[SEQ_SEL] = MRW.
+ */
+ // Use the default values, from the CSRs fields
+ // also, do B-sides for RDIMMs...
+
+ for (rankx = 0; rankx < 4; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ // for RDIMMs, B-side writes should get done automatically
+ // when the A-side is written
+ ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+ 0 /*MRreg */, 0 /*A-side */); /* MR0 */
+ ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+ 5 /*MRreg */, 0 /*A-side */); /* MR5 */
+ }
+
+ /*
+ * 5. conduct DBI bit deskew training via the General Purpose
+ * R/W sequence (dbtrain). may need to run this over and over to get
+ * a lock (I need up to 5 in simulation):
+ * SEQ_CTL[SEQ_SEL] = RW_TRAINING (15)
+ * DBTRAIN_CTL.CMD_COUNT_EXT = all 1's
+ * DBTRAIN_CTL.READ_CMD_COUNT = all 1's
+ * DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L]
+ * DBTRAIN_CTL.RW_TRAIN = 1
+ * DBTRAIN_CTL.READ_DQ_COUNT = dont care
+ * DBTRAIN_CTL.WRITE_ENA = 1;
+ * DBTRAIN_CTL.ACTIVATE = 1;
+ * DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a
+ * valid address
+ */
+
+ // NOW - do the training
+ debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc);
+
+ active_ranks = 0;
+ for (rankx = 0; rankx < rank_max; rankx++) {
+ if (!(rank_mask & (1 << rankx)))
+ continue;
+
+ phys_addr = rank_offset * active_ranks;
+ // FIXME: now done by test_dram_byte_hw()
+
+ active_ranks++;
+
+ retries = 0;
+
+restart_training:
+
+ // NOTE: return is a bitmask of the erroring bytelanes -
+ // we only print it
+ errors =
+ test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL);
+
+ debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n",
+ node, lmc, rankx, (unsigned long long)phys_addr, errors);
+
+ // NEXT - check for locking
+ unlocked = 0;
+ read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+ for (byte = 0; byte < (8 + ecc_ena); byte++)
+ unlocked += (dbi_settings[byte] & 1) ^ 1;
+
+ // FIXME: print out the DBI settings array after each rank?
+ if (rank_max > 1) // only when doing more than 1 rank
+ display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena,
+ dbi_settings, " RANK");
+
+ if (unlocked > 0) {
+ debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n",
+ node, lmc, unlocked);
+ retries++;
+ if (retries < 10) {
+ goto restart_training;
+ } else {
+ debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n",
+ node, lmc, retries);
+ }
+ }
+ } /* for (rankx = 0; rankx < 4; rankx++) */
+
+ // print out the final DBI settings array
+ display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+ "FINAL");
+}
+
+void cvmx_dbi_switchover(struct ddr_priv *priv)
+{
+ int lmc;
+ int num_lmcs = cvmx_dram_get_num_lmc(priv);
+
+ for (lmc = 0; lmc < num_lmcs; lmc++)
+ cvmx_dbi_switchover_interface(priv, lmc);
+}
--
2.28.0
More information about the U-Boot
mailing list