[PATCH 1/9] nand: atmel: Add DM based NAND driver
Michael Nazzareno Trimarchi
michael at amarulasolutions.com
Wed Jul 20 09:47:29 CEST 2022
Hi
On Tue, Jul 19, 2022 at 12:46 PM Balamanikandan Gunasundar
<balamanikandan.gunasundar at microchip.com> wrote:
>
> This implementation is ported from the rework done by Boris Brezillon
> in Linux. The driver is tested in sam9x60ek, sama5d3_xplained,
> sam9x75eb and sama7g54-ddr3-eb.
>
The reference implementation come from linux-?? , please give anyway a
reference starting version
> Signed-off-by: Balamanikandan Gunasundar <balamanikandan.gunasundar at microchip.com>
> ---
> drivers/mtd/nand/raw/Kconfig | 8 +
> drivers/mtd/nand/raw/Makefile | 1 +
> drivers/mtd/nand/raw/atmel/Makefile | 4 +
> drivers/mtd/nand/raw/atmel/nand-controller.c | 2300 ++++++++++++++++++
> 4 files changed, 2313 insertions(+)
> create mode 100644 drivers/mtd/nand/raw/atmel/Makefile
> create mode 100644 drivers/mtd/nand/raw/atmel/nand-controller.c
>
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 190300fc17..c795310c5d 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -37,6 +37,14 @@ config SYS_NAND_USE_FLASH_BBT
> help
> Enable the BBT (Bad Block Table) usage.
>
> +config DM_NAND_ATMEL
> + bool "Support Atmel NAND controller with DM support"
> + select SYS_NAND_SELF_INIT
> + imply SYS_NAND_USE_FLASH_BBT
> + help
> + Enable this driver for NAND flash platforms using an Atmel NAND
> + controller.
> +
> config NAND_ATMEL
> bool "Support Atmel NAND controller"
> select SYS_NAND_SELF_INIT
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index e3f6b903f7..a3acf3cbb3 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -40,6 +40,7 @@ ifdef NORMAL_DRIVERS
> obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o
>
> obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
> +obj-$(CONFIG_DM_NAND_ATMEL) += atmel/
> obj-$(CONFIG_NAND_ARASAN) += arasan_nfc.o
> obj-$(CONFIG_NAND_BRCMNAND) += brcmnand/
> obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
> diff --git a/drivers/mtd/nand/raw/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile
> new file mode 100644
> index 0000000000..6708416983
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/atmel/Makefile
> @@ -0,0 +1,4 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +obj-$(CONFIG_DM_NAND_ATMEL) += atmel-nand-controller.o
> +
> +atmel-nand-controller-objs := nand-controller.o
> diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
> new file mode 100644
> index 0000000000..87166b005d
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
> @@ -0,0 +1,2300 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright 2022 ATMEL
> + * Copyright 2017 Free Electrons
> + *
> + * Author: Boris Brezillon <boris.brezillon at free-electrons.com>
> + *
> + * Derived from the atmel_nand.c driver which contained the following
> + * copyrights:
> + *
> + * Copyright 2003 Rick Bronson
> + *
> + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
> + * Copyright 2001 Thomas Gleixner (gleixner at autronix.de)
> + *
> + * Derived from drivers/mtd/spia.c (removed in v3.8)
> + * Copyright 2000 Steven J. Hill (sjhill at cotw.com)
> + *
> + *
> + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
> + * Richard Genoud (richard.genoud at gmail.com), Adeneo Copyright 2007
> + *
> + * Derived from Das U-Boot source code
> + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
> + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
> + *
> + * Add Programmable Multibit ECC support for various AT91 SoC
> + * Copyright 2012 ATMEL, Hong Xu
> + *
> + * Add Nand Flash Controller support for SAMA5 SoC
> + * Copyright 2013 ATMEL, Josh Wu (josh.wu at atmel.com)
> + *
> + * Port from Linux
> + * Balamanikandan Gunasundar(balamanikandan.gunasundar at microchip.com)
> + * Copyright (C) 2022 Microchip Technology Inc.
> + *
> + * A few words about the naming convention in this file. This convention
> + * applies to structure and function names.
> + *
> + * Prefixes:
> + *
> + * - atmel_nand_: all generic structures/functions
> + * - atmel_smc_nand_: all structures/functions specific to the SMC interface
> + * (at91sam9 and avr32 SoCs)
> + * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
> + * (sama5 SoCs and later)
> + * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
> + * that is available in the HSMC block
> + * - <soc>_nand_: all SoC specific structures/functions
> + */
> +
> +#include <asm-generic/gpio.h>
> +#include <clk.h>
> +#include <dm/device_compat.h>
> +#include <dm/devres.h>
> +#include <dm/of_addr.h>
> +#include <dm/of_access.h>
> +#include <dm/uclass.h>
> +#include <linux/completion.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/ioport.h>
> +#include <linux/mfd/syscon/atmel-matrix.h>
> +#include <linux/mfd/syscon/atmel-smc.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/mtd/mtd.h>
> +#include <mach/at91_sfr.h>
> +#include <nand.h>
> +#include <regmap.h>
> +#include <syscon.h>
> +
> +#include "pmecc.h"
> +
> +#define NSEC_PER_SEC 1000000000L
> +
> +#define ATMEL_HSMC_NFC_CFG 0x0
> +#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
> +#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
> +#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
> +#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
> +#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
> +#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
> +#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
> +#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
> +#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
> +#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
> +
> +#define ATMEL_HSMC_NFC_CTRL 0x4
> +#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
> +#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
> +
> +#define ATMEL_HSMC_NFC_SR 0x8
> +#define ATMEL_HSMC_NFC_IER 0xc
> +#define ATMEL_HSMC_NFC_IDR 0x10
> +#define ATMEL_HSMC_NFC_IMR 0x14
> +#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
> +#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
> +#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
> +#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
> +#define ATMEL_HSMC_NFC_SR_WR BIT(11)
> +#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
> +#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
> +#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
> +#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
> +#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
> +#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
> +#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
> +#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
> + ATMEL_HSMC_NFC_SR_UNDEF | \
> + ATMEL_HSMC_NFC_SR_AWB | \
> + ATMEL_HSMC_NFC_SR_NFCASE)
> +#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
> +
> +#define ATMEL_HSMC_NFC_ADDR 0x18
> +#define ATMEL_HSMC_NFC_BANK 0x1c
> +
> +#define ATMEL_NFC_MAX_RB_ID 7
> +
> +#define ATMEL_NFC_SRAM_SIZE 0x2400
> +
> +#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
> +#define ATMEL_NFC_VCMD2 BIT(18)
> +#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
> +#define ATMEL_NFC_CSID(cs) ((cs) << 22)
> +#define ATMEL_NFC_DATAEN BIT(25)
> +#define ATMEL_NFC_NFCWR BIT(26)
> +
> +#define ATMEL_NFC_MAX_ADDR_CYCLES 5
> +
> +#define ATMEL_NAND_ALE_OFFSET BIT(21)
> +#define ATMEL_NAND_CLE_OFFSET BIT(22)
> +
> +#define DEFAULT_TIMEOUT_MS 1000
> +#define MIN_DMA_LEN 128
> +
> +static struct nand_ecclayout atmel_pmecc_oobinfo;
> +
> +struct nand_controller_ops {
> + int (*attach_chip)(struct nand_chip *chip);
> + int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
> + const struct nand_data_interface *conf);
> +};
> +
> +struct nand_controller {
> + const struct nand_controller_ops *ops;
> +};
> +
> +enum atmel_nand_rb_type {
> + ATMEL_NAND_NO_RB,
> + ATMEL_NAND_NATIVE_RB,
> + ATMEL_NAND_GPIO_RB,
> +};
> +
> +struct atmel_nand_rb {
> + enum atmel_nand_rb_type type;
> + union {
> + struct gpio_desc gpio;
> + int id;
> + };
> +};
> +
> +struct atmel_nand_cs {
> + int id;
> + struct atmel_nand_rb rb;
> + struct gpio_desc csgpio;
> + struct {
> + void __iomem *virt;
> + dma_addr_t dma;
> + } io;
> +
> + struct atmel_smc_cs_conf smcconf;
> +};
> +
> +struct atmel_nand {
> + struct list_head node;
> + struct udevice *dev;
> + struct nand_chip base;
> + struct atmel_nand_cs *activecs;
> + struct atmel_pmecc_user *pmecc;
> + struct gpio_desc cdgpio;
> + int numcs;
> + struct nand_controller *controller;
> + struct atmel_nand_cs cs[];
> +};
> +
> +static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
> +{
> + return container_of(chip, struct atmel_nand, base);
> +}
> +
> +enum atmel_nfc_data_xfer {
> + ATMEL_NFC_NO_DATA,
> + ATMEL_NFC_READ_DATA,
> + ATMEL_NFC_WRITE_DATA,
> +};
> +
> +struct atmel_nfc_op {
> + u8 cs;
> + u8 ncmds;
> + u8 cmds[2];
> + u8 naddrs;
> + u8 addrs[5];
> + enum atmel_nfc_data_xfer data;
> + u32 wait;
> + u32 errors;
> +};
> +
> +struct atmel_nand_controller;
> +struct atmel_nand_controller_caps;
> +
> +struct atmel_nand_controller_ops {
> + int (*probe)(struct udevice *udev,
> + const struct atmel_nand_controller_caps *caps);
> + int (*remove)(struct atmel_nand_controller *nc);
> + void (*nand_init)(struct atmel_nand_controller *nc,
> + struct atmel_nand *nand);
> + int (*ecc_init)(struct nand_chip *chip);
> + int (*setup_data_interface)(struct atmel_nand *nand, int csline,
> + const struct nand_data_interface *conf);
> +};
> +
> +struct atmel_nand_controller_caps {
> + bool has_dma;
> + bool legacy_of_bindings;
> + u32 ale_offs;
> + u32 cle_offs;
> + const char *ebi_csa_regmap_name;
> + const struct atmel_nand_controller_ops *ops;
> +};
> +
> +struct atmel_nand_controller {
> + struct nand_controller base;
> + const struct atmel_nand_controller_caps *caps;
> + struct udevice *dev;
> + struct regmap *smc;
> + struct dma_chan *dmac;
> + struct atmel_pmecc *pmecc;
> + struct list_head chips;
> + struct clk *mck;
> +};
> +
> +static inline struct atmel_nand_controller *
> +to_nand_controller(struct nand_controller *ctl)
> +{
> + return container_of(ctl, struct atmel_nand_controller, base);
> +}
> +
> +struct atmel_smc_nand_ebi_csa_cfg {
> + u32 offs;
> + u32 nfd0_on_d16;
> +};
> +
> +struct atmel_smc_nand_controller {
> + struct atmel_nand_controller base;
> + struct regmap *ebi_csa_regmap;
> + struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
> +};
> +
> +static inline struct atmel_smc_nand_controller *
> +to_smc_nand_controller(struct nand_controller *ctl)
> +{
> + return container_of(to_nand_controller(ctl),
> + struct atmel_smc_nand_controller, base);
> +}
> +
> +struct atmel_hsmc_nand_controller {
> + struct atmel_nand_controller base;
> + struct {
> + struct gen_pool *pool;
> + void __iomem *virt;
> + dma_addr_t dma;
> + } sram;
> + const struct atmel_hsmc_reg_layout *hsmc_layout;
> + struct regmap *io;
> + struct atmel_nfc_op op;
> + struct completion complete;
> + int irq;
> +
> + /* Only used when instantiating from legacy DT bindings. */
> + struct clk *clk;
> +};
> +
> +static inline struct atmel_hsmc_nand_controller *
> +to_hsmc_nand_controller(struct nand_controller *ctl)
> +{
> + return container_of(to_nand_controller(ctl),
> + struct atmel_hsmc_nand_controller, base);
> +}
> +
> +static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
> + int oobsize, int ecc_len)
> +{
> + int i;
> +
> + layout->eccbytes = ecc_len;
> +
> + /* ECC will occupy the last ecc_len bytes continuously */
> + for (i = 0; i < ecc_len; i++)
> + layout->eccpos[i] = oobsize - ecc_len + i;
> +
> + layout->oobfree[0].offset = 2;
> + layout->oobfree[0].length =
> + oobsize - ecc_len - layout->oobfree[0].offset;
> +}
> +
> +static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
> +{
> + op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
> + op->wait ^= status & op->wait;
> +
> + return !op->wait || op->errors;
> +}
> +
> +static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
> + unsigned int timeout_ms)
> +{
> + int ret;
> + u32 status;
> +
> + if (!timeout_ms)
> + timeout_ms = DEFAULT_TIMEOUT_MS;
> +
> + if (poll)
> + ret = regmap_read_poll_timeout(nc->base.smc,
> + ATMEL_HSMC_NFC_SR, status,
> + atmel_nfc_op_done(&nc->op,
> + status),
> + 0, timeout_ms);
> + else
> + return -EOPNOTSUPP;
> +
> + if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
> + dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
> + ret = -ETIMEDOUT;
> + }
> +
> + if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
> + dev_err(nc->base.dev, "Access to an undefined area\n");
> + ret = -EIO;
> + }
> +
> + if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
> + dev_err(nc->base.dev, "Access while busy\n");
> + ret = -EIO;
> + }
> +
> + if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
> + dev_err(nc->base.dev, "Wrong access size\n");
> + ret = -EIO;
> + }
> +
> + return ret;
> +}
> +
> +static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + writeb(buf[i], addr);
> +}
> +
> +static void ioread8_rep(void *addr, uint8_t *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + buf[i] = readb(addr);
> +}
> +
> +static void ioread16_rep(void *addr, void *buf, int len)
> +{
> + int i;
> + u16 *p = (u16 *)buf;
> +
> + for (i = 0; i < len; i++)
> + p[i] = readw(addr);
> +}
> +
> +static void iowrite16_rep(void *addr, const void *buf, int len)
> +{
> + int i;
> + u16 *p = (u16 *)buf;
> +
> + for (i = 0; i < len; i++)
> + writew(p[i], addr);
> +}
> +
> +static u8 atmel_nand_read_byte(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + return ioread8(nand->activecs->io.virt);
> +}
> +
> +static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (chip->options & NAND_BUSWIDTH_16)
> + iowrite16(byte | (byte << 8), nand->activecs->io.virt);
> + else
> + iowrite8(byte, nand->activecs->io.virt);
> +}
> +
> +static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (chip->options & NAND_BUSWIDTH_16)
> + ioread16_rep(nand->activecs->io.virt, buf, len / 2);
> + else
> + ioread8_rep(nand->activecs->io.virt, buf, len);
> +}
> +
> +static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (chip->options & NAND_BUSWIDTH_16)
> + iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
> + else
> + iowrite8_rep(nand->activecs->io.virt, buf, len);
> +}
> +
> +static int atmel_nand_dev_ready(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + return dm_gpio_get_value(&nand->activecs->rb.gpio);
> +}
> +
> +static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (cs < 0 || cs >= nand->numcs) {
> + nand->activecs = NULL;
> + chip->dev_ready = NULL;
> + return;
> + }
> +
> + nand->activecs = &nand->cs[cs];
> +
> + if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
> + chip->dev_ready = atmel_nand_dev_ready;
> +}
> +
> +static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> + u32 status;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
> +
> + return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
> +}
> +
> +static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + atmel_nand_select_chip(mtd, cs);
> +
> + if (!nand->activecs) {
> + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
> + ATMEL_HSMC_NFC_CTRL_DIS);
> + return;
> + }
> +
> + if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
> + chip->dev_ready = atmel_hsmc_nand_dev_ready;
> +
> + regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
> + ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
> + ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
> + ATMEL_HSMC_NFC_CFG_RSPARE |
> + ATMEL_HSMC_NFC_CFG_WSPARE,
> + ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
> + ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
> + ATMEL_HSMC_NFC_CFG_RSPARE);
> + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
> + ATMEL_HSMC_NFC_CTRL_EN);
> +}
> +
> +static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
> +{
> + u8 *addrs = nc->op.addrs;
> + unsigned int op = 0;
> + u32 addr, val;
> + int i, ret;
> +
> + nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
> +
> + for (i = 0; i < nc->op.ncmds; i++)
> + op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
> +
> + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
> + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
> +
> + op |= ATMEL_NFC_CSID(nc->op.cs) |
> + ATMEL_NFC_ACYCLE(nc->op.naddrs);
> +
> + if (nc->op.ncmds > 1)
> + op |= ATMEL_NFC_VCMD2;
> +
> + addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
> + (addrs[3] << 24);
> +
> + if (nc->op.data != ATMEL_NFC_NO_DATA) {
> + op |= ATMEL_NFC_DATAEN;
> + nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
> +
> + if (nc->op.data == ATMEL_NFC_WRITE_DATA)
> + op |= ATMEL_NFC_NFCWR;
> + }
> +
> + /* Clear all flags. */
> + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
> +
> + /* Send the command. */
> + regmap_write(nc->io, op, addr);
> +
> + ret = atmel_nfc_wait(nc, poll, 0);
> + if (ret)
> + dev_err(nc->base.dev,
> + "Failed to send NAND command (err = %d)!",
> + ret);
> +
> + /* Reset the op state. */
> + memset(&nc->op, 0, sizeof(nc->op));
> +
> + return ret;
> +}
> +
> +static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
> + unsigned int ctrl)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + if (ctrl & NAND_ALE) {
> + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
> + return;
> +
> + nc->op.addrs[nc->op.naddrs++] = dat;
> + } else if (ctrl & NAND_CLE) {
> + if (nc->op.ncmds > 1)
> + return;
> +
> + nc->op.cmds[nc->op.ncmds++] = dat;
> + }
> +
> + if (dat == NAND_CMD_NONE) {
> + nc->op.cs = nand->activecs->id;
> + atmel_nfc_exec_op(nc, true);
> + }
> +}
> +
> +static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
> + unsigned int ctrl)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_nand_controller *nc;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if ((ctrl & NAND_CTRL_CHANGE) &&
> + dm_gpio_is_valid(&nand->activecs->csgpio)) {
> + if (ctrl & NAND_NCE)
> + dm_gpio_set_value(&nand->activecs->csgpio, 0);
> + else
> + dm_gpio_set_value(&nand->activecs->csgpio, 1);
> + }
> +
> + if (ctrl & NAND_ALE)
> + writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
> + else if (ctrl & NAND_CLE)
> + writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
> +}
> +
> +static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
> + bool oob_required)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> + int ret = -EIO;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + if (ret)
> + memcpy_toio(nc->sram.virt, buf, mtd->writesize);
> +
> + if (oob_required)
> + memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
> + mtd->oobsize);
> +}
> +
> +static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
> + bool oob_required)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> + int ret = -EIO;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + if (ret)
> + memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
> +
> + if (oob_required)
> + memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
> + mtd->oobsize);
> +}
> +
> +static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + if (column >= 0) {
> + nc->op.addrs[nc->op.naddrs++] = column;
> +
> + /*
> + * 2 address cycles for the column offset on large page NANDs.
> + */
> + if (mtd->writesize > 512)
> + nc->op.addrs[nc->op.naddrs++] = column >> 8;
> + }
> +
> + if (page >= 0) {
> + nc->op.addrs[nc->op.naddrs++] = page;
> + nc->op.addrs[nc->op.naddrs++] = page >> 8;
> +
> + if (chip->options & NAND_ROW_ADDR_3)
> + nc->op.addrs[nc->op.naddrs++] = page >> 16;
> + }
> +}
> +
> +static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_nand_controller *nc;
> + int ret;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if (raw)
> + return 0;
> +
> + ret = atmel_pmecc_enable(nand->pmecc, op);
> + if (ret)
> + dev_err(nc->dev,
> + "Failed to enable ECC engine (err = %d)\n", ret);
> +
> + return ret;
> +}
> +
> +static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (!raw)
> + atmel_pmecc_disable(nand->pmecc);
> +}
> +
> +static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand_controller *nc;
> + struct mtd_oob_region oobregion;
> + void *eccbuf;
> + int ret, i;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if (raw)
> + return 0;
> +
> + ret = atmel_pmecc_wait_rdy(nand->pmecc);
> + if (ret) {
> + dev_err(nc->dev,
> + "Failed to transfer NAND page data (err = %d)\n",
> + ret);
> + return ret;
> + }
> +
> + mtd_ooblayout_ecc(mtd, 0, &oobregion);
> + eccbuf = chip->oob_poi + oobregion.offset;
> +
> + for (i = 0; i < chip->ecc.steps; i++) {
> + atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
> + eccbuf);
> + eccbuf += chip->ecc.bytes;
> + }
> +
> + return 0;
> +}
> +
> +static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
> + bool raw)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand_controller *nc;
> + struct mtd_oob_region oobregion;
> + int ret, i, max_bitflips = 0;
> + void *databuf, *eccbuf;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if (raw)
> + return 0;
> +
> + ret = atmel_pmecc_wait_rdy(nand->pmecc);
> + if (ret) {
> + dev_err(nc->dev,
> + "Failed to read NAND page data (err = %d)\n", ret);
> + return ret;
> + }
> +
> + mtd_ooblayout_ecc(mtd, 0, &oobregion);
> + eccbuf = chip->oob_poi + oobregion.offset;
> + databuf = buf;
> +
> + for (i = 0; i < chip->ecc.steps; i++) {
> + ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
> + eccbuf);
> + if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
> + ret = nand_check_erased_ecc_chunk(databuf,
> + chip->ecc.size,
> + eccbuf,
> + chip->ecc.bytes,
> + NULL, 0,
> + chip->ecc.strength);
> +
> + if (ret >= 0)
> + max_bitflips = max(ret, max_bitflips);
> + else
> + mtd->ecc_stats.failed++;
> +
> + databuf += chip->ecc.size;
> + eccbuf += chip->ecc.bytes;
> + }
> +
> + return max_bitflips;
> +}
> +
> +static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
> + bool oob_required, int page, bool raw)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + int ret;
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
> + if (ret)
> + return ret;
> +
> + atmel_nand_write_buf(mtd, buf, mtd->writesize);
> +
> + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
> + if (ret) {
> + atmel_pmecc_disable(nand->pmecc);
> + return ret;
> + }
> +
> + atmel_nand_pmecc_disable(chip, raw);
> +
> + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + return nand_prog_page_end_op(chip);
> +}
> +
> +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
> + struct nand_chip *chip, const u8 *buf,
> + int oob_required, int page)
> +{
> + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
> +}
> +
> +static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
> +}
> +
> +static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
> + bool oob_required, int page, bool raw)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + int ret;
> +
> + nand_read_page_op(chip, page, 0, NULL, 0);
> +
> + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
> + if (ret)
> + return ret;
> +
> + atmel_nand_read_buf(mtd, buf, mtd->writesize);
> + atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
> +
> + atmel_nand_pmecc_disable(chip, raw);
> +
> + return ret;
> +}
> +
> +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
> + struct nand_chip *chip, u8 *buf,
> + int oob_required, int page)
> +{
> + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
> +}
> +
> +static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip, u8 *buf,
> + int oob_required, int page)
> +{
> + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
> +}
> +
> +static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
> + const u8 *buf, bool oob_required,
> + int page, bool raw)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> + int ret, status;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + atmel_nfc_copy_to_sram(chip, buf, false);
> +
> + nc->op.cmds[0] = NAND_CMD_SEQIN;
> + nc->op.ncmds = 1;
> + atmel_nfc_set_op_addr(chip, page, 0x0);
> + nc->op.cs = nand->activecs->id;
> + nc->op.data = ATMEL_NFC_WRITE_DATA;
> +
> + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
> + if (ret)
> + return ret;
> +
> + ret = atmel_nfc_exec_op(nc, true);
> + if (ret) {
> + atmel_nand_pmecc_disable(chip, raw);
> + dev_err(nc->base.dev,
> + "Failed to transfer NAND page data (err = %d)\n",
> + ret);
> + return ret;
> + }
> +
> + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
> +
> + atmel_nand_pmecc_disable(chip, raw);
> +
> + if (ret)
> + return ret;
> +
> + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + nc->op.cmds[0] = NAND_CMD_PAGEPROG;
> + nc->op.ncmds = 1;
> + nc->op.cs = nand->activecs->id;
> + ret = atmel_nfc_exec_op(nc, true);
> + if (ret)
> + dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
> + ret);
> +
> + status = chip->waitfunc(mtd, chip);
> + if (status & NAND_STATUS_FAIL)
> + return -EIO;
> +
> + return ret;
> +}
> +
> +static int
> +atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
> + false);
> +}
> +
> +static int
> +atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> + const u8 *buf,
> + int oob_required, int page)
> +{
> + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
> + true);
> +}
> +
> +static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
> + bool oob_required, int page,
> + bool raw)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_hsmc_nand_controller *nc;
> + int ret;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + /*
> + * Optimized read page accessors only work when the NAND R/B pin is
> + * connected to a native SoC R/B pin. If that's not the case, fallback
> + * to the non-optimized one.
> + */
> + if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
> + nand_read_page_op(chip, page, 0, NULL, 0);
> +
> + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
> + raw);
> + }
> +
> + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
> +
> + if (mtd->writesize > 512)
> + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
> +
> + atmel_nfc_set_op_addr(chip, page, 0x0);
> + nc->op.cs = nand->activecs->id;
> + nc->op.data = ATMEL_NFC_READ_DATA;
> +
> + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
> + if (ret)
> + return ret;
> +
> + ret = atmel_nfc_exec_op(nc, true);
> + if (ret) {
> + atmel_nand_pmecc_disable(chip, raw);
> + dev_err(nc->base.dev,
> + "Failed to load NAND page data (err = %d)\n",
> + ret);
> + return ret;
> + }
> +
> + atmel_nfc_copy_from_sram(chip, buf, true);
> +
> + ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
> +
> + atmel_nand_pmecc_disable(chip, raw);
> +
> + return ret;
> +}
> +
> +static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
> + struct nand_chip *chip, u8 *buf,
> + int oob_required, int page)
> +{
> + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
> + false);
> +}
> +
> +static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + u8 *buf, int oob_required,
> + int page)
> +{
> + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
> + true);
> +}
> +
> +static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> +
> + if (section || !ecc->total)
> + return -ERANGE;
> +
> + oobregion->length = ecc->total;
> + oobregion->offset = mtd->oobsize - oobregion->length;
> +
> + return 0;
> +}
> +
> +static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> +
> + if (section)
> + return -ERANGE;
> +
> + oobregion->length = mtd->oobsize - ecc->total - 2;
> + oobregion->offset = 2;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
> + .ecc = nand_ooblayout_ecc_lp,
> + .rfree = nand_ooblayout_free_lp,
> +};
> +
> +const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
> +{
> + return &nand_ooblayout_lp_ops;
> +}
> +
> +static int atmel_nand_pmecc_init(struct nand_chip *chip)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_nand_controller *nc;
> + struct atmel_pmecc_user_req req;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if (!nc->pmecc) {
> + dev_err(nc->dev, "HW ECC not supported\n");
> + return -EOPNOTSUPP;
> + }
> +
> + if (nc->caps->legacy_of_bindings) {
> + u32 val;
> +
> + if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val))
> + chip->ecc.strength = val;
> +
> + if (!ofnode_read_u32(nc->dev->node_,
> + "atmel,pmecc-sector-size",
> + &val))
> + chip->ecc.size = val;
> + }
> +
> + if (chip->ecc.options & NAND_ECC_MAXIMIZE)
> + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
> + else if (chip->ecc.strength)
> + req.ecc.strength = chip->ecc.strength;
> + else
> + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
> +
nand_base still use ecc_strength_ds and ecc_step_ds. I think this part
should rework until
we drop those usage.
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
else if (chip->ecc.strength)
req.ecc.strength = chip->ecc.strength;
else if (chip->ecc_strength_ds)
req.ecc.strength = chip->ecc_strength_ds;
else
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
if (chip->ecc.size)
req.ecc.sectorsize = chip->ecc.size;
else if (chip->ecc_step_ds)
req.ecc.sectorsize = chip->ecc_step_ds;
else
req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
Michael
> + if (chip->ecc.size)
> + req.ecc.sectorsize = chip->ecc.size;
> + else
> + req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
> +
> + req.pagesize = mtd->writesize;
> + req.oobsize = mtd->oobsize;
> +
> + if (mtd->writesize <= 512) {
> + req.ecc.bytes = 4;
> + req.ecc.ooboffset = 0;
> + } else {
> + req.ecc.bytes = mtd->oobsize - 2;
> + req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
> + }
> +
> + nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
> + if (IS_ERR(nand->pmecc))
> + return PTR_ERR(nand->pmecc);
> +
> + chip->ecc.algo = NAND_ECC_BCH;
> + chip->ecc.size = req.ecc.sectorsize;
> + chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
> + chip->ecc.strength = req.ecc.strength;
> +
> + chip->options |= NAND_NO_SUBPAGE_WRITE;
> +
> + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
> + pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
> + mtd->oobsize,
> + chip->ecc.bytes);
> + chip->ecc.layout = &atmel_pmecc_oobinfo;
> +
> + return 0;
> +}
> +
> +static int atmel_nand_ecc_init(struct nand_chip *chip)
> +{
> + struct atmel_nand_controller *nc;
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + int ret;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + switch (chip->ecc.mode) {
> + case NAND_ECC_NONE:
> + case NAND_ECC_SOFT:
> + /*
> + * Nothing to do, the core will initialize everything for us.
> + */
> + break;
> +
> + case NAND_ECC_HW:
> + ret = atmel_nand_pmecc_init(chip);
> + if (ret)
> + return ret;
> +
> + chip->ecc.read_page = atmel_nand_pmecc_read_page;
> + chip->ecc.write_page = atmel_nand_pmecc_write_page;
> + chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
> + chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
> + break;
> +
> + default:
> + /* Other modes are not supported. */
> + dev_err(nc->dev, "Unsupported ECC mode: %d\n",
> + chip->ecc.mode);
> + return -EOPNOTSUPP;
> + }
> +
> + return 0;
> +}
> +
> +static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
> +{
> + int ret;
> +
> + ret = atmel_nand_ecc_init(chip);
> + if (ret)
> + return ret;
> +
> + if (chip->ecc.mode != NAND_ECC_HW)
> + return 0;
> +
> + /* Adjust the ECC operations for the HSMC IP. */
> + chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
> + chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
> + chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
> + chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
> +
> + return 0;
> +}
> +
> +static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
> + const struct nand_data_interface *conf,
> + struct atmel_smc_cs_conf *smcconf)
> +{
> + u32 ncycles, totalcycles, timeps, mckperiodps;
> + struct atmel_nand_controller *nc;
> + int ret;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + /* DDR interface not supported. */
> + if (conf->type != NAND_SDR_IFACE)
> + return -EOPNOTSUPP;
> +
> + /*
> + * tRC < 30ns implies EDO mode. This controller does not support this
> + * mode.
> + *
> + * The best interface timings are set both on the controller
> + * and flash side. Currently there is no fallback mechanism
> + * when there is a failure in setting up timing mode on the
> + * chip side. An error code - ENOTSUPP is returned resulting
> + * in failure to detect the device. So allow only mode 0
> + * (Default mode)
> + */
> + if (conf->timings.sdr.tRC_min < 100000)
> + return -EOPNOTSUPP;
> +
> + atmel_smc_cs_conf_init(smcconf);
> +
> + mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
> + mckperiodps *= 1000;
> +
> + /*
> + * Set write pulse timing. This one is easy to extract:
> + *
> + * NWE_PULSE = tWP
> + */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
> + totalcycles = ncycles;
> + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * The write setup timing depends on the operation done on the NAND.
> + * All operations goes through the same data bus, but the operation
> + * type depends on the address we are writing to (ALE/CLE address
> + * lines).
> + * Since we have no way to differentiate the different operations at
> + * the SMC level, we must consider the worst case (the biggest setup
> + * time among all operation types):
> + *
> + * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
> + */
> + timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
> + conf->timings.sdr.tALS_min);
> + timeps = max(timeps, conf->timings.sdr.tDS_min);
> + ncycles = DIV_ROUND_UP(timeps, mckperiodps);
> + ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
> + totalcycles += ncycles;
> + ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * As for the write setup timing, the write hold timing depends on the
> + * operation done on the NAND:
> + *
> + * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
> + */
> + timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
> + conf->timings.sdr.tALH_min);
> + timeps = max3(timeps, conf->timings.sdr.tDH_min,
> + conf->timings.sdr.tWH_min);
> + ncycles = DIV_ROUND_UP(timeps, mckperiodps);
> + totalcycles += ncycles;
> +
> + /*
> + * The write cycle timing is directly matching tWC, but is also
> + * dependent on the other timings on the setup and hold timings we
> + * calculated earlier, which gives:
> + *
> + * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
> + */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
> + ncycles = max(totalcycles, ncycles);
> + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * We don't want the CS line to be toggled between each byte/word
> + * transfer to the NAND. The only way to guarantee that is to have the
> + * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
> + *
> + * NCS_WR_PULSE = NWE_CYCLE
> + */
> + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * As for the write setup timing, the read hold timing depends on the
> + * operation done on the NAND:
> + *
> + * NRD_HOLD = max(tREH, tRHOH)
> + */
> + timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
> + ncycles = DIV_ROUND_UP(timeps, mckperiodps);
> + totalcycles = ncycles;
> +
> + /*
> + * TDF = tRHZ - NRD_HOLD
> + */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
> + ncycles -= totalcycles;
> +
> + /*
> + * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
> + * we might end up with a config that does not fit in the TDF field.
> + * Just take the max value in this case and hope that the NAND is more
> + * tolerant than advertised.
> + */
> + if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
> + ncycles = ATMEL_SMC_MODE_TDF_MAX;
> + else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
> + ncycles = ATMEL_SMC_MODE_TDF_MIN;
> +
> + smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
> + ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
> +
> + /*
> + * Read pulse timing directly matches tRP:
> + *
> + * NRD_PULSE = tRP
> + */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
> + totalcycles += ncycles;
> + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * The write cycle timing is directly matching tWC, but is also
> + * dependent on the setup and hold timings we calculated earlier,
> + * which gives:
> + *
> + * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
> + *
> + * NRD_SETUP is always 0.
> + */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
> + ncycles = max(totalcycles, ncycles);
> + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /*
> + * We don't want the CS line to be toggled between each byte/word
> + * transfer from the NAND. The only way to guarantee that is to have
> + * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
> + *
> + * NCS_RD_PULSE = NRD_CYCLE
> + */
> + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /* Txxx timings are directly matching tXXX ones. */
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
> + ret = atmel_smc_cs_conf_set_timing(smcconf,
> + ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
> + ret = atmel_smc_cs_conf_set_timing(smcconf,
> + ATMEL_HSMC_TIMINGS_TADL_SHIFT,
> + ncycles);
> + /*
> + * Version 4 of the ONFI spec mandates that tADL be at least 400
> + * nanoseconds, but, depending on the master clock rate, 400 ns may not
> + * fit in the tADL field of the SMC reg. We need to relax the check and
> + * accept the -ERANGE return code.
> + *
> + * Note that previous versions of the ONFI spec had a lower tADL_min
> + * (100 or 200 ns). It's not clear why this timing constraint got
> + * increased but it seems most NANDs are fine with values lower than
> + * 400ns, so we should be safe.
> + */
> + if (ret && ret != -ERANGE)
> + return ret;
> +
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
> + ret = atmel_smc_cs_conf_set_timing(smcconf,
> + ATMEL_HSMC_TIMINGS_TAR_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
> + ret = atmel_smc_cs_conf_set_timing(smcconf,
> + ATMEL_HSMC_TIMINGS_TRR_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
> + ret = atmel_smc_cs_conf_set_timing(smcconf,
> + ATMEL_HSMC_TIMINGS_TWB_SHIFT,
> + ncycles);
> + if (ret)
> + return ret;
> +
> + /* Attach the CS line to the NFC logic. */
> + smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
> +
> + /* Set the appropriate data bus width. */
> + if (nand->base.options & NAND_BUSWIDTH_16)
> + smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
> +
> + /* Operate in NRD/NWE READ/WRITEMODE. */
> + smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
> + ATMEL_SMC_MODE_WRITEMODE_NWE;
> +
> + return 0;
> +}
> +
> +static int
> +atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
> + int csline,
> + const struct nand_data_interface *conf)
> +{
> + struct atmel_nand_controller *nc;
> + struct atmel_smc_cs_conf smcconf;
> + struct atmel_nand_cs *cs;
> + int ret;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
> + if (ret)
> + return ret;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + cs = &nand->cs[csline];
> + cs->smcconf = smcconf;
> +
> + atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
> +
> + return 0;
> +}
> +
> +static int
> +atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
> + int csline,
> + const struct nand_data_interface *conf)
> +{
> + struct atmel_hsmc_nand_controller *nc;
> + struct atmel_smc_cs_conf smcconf;
> + struct atmel_nand_cs *cs;
> + int ret;
> +
> + nc = to_hsmc_nand_controller(nand->controller);
> +
> + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
> + if (ret)
> + return ret;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + cs = &nand->cs[csline];
> + cs->smcconf = smcconf;
> +
> + if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
> + cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
> +
> + atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
> + &cs->smcconf);
> +
> + return 0;
> +}
> +
> +static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
> + const struct nand_data_interface *conf)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_nand_controller *nc;
> +
> + nc = to_nand_controller(nand->controller);
> +
> + if (csline >= nand->numcs ||
> + (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
> + return -EINVAL;
> +
> + return nc->caps->ops->setup_data_interface(nand, csline, conf);
> +}
> +
> +#define NAND_KEEP_TIMINGS 0x00800000
> +
> +static void atmel_nand_init(struct atmel_nand_controller *nc,
> + struct atmel_nand *nand)
> +{
> + struct nand_chip *chip = &nand->base;
> + struct mtd_info *mtd = nand_to_mtd(chip);
> +
> + mtd->dev->parent = nc->dev;
> + nand->controller = &nc->base;
> + nand->controller = &nc->base;
> +
> + chip->cmd_ctrl = atmel_nand_cmd_ctrl;
> + chip->read_byte = atmel_nand_read_byte;
> + chip->write_byte = atmel_nand_write_byte;
> + chip->read_buf = atmel_nand_read_buf;
> + chip->write_buf = atmel_nand_write_buf;
> + chip->select_chip = atmel_nand_select_chip;
> + chip->setup_data_interface = atmel_nand_setup_data_interface;
> +
> + if (!nc->mck || !nc->caps->ops->setup_data_interface)
> + chip->options |= NAND_KEEP_TIMINGS;
> +
> + /* Some NANDs require a longer delay than the default one (20us). */
> + chip->chip_delay = 40;
> +
> + /* Default to HW ECC if pmecc is available. */
> + if (nc->pmecc)
> + chip->ecc.mode = NAND_ECC_HW;
> +}
> +
> +static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
> + struct atmel_nand *nand)
> +{
> + struct atmel_smc_nand_controller *smc_nc;
> + int i;
> +
> + atmel_nand_init(nc, nand);
> +
> + smc_nc = to_smc_nand_controller(nand->controller);
> + if (!smc_nc->ebi_csa_regmap)
> + return;
> +
> + /* Attach the CS to the NAND Flash logic. */
> + for (i = 0; i < nand->numcs; i++)
> + regmap_update_bits(smc_nc->ebi_csa_regmap,
> + smc_nc->ebi_csa->offs,
> + BIT(nand->cs[i].id), BIT(nand->cs[i].id));
> +
> + if (smc_nc->ebi_csa->nfd0_on_d16)
> + regmap_update_bits(smc_nc->ebi_csa_regmap,
> + smc_nc->ebi_csa->offs,
> + smc_nc->ebi_csa->nfd0_on_d16,
> + smc_nc->ebi_csa->nfd0_on_d16);
> +}
> +
> +static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
> + struct atmel_nand *nand)
> +{
> + struct nand_chip *chip = &nand->base;
> +
> + atmel_nand_init(nc, nand);
> +
> + /* Overload some methods for the HSMC controller. */
> + chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
> + chip->select_chip = atmel_hsmc_nand_select_chip;
> +}
> +
> +static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
> +{
> + list_del(&nand->node);
> +
> + return 0;
> +}
> +
> +static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
> + ofnode np,
> + int reg_cells)
> +{
> + struct atmel_nand *nand;
> + ofnode n;
> + int numcs = 0;
> + int ret, i;
> + u32 val;
> + fdt32_t faddr;
> + phys_addr_t base;
> +
> + /* Count num of nand nodes */
> + ofnode_for_each_subnode(n, ofnode_get_parent(np))
> + numcs++;
> + if (numcs < 1) {
> + dev_err(nc->dev, "Missing or invalid reg property\n");
> + return ERR_PTR(-EINVAL);
> + }
> +
> + nand = devm_kzalloc(nc->dev,
> + sizeof(struct atmel_nand) +
> + (numcs * sizeof(struct atmel_nand_cs)),
> + GFP_KERNEL);
> + if (!nand) {
> + dev_err(nc->dev, "Failed to allocate NAND object\n");
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + nand->numcs = numcs;
> +
> + gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio,
> + GPIOD_IS_IN);
> +
> + for (i = 0; i < numcs; i++) {
> + ret = ofnode_read_u32(np, "reg", &val);
> + if (ret) {
> + dev_err(nc->dev, "Invalid reg property (err = %d)\n",
> + ret);
> + return ERR_PTR(ret);
> + }
> + nand->cs[i].id = val;
> +
> + /* Read base address */
> + struct resource res;
> +
> + if (ofnode_read_resource(np, 0, &res)) {
> + dev_err(nc->dev, "Unable to read resource\n");
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + faddr = cpu_to_fdt32(val);
> + base = ofnode_translate_address(np, &faddr);
> + nand->cs[i].io.virt = (void *)base;
> +
> + if (!ofnode_read_u32(np, "atmel,rb", &val)) {
> + if (val > ATMEL_NFC_MAX_RB_ID)
> + return ERR_PTR(-EINVAL);
> +
> + nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
> + nand->cs[i].rb.id = val;
> + } else {
> + ret = gpio_request_by_name_nodev(np, "rb-gpios", 0,
> + &nand->cs[i].rb.gpio,
> + GPIOD_IS_IN);
> + if (ret) {
> + dev_err(nc->dev, "Failed to get R/B gpio\n");
> + return ERR_PTR(ret);
> + }
> +
> + nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
> + }
> +
> + ret = gpio_request_by_name_nodev(np, "cs-gpios", 0,
> + &nand->cs[i].csgpio,
> + GPIOD_IS_OUT);
> + if (ret)
> + dev_err(nc->dev, "Failed to get CS gpio (%d)\n", ret);
> + }
> +
> + nand_set_flash_node(&nand->base, np);
> +
> + return nand;
> +}
> +
> +static int nand_attach(struct nand_chip *chip)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> +
> + if (nand->controller->ops && nand->controller->ops->attach_chip)
> + return nand->controller->ops->attach_chip(chip);
> +
> + return 0;
> +}
> +
> +int atmel_nand_scan(struct mtd_info *mtd, int maxchips)
> +{
> + int ret;
> +
> + ret = nand_scan_ident(mtd, maxchips, NULL);
> + if (ret)
> + return ret;
> +
> + ret = nand_attach(mtd_to_nand(mtd));
> + if (ret)
> + return ret;
> +
> + ret = nand_scan_tail(mtd);
> + return ret;
> +}
> +
> +static int
> +atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
> + struct atmel_nand *nand)
> +{
> + struct nand_chip *chip = &nand->base;
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + int ret;
> +
> + /* No card inserted, skip this NAND. */
> + if (dm_gpio_is_valid(&nand->cdgpio) &&
> + dm_gpio_get_value(&nand->cdgpio)) {
> + dev_info(nc->dev, "No SmartMedia card inserted.\n");
> + return 0;
> + }
> +
> + nc->caps->ops->nand_init(nc, nand);
> +
> + ret = atmel_nand_scan(mtd, nand->numcs);
> + if (ret) {
> + dev_err(nc->dev, "NAND scan failed: %d\n", ret);
> + return ret;
> + }
> +
> + ret = nand_register(0, mtd);
> + if (ret) {
> + dev_err(nc->dev, "nand register failed: %d\n", ret);
> + return ret;
> + }
> +
> + list_add_tail(&nand->node, &nc->chips);
> +
> + return 0;
> +}
> +
> +static int
> +atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
> +{
> + struct atmel_nand *nand, *tmp;
> + int ret;
> +
> + list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
> + ret = atmel_nand_controller_remove_nand(nand);
> + if (ret)
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
> +{
> + ofnode np;
> + ofnode nand_np;
> + int ret, reg_cells;
> + u32 val;
> +
> + /* TODO:
> + * Add support for legacy nands
> + */
> +
> + np = nc->dev->node_;
> +
> + ret = ofnode_read_u32(np, "#address-cells", &val);
> + if (ret) {
> + dev_err(nc->dev, "missing #address-cells property\n");
> + return ret;
> + }
> +
> + reg_cells = val;
> +
> + ret = ofnode_read_u32(np, "#size-cells", &val);
> + if (ret) {
> + dev_err(nc->dev, "missing #size-cells property\n");
> + return ret;
> + }
> +
> + reg_cells += val;
> +
> + ofnode_for_each_subnode(nand_np, np) {
> + struct atmel_nand *nand;
> +
> + nand = atmel_nand_create(nc, nand_np, reg_cells);
> + if (IS_ERR(nand)) {
> + ret = PTR_ERR(nand);
> + goto err;
> + }
> +
> + ret = atmel_nand_controller_add_nand(nc, nand);
> + if (ret)
> + goto err;
> + }
> +
> + return 0;
> +
> +err:
> + atmel_nand_controller_remove_nands(nc);
> +
> + return ret;
> +}
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
> + .offs = AT91SAM9260_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
> + .offs = AT91SAM9261_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
> + .offs = AT91SAM9263_MATRIX_EBI0CSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
> + .offs = AT91SAM9RL_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
> + .offs = AT91SAM9G45_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
> + .offs = AT91SAM9N12_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
> + .offs = AT91SAM9X5_MATRIX_EBICSA,
> +};
> +
> +static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
> + .offs = AT91_SFR_CCFG_EBICSA,
> + .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
> +};
> +
> +static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = {
> + {
> + .compatible = "atmel,at91sam9260-matrix",
> + .data = (ulong)&at91sam9260_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9261-matrix",
> + .data = (ulong)&at91sam9261_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9263-matrix",
> + .data = (ulong)&at91sam9263_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9rl-matrix",
> + .data = (ulong)&at91sam9rl_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9g45-matrix",
> + .data = (ulong)&at91sam9g45_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9n12-matrix",
> + .data = (ulong)&at91sam9n12_ebi_csa,
> + },
> + {
> + .compatible = "atmel,at91sam9x5-matrix",
> + .data = (ulong)&at91sam9x5_ebi_csa,
> + },
> + {
> + .compatible = "microchip,sam9x60-sfr",
> + .data = (ulong)&sam9x60_ebi_csa,
> + },
> + { /* sentinel */ },
> +};
> +
> +static int atmel_nand_attach_chip(struct nand_chip *chip)
> +{
> + struct atmel_nand *nand = to_atmel_nand(chip);
> + struct atmel_nand_controller *nc = to_nand_controller(nand->controller);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + int ret;
> +
> + ret = nc->caps->ops->ecc_init(chip);
> + if (ret)
> + return ret;
> +
> + if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) {
> + /*
> + * We keep the MTD name unchanged to avoid breaking platforms
> + * where the MTD cmdline parser is used and the bootloader
> + * has not been updated to use the new naming scheme.
> + */
> + mtd->name = "atmel_nand";
> + } else if (!mtd->name) {
> + /*
> + * If the new bindings are used and the bootloader has not been
> + * updated to pass a new mtdparts parameter on the cmdline, you
> + * should define the following property in your nand node:
> + *
> + * label = "atmel_nand";
> + *
> + * This way, mtd->name will be set by the core when
> + * nand_set_flash_node() is called.
> + */
> + sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id);
> + }
> +
> + return 0;
> +}
> +
> +static const struct nand_controller_ops atmel_nand_controller_ops = {
> + .attach_chip = atmel_nand_attach_chip,
> +};
> +
> +static int
> +atmel_nand_controller_init(struct atmel_nand_controller *nc,
> + struct udevice *dev,
> + const struct atmel_nand_controller_caps *caps)
> +{
> + struct ofnode_phandle_args args;
> + int ret;
> +
> + nc->base.ops = &atmel_nand_controller_ops;
> + INIT_LIST_HEAD(&nc->chips);
> + nc->dev = dev;
> + nc->caps = caps;
> +
> + nc->pmecc = devm_atmel_pmecc_get(dev);
> + if (IS_ERR(nc->pmecc)) {
> + ret = PTR_ERR(nc->pmecc);
> + if (ret != -EPROBE_DEFER)
> + dev_err(dev, "Could not get PMECC object (err = %d)\n",
> + ret);
> + return ret;
> + }
> +
> + /* We do not retrieve the SMC syscon when parsing old DTs. */
> + if (nc->caps->legacy_of_bindings)
> + return 0;
> +
> + nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL);
> + if (!nc->mck)
> + return -ENOMEM;
> +
> + clk_get_by_index(dev->parent, 0, nc->mck);
> + if (IS_ERR(nc->mck)) {
> + dev_err(dev, "Failed to retrieve MCK clk\n");
> + return PTR_ERR(nc->mck);
> + }
> +
> + ret = ofnode_parse_phandle_with_args(dev->parent->node_,
> + "atmel,smc", NULL, 0, 0, &args);
> + if (ret) {
> + dev_err(dev, "Missing or invalid atmel,smc property\n");
> + return -EINVAL;
> + }
> +
> + nc->smc = syscon_node_to_regmap(args.node);
> + if (IS_ERR(nc->smc)) {
> + ret = PTR_ERR(nc->smc);
> + dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
> + return 0;
> + }
> +
> + return 0;
> +}
> +
> +static int
> +atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
> +{
> + struct udevice *dev = nc->base.dev;
> + struct ofnode_phandle_args args;
> + const struct udevice_id *match = NULL;
> + const char *name;
> + int ret;
> + int len;
> + int i;
> +
> + /* We do not retrieve the EBICSA regmap when parsing old DTs. */
> + if (nc->base.caps->legacy_of_bindings)
> + return 0;
> +
> + ret = ofnode_parse_phandle_with_args(dev->parent->node_,
> + nc->base.caps->ebi_csa_regmap_name,
> + NULL, 0, 0, &args);
> + if (ret) {
> + dev_err(dev, "Unable to read ebi csa regmap\n");
> + return -EINVAL;
> + }
> +
> + name = ofnode_get_property(args.node, "compatible", &len);
> +
> + for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) {
> + if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) {
> + match = &atmel_ebi_csa_regmap_of_ids[i];
> + break;
> + }
> + }
> +
> + if (!match) {
> + dev_err(dev, "Unable to find ebi csa conf");
> + return -EINVAL;
> + }
> + nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
> +
> + nc->ebi_csa_regmap = syscon_node_to_regmap(args.node);
> + if (IS_ERR(nc->ebi_csa_regmap)) {
> + ret = PTR_ERR(nc->ebi_csa_regmap);
> + dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
> + return ret;
> + }
> +
> + /* TODO:
> + * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
> + * add 4 to ->ebi_csa->offs.
> + */
> +
> + return 0;
> +}
> +
> +static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
> +{
> + struct udevice *dev = nc->base.dev;
> + struct ofnode_phandle_args args;
> + struct clk smc_clk;
> + int ret;
> + u32 addr;
> +
> + ret = ofnode_parse_phandle_with_args(dev->parent->node_,
> + "atmel,smc", NULL, 0, 0, &args);
> + if (ret) {
> + dev_err(dev, "Missing or invalid atmel,smc property\n");
> + return -EINVAL;
> + }
> +
> + nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node);
> + if (IS_ERR(nc->hsmc_layout)) {
> + dev_err(dev, "Could not get hsmc layout\n");
> + return -EINVAL;
> + }
> +
> + /* Enable smc clock */
> + ret = clk_get_by_index_nodev(args.node, 0, &smc_clk);
> + if (ret) {
> + dev_err(dev, "Unable to get smc clock (err = %d)", ret);
> + return ret;
> + }
> +
> + ret = clk_prepare_enable(&smc_clk);
> + if (ret)
> + return ret;
> +
> + ret = ofnode_parse_phandle_with_args(dev->node_,
> + "atmel,nfc-io", NULL, 0, 0, &args);
> + if (ret) {
> + dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
> + return -EINVAL;
> + }
> +
> + nc->io = syscon_node_to_regmap(args.node);
> + if (IS_ERR(nc->io)) {
> + ret = PTR_ERR(nc->io);
> + dev_err(dev, "Could not get NFC IO regmap\n");
> + return ret;
> + }
> +
> + ret = ofnode_parse_phandle_with_args(dev->node_,
> + "atmel,nfc-sram", NULL, 0, 0, &args);
> + if (ret) {
> + dev_err(dev, "Missing or invalid atmel,nfc-sram property\n");
> + return ret;
> + }
> +
> + ret = ofnode_read_u32(args.node, "reg", &addr);
> + if (ret) {
> + dev_err(dev, "Could not read reg addr of nfc sram");
> + return ret;
> + }
> + nc->sram.virt = (void *)addr;
> +
> + return 0;
> +}
> +
> +static int
> +atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
> +{
> + struct atmel_hsmc_nand_controller *hsmc_nc;
> + int ret;
> +
> + ret = atmel_nand_controller_remove_nands(nc);
> + if (ret)
> + return ret;
> +
> + hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
> +
> + if (hsmc_nc->clk) {
> + clk_disable_unprepare(hsmc_nc->clk);
> + devm_clk_put(nc->dev, hsmc_nc->clk);
> + }
> +
> + return 0;
> +}
> +
> +static int
> +atmel_hsmc_nand_controller_probe(struct udevice *dev,
> + const struct atmel_nand_controller_caps *caps)
> +{
> + struct atmel_hsmc_nand_controller *nc;
> + int ret;
> +
> + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
> + if (!nc)
> + return -ENOMEM;
> +
> + ret = atmel_nand_controller_init(&nc->base, dev, caps);
> + if (ret)
> + return ret;
> +
> + ret = atmel_hsmc_nand_controller_init(nc);
> + if (ret)
> + return ret;
> +
> + /* Make sure all irqs are masked before registering our IRQ handler. */
> + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
> +
> + /* Initial NFC configuration. */
> + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
> + ATMEL_HSMC_NFC_CFG_DTO_MAX);
> +
> + ret = atmel_nand_controller_add_nands(&nc->base);
> + if (ret)
> + goto err;
> +
> + return 0;
> +
> +err:
> + atmel_hsmc_nand_controller_remove(&nc->base);
> +
> + return ret;
> +}
> +
> +static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
> + .probe = atmel_hsmc_nand_controller_probe,
> + .remove = atmel_hsmc_nand_controller_remove,
> + .ecc_init = atmel_hsmc_nand_ecc_init,
> + .nand_init = atmel_hsmc_nand_init,
> + .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
> +};
> +
> +static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
> + .has_dma = true,
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ops = &atmel_hsmc_nc_ops,
> +};
> +
> +static int
> +atmel_smc_nand_controller_probe(struct udevice *dev,
> + const struct atmel_nand_controller_caps *caps)
> +{
> + struct atmel_smc_nand_controller *nc;
> + int ret;
> +
> + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
> + if (!nc)
> + return -ENOMEM;
> +
> + ret = atmel_nand_controller_init(&nc->base, dev, caps);
> + if (ret)
> + return ret;
> +
> + ret = atmel_smc_nand_controller_init(nc);
> + if (ret)
> + return ret;
> +
> + return atmel_nand_controller_add_nands(&nc->base);
> +}
> +
> +static int
> +atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
> +{
> + int ret;
> +
> + ret = atmel_nand_controller_remove_nands(nc);
> + if (ret)
> + return ret;
> +
> + return 0;
> +}
> +
> +/*
> + * The SMC reg layout of at91rm9200 is completely different which prevents us
> + * from re-using atmel_smc_nand_setup_data_interface() for the
> + * ->setup_data_interface() hook.
> + * At this point, there's no support for the at91rm9200 SMC IP, so we leave
> + * ->setup_data_interface() unassigned.
> + */
> +static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
> + .probe = atmel_smc_nand_controller_probe,
> + .remove = atmel_smc_nand_controller_remove,
> + .ecc_init = atmel_nand_ecc_init,
> + .nand_init = atmel_smc_nand_init,
> +};
> +
> +static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ebi_csa_regmap_name = "atmel,matrix",
> + .ops = &at91rm9200_nc_ops,
> +};
> +
> +static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
> + .probe = atmel_smc_nand_controller_probe,
> + .remove = atmel_smc_nand_controller_remove,
> + .ecc_init = atmel_nand_ecc_init,
> + .nand_init = atmel_smc_nand_init,
> + .setup_data_interface = atmel_smc_nand_setup_data_interface,
> +};
> +
> +static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ebi_csa_regmap_name = "atmel,matrix",
> + .ops = &atmel_smc_nc_ops,
> +};
> +
> +static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
> + .ale_offs = BIT(22),
> + .cle_offs = BIT(21),
> + .ebi_csa_regmap_name = "atmel,matrix",
> + .ops = &atmel_smc_nc_ops,
> +};
> +
> +static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
> + .has_dma = true,
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ebi_csa_regmap_name = "atmel,matrix",
> + .ops = &atmel_smc_nc_ops,
> +};
> +
> +static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
> + .has_dma = true,
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ebi_csa_regmap_name = "microchip,sfr",
> + .ops = &atmel_smc_nc_ops,
> +};
> +
> +/* Only used to parse old bindings. */
> +static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
> + .ale_offs = BIT(21),
> + .cle_offs = BIT(22),
> + .ops = &atmel_smc_nc_ops,
> + .legacy_of_bindings = true,
> +};
> +
> +static const struct udevice_id atmel_nand_controller_of_ids[] = {
> + {
> + .compatible = "atmel,at91rm9200-nand-controller",
> + .data = (ulong)&atmel_rm9200_nc_caps,
> + },
> + {
> + .compatible = "atmel,at91sam9260-nand-controller",
> + .data = (ulong)&atmel_sam9260_nc_caps,
> + },
> + {
> + .compatible = "atmel,at91sam9261-nand-controller",
> + .data = (ulong)&atmel_sam9261_nc_caps,
> + },
> + {
> + .compatible = "atmel,at91sam9g45-nand-controller",
> + .data = (ulong)&atmel_sam9g45_nc_caps,
> + },
> + {
> + .compatible = "atmel,sama5d3-nand-controller",
> + .data = (ulong)&atmel_sama5_nc_caps,
> + },
> + {
> + .compatible = "microchip,sam9x60-nand-controller",
> + .data = (ulong)µchip_sam9x60_nc_caps,
> + },
> + /* Support for old/deprecated bindings: */
> + {
> + .compatible = "atmel,at91rm9200-nand",
> + .data = (ulong)&atmel_rm9200_nand_caps,
> + },
> + {
> + .compatible = "atmel,sama5d4-nand",
> + .data = (ulong)&atmel_rm9200_nand_caps,
> + },
> + {
> + .compatible = "atmel,sama5d2-nand",
> + .data = (ulong)&atmel_rm9200_nand_caps,
> + },
> + { /* sentinel */ },
> +};
> +
> +static int atmel_nand_controller_probe(struct udevice *dev)
> +{
> + const struct atmel_nand_controller_caps *caps;
> + struct udevice *pmecc_dev;
> +
> + caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev);
> + if (!caps) {
> + printf("Could not retrieve NFC caps\n");
> + return -EINVAL;
> + }
> +
> + /* Probe pmecc driver */
> + if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) {
> + printf("%s: get device fail\n", __func__);
> + return -EINVAL;
> + }
> +
> + return caps->ops->probe(dev, caps);
> +}
> +
> +static int atmel_nand_controller_remove(struct udevice *dev)
> +{
> + struct atmel_nand_controller *nc;
> +
> + nc = (struct atmel_nand_controller *)dev_get_driver_data(dev);
> +
> + return nc->caps->ops->remove(nc);
> +}
> +
> +U_BOOT_DRIVER(atmel_nand_controller) = {
> + .name = "atmel-nand-controller",
> + .id = UCLASS_MTD,
> + .of_match = atmel_nand_controller_of_ids,
> + .probe = atmel_nand_controller_probe,
> + .remove = atmel_nand_controller_remove,
> +};
> +
> +void board_nand_init(void)
> +{
> + struct udevice *dev;
> + int ret;
> +
> + ret = uclass_get_device_by_driver(UCLASS_MTD,
> + DM_DRIVER_GET(atmel_nand_controller),
> + &dev);
> + if (ret && ret != -ENODEV)
> + printf("Failed to initialize NAND controller. (error %d)\n",
> + ret);
> +}
> --
> 2.25.1
>
--
Michael Nazzareno Trimarchi
Co-Founder & Chief Executive Officer
M. +39 347 913 2170
michael at amarulasolutions.com
__________________________________
Amarula Solutions BV
Joop Geesinkweg 125, 1114 AB, Amsterdam, NL
T. +31 (0)85 111 9172
info at amarulasolutions.com
www.amarulasolutions.com
More information about the U-Boot
mailing list